• More algorithms for streams:
 • (1) Filtering a data stream: Bloom filters
 ▪ Select elements with property x from stream
 • (2) Counting distinct elements: Flajolet-Martin
 ▪ Number of distinct elements in the last k elements of the stream
 • (3) Estimating moments: AMS method
 ▪ Estimate std. dev. of last k elements
 • (4) Counting frequent items
(1) Filtering Data Streams
Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- **Determine which tuples of stream are in S**

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest
First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.
| S | = 1 billion email addresses
| B | = 1GB = 8 billion bits

If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)

- Actually, less than 1/8th, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw \(m \) darts into \(n \) equally likely targets, **what is the probability that a target gets at least one dart?**

In our case:
- **Targets** = bits/buckets
- **Darts** = hash values of items
What is the probability that a target gets at least one dart?

The probability that some target X is not hit by a dart is $1 - (1 - 1/n)$.

This is equivalent to $1/e$ as $n \to \infty$.

Therefore, the probability that at least one dart hits target X is $1 - e^{-m/n}$.
Fraction of 1s in the array $B = 1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets

- Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
- Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: $|S| = m$, $|B| = n$
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x

(note: we have a single array B!)
Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 - e^{-km/n})$

- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

- So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \text{ billion}, n = 8 \text{ billion} \)
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- “Optimal” value of \(k: n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
 - Error at \(k = 6: (1 - e^{-1/6})^2 = 0.0235 \)
Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks

Suitable for hardware implementation
- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?
- It is the same: $(1 - e^{-km/n})^k$ vs. $(1 - e^{-m/(n/k)})^k$
- But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

- **Problem:**
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 - Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
 - Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements $= 2^R$
Very very rough and heuristic intuition why Flajolet-Martin works:

- \(h(a) \) hashes \(a \) with equal prob. to any of \(N \) values
- Then \(h(a) \) is a sequence of \(\log_2 N \) bits, where \(2^{-r} \) fraction of all \(a \)s have a tail of \(r \) zeros
 - About 50% of \(a \)s hash to ***0
 - About 25% of \(a \)s hash to **00
 - So, if we saw the longest tail of \(r=2 \) (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- So, it takes to hash about \(2^r \) items before we see one with zero-suffix of length \(r \)
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of \(r \) zeros:
- Goes to 1 if \(m \gg 2^r \)
- Goes to 0 if \(m \ll 2^r \)

where \(m \) is the number of distinct elements seen so far in the stream

Thus, \(2^R \) will almost always be around \(m! \)
What is the probability that a given $h(a)$ ends in at least r zeros is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$\left(1 - 2^{-r}\right)^m$
Why It Works: More formally

- **Note:** $\left(1 - 2^{-r}\right)^m = (1 - 2^{-r})^{2r}(m2^{-r}) \approx e^{-m2^{-r}}$

- **Prob. of NOT finding a tail of length r is:**
 - If $m << 2^r$, then prob. tends to 1
 - $(1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \to 0$
 - So, the probability of finding a tail of length r tends to 0
 - If $m >> 2^r$, then prob. tends to 0
 - $(1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1

- **Thus, 2^R will almost always be around $m!$**
Why It Doesn’t Work

- $\mathbb{E}[2^R]$ is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values

- Let m_i be the number of times value i occurs in the stream

- The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$
Special Cases

The 0th moment = number of distinct elements
- The problem just considered

The 1st moment = count of the numbers of elements = length of the stream
- Easy to compute

The 2nd moment = surprise number $S = \sum_{i \in A} (m_i)^k$, a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100
- 11 distinct values

- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

 Surprise $S = 910$

- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

- **How to set X.val and X.el?**
 - Assume stream has length n (we relax this later)
 - Pick some random time t ($t < n$) to start, so that any time is equally likely
 - Let at time t the stream have item i. *We set X.el = i*
 - Then we maintain count c ($X.val = c$) of the number of is in the stream starting from the chosen time t
 - **Then the estimate of the 2nd moment ($\sum_i m_i^2$) is:**

 $$S = f(X) = n \cdot (2 \cdot c - 1)$$

 - Note, we will keep track of multiple Xs, $(X_1, X_2, \ldots X_k)$
 and our final estimate will be $S = 1/k \cdot \sum_j^k f(X_j)$
Expectation Analysis

- 2nd moment is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a - 1$, $c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$

 $= \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)$

Group times by the value seen

Time t when the last i is seen ($c_t = 1$)

Time t when the penultimate i is seen ($c_t = 2$)

Time t when the first i is seen ($c_t = m_i$)

m_i ... total count of item i in the stream (we are assuming stream has length n)
\[E[f(X)] = \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1) \]

- Little side calculation:
 \[(1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \]
 \[\sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \]

- Then \[E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2 \]

- So, \[E[f(X)] = \sum_i (m_i)^2 = S \]

- We have the second moment (in expectation)!

\[\sum_i (m_i)^2 = S \]
For estimating k^{th} moment we essentially use the same algorithm but change the estimate:

- For $k=2$ we used $n \cdot (2 \cdot c - 1)$
- For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

Why?

- **For $k=2$:** Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
- **For $k=3$:** $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
In practice:

- Compute \(f(X) = n(2c - 1) \) for as many variables \(X \) as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number \(n \), the number of positions in the stream
- But real streams go on forever, so \(n \) is a variable – the number of inputs seen so far
Streams Never End: Fixups

(1) The variables X have n as a factor – keep n separately; just hold the count in X

(2) Suppose we can only store k counts. We must throw some Xs out as time goes on:

- **Objective:** Each starting time t is selected with probability k/n
- **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item
- \(1 \) = item present; \(0 \) = not present
- Use DGIM to estimate counts of \(1 \)s for all items
In principle, you could count frequent pairs or even larger sets the same way

- **One stream per itemset**

Drawbacks:

- Only approximate
- **Number of itemsets is way too big**
Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:

$$\sum_{i=1}^{t} a_i (1 - c)^{t-i}$$

- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}

When new a_{t+1} arrives:

Multiply current sum by $(1-c)$ and add a_{t+1}
If each a_i is an “item” we can compute the characteristic function of each possible item x as an Exponentially Decaying Window.

That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$

where $\delta_i=1$ if $a_i=x$, and 0 otherwise.

Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear).

New item x arrives:

- Multiply all counts by $(1-c)$
- Add $+1$ to count for element x

Call this sum the “weight” of item x
Important property: Sum over all weights \(\sum_t (1 - c)^t \) is \(1/[1 - (1 - c)] = 1/c \)
What are “currently” most popular movies?

Suppose we want to find movies of weight > ½

- **Important property:** Sum over all weights
 \[\sum_t (1 - c)^t \text{ is } 1/[1 - (1 - c)] = 1/c \]

- **Thus:**
 - There cannot be more than \(2/c\) movies with weight of \(\frac{1}{2}\) or more

- **So,** \(2/c\) is a limit on the number of movies being counted at any time
Extension to Itemsets

- **Count (some) itemsets in an E.D.W.**
 - What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory
 - **When a basket B comes in:**
 - Multiply all counts by \((1-c)\)
 - For uncounted items in \(B\), create new count
 - Add 1 to count of any item in \(B\) and to any itemset contained in \(B\) that is already being counted
 - Drop counts < \(\frac{1}{2}\)
 - Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

- **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”

- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items < \((2/c) \cdot \text{(avg. number of items in a basket)}\)

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

If we counted every set we saw, one basket of 20 items would initiate 1M counts