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Abstract

We o�er a simple paradigm for �tting mod-
els, parametric and non-parametric, to noisy data,
which resolves some of the problems associated with
classic MSE algorithms. This is done by consider-
ing each point on the model as a possible source for
each data point.

The paradigm also allows to solve problems which
are not de�ned in the classical MSE approach, such
as �tting a segment (as opposed to a line). It is
shown to be non-biased, and to achieve excellent
results for general curves, even in the presence of
strong discontinuities.

Results are shown for a number of �tting prob-
lems, including lines, circles, segments, and gen-
eral curves, contaminated by Gaussian and uniform
noise.

1 Introduction

It is common practice to �t parametric models
(lines, circles, implicit polynomials etc.) to data
points, by minimizing the sum of squared distances
from the points to the model (the MSE, or Mean
Square Error, approach). While the MSE algorithm
may seem natural, it in fact implicitly assumes that
each data point is the noised version of the point
on the model which is closest to it. This assump-
tion is clearly false, and results in strong bias, for
instance when �tting circles to data contaminated
with strong noise.

The MSE algorithm su�ers from another draw-
back: it cannot di�erentiate between a \large"
model and a \small" one. For instance, when �tting
a line segment to bounded data, one would like to
know not only the slope and location of the �tted
line, but also its start and end points. The MSE
criterion cannot di�erentiate between the \correct"
segment and a segment which is too long, because
both have the same MSE error with respect to the

data.

We o�er a simple paradigm for �tting parametric
models, which solves these two problems. This is
done by considering each point on the parametric
model as a possible source for each data point. The
model is also extended to non-parametric models,
and gives good results even for curves with strong
discontinuities.

We show results of the method for lines, seg-
ments, circles and general curves. We also show
results using Gaussian and uniform noise models.

1.1 Previous Work

There are many papers written on using least
square techniques in order to �t parameters to a
noisy model, and on using di�erent numerical tech-
niques and linear approximations in order to do the
computations. See for example [11, 18] and their
references, and also [2], where an ordinary least
squares estimate is shown to be consistent for a re-
gression problem.

There are also many papers with di�erent so-
lutions and heuristics to �tting circles, ellipses
and other parametric curves using di�erent statis-
tical or optimization techniques; see, for example
[20, 14, 16, 3, 19]. There have been a few papers
related to Bayesian techniques for speci�c cases of
parametric or non parametric curve and surface �t-
ting, [7, 9, 8, 1, 4, 5]. The idea of associating a
\cloud of in
uence" with each data point is used to
compute a better straight line �tting in [10, 12], by
using a more general error criterion than the point-
line distance. This paper di�ers from previous work
mainly in that precisely the MAP estimate of the
model is found, where usually the MAP estimate of
the model together with the denoised data points
is computed or approximated. Also, we extend the
�tting to the general, non-parametric case.
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1.2 Suggested Algorithm
Given a set of data points D = fpig

n
i=1, and

a parametric model M (d1::: dm) de�ned by a set
of parameters fdjg

m
j=1, a very common �tting al-

gorithm is to choose the instance of the model
M0(d01::: d

0
m) such that the so-called MSE (Mean

Square Error) function, de�ned by

nX
i=1

dist2(M (d1::: dm); pi)

attains its minimum at
fd01::: d

0
mg. dist2(M (d1::: dm); pi) is the squared

distance between pi and the model.
The \Bayesian justi�cation" of minimizing the

MSE function is as follows: one wishes to maximize
the probability of a certain model instance, given
the data. Using Bayes' formula, assuming a uniform
distribution over the di�erent model instances and
independent data,

Pr(M jD) =
Pr(DjM )Pr(M )

Pr(D)
/

Pr(DjM ) = �n
i=1Pr(pijM )

Assuming isodirectional Gaussian measurement
noise with a variance of �2, it is common to ap-
proximate Pr(pijM ) by

const

�n
exp(�

dist2(pMi ; pi)

2�2
)

where pMi is the point on the modelM closest to pi.
Multiplying over i and ignoring constants, it is easy
to see that maximizing this approximate probability
is equivalent to minimizing the MSE function.

However, this is only an approximation, which
fails at some cases (notably, for instance, for large
values of �). The correct expression is

Pr(pijM ) =
const

�n

Z
M

exp(�
dist2(p; pi)

2�2
)Pr(pjM )dp

where p is a point on M , or more generally Bayes
rule;

Pr(M jpi) =
Prob(pijM )Prob(M )

Prob(pi)

where

Pr(pijM ) =

Z
p2M

Pr(pijp)Pr(pjM )

where Pr(pijp) is the noise model and Pr(pjM ) the
a-priori distribution of points on M .

2 Fitting Parametric Models

We give some examples of applying the proposed
method to �tting lines, segments and circles.

2.1 Line

We proceed to apply the �tting paradigm de-
scribed in the introduction to the line, which by
chance gives the classical MSE result, under the fol-
lowing assumptions.

a) a priori all lines are equiprobable

b) a priori all points on a line are equiprobable

c) noise is additive isodirectional

Gaussian, N (0;

�
� 0
0 �

�
), the value of � is

irrelevant.

d) points are independent samples from the line.

Given the data D = f(xi; yi)gni=1, and denoting

a line by L, we have Pr(LjD) = Pr(DjL)Pr(L)
Pr(D) /

�n
i=1Pr((xi; yi)jL) and

Pr((xi; yi)jL) =

Z
L

Pr((xi; yi)jp)Pr(pjL)dp

/

Z
L

exp(�dist2((xi; yi); p)Pr(pjL)dp

=

Z 1

�1

exp(�dist2((xi; yi); L) + t2))dt

/ exp(�dist2((xi; yi); L))

so that, Prob(LjD) =
Qn

i=1 Prob(Lj(xi; yi)) /Qn

i=1 e
�dist2(Pi;L).

Thus
�log(Prob(Lj(x1; y1); (x2; y2); : : : ; (xn; yn)) is equal
up to an additive constant to:

nX
i=1

dist2((xi; yi); L)

and the MAP estimate is the line L such that this
is a minimum.

The same argument gives that the MAP estimate
of a k-
at in Rm is the k-
at whose sum of squared
distances from the data is smallest.

Thus, in this case, the paradigm suggested here
agrees with the classical MSE paradigm. However,
as we shall now show, this is not the case for other
models.
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2.2 Circle
We proceed to apply the �tting paradigm to

the circle. Given the data D = f(xi; yi)g
n
i=1, and

denoting the parameters of a circle C by (a; b)
(for the center) and R (for the radius), we have,
assuming noise is additive isodirectional Gaussian

N (0;

�
� 0
0 �

�
)(the value of � is irrelevant):

Pr(a; b;RjD)/ �n
i=1Pr((xi; yi)ja; b;R) and

Pr((xi; yi)ja; b;R) =

Z
C

Pr((xi; yi)jp)Pr(pjC)dp /

Z 2�

0

exp(�(
[xi�a�R cos(�)]2+[yi�b�R sin(�)]2)

2�2
)

(
1

2�R
)(Rd�)

Where 1
2�R is Pr(pjC), and Rd� stands for the coor-

dinate transformation in the integral (from C to the
interval [0; 2�]). Hence, R cancels out. While there
does not seem to be a closed form expression for this
integral, it can be estimated quickly by expressing
it as an in�nite series which swiftly converges. The
details are in Appendix I. The optimization over
the circle's parameters a; b;R was performed using
Powell's method [13]. See examples in Appendix II
at the end (Fig. 1).

2.2.1 Comparison to MSE Algorithm

For a circle, the MSE algorithm is well-known to
be biased under noise (that is, it gives an estimate
to the radius which, on the average, is larger than
the true radius). We have empirically veri�ed that
the method suggested here is unbiased, by adding
random noise and running the optimization process
many times. The results always converged to the
true radius.

2.3 Line Segment

Another model that can be computed with the
paradigm suggested here is the best �t segment. As
shown earlier, this cannot be done with the classical
MSE methods, as they cannot distinguish between
di�erent length segments which have the same MSE
error.

Continuing as for the circle, the probability
Pr(pijS) of a point pi given a segment S is propor-

tional to
R
S
exp(�dist2(pi;p)

2�2 )dp. This integral can
be easily expressed using the error function (erf).
As before, multiplying over the data points gives
the overall probability. We have here, too, used the
Powell method to optimize over the segment's four
parameters; see a typical result in Appendix II (Fig.
2).

3 Line with uniform noise
Uniform noise with shape S (S can be a circle,

square, etc.) is de�ned as follows:

Pr(pijp) =

� 1
Area(S) if pi 2 p+ S

0 otherwise

so that the probability Pr(pijp) is positive i� p 2
pi + (�S) .

For example, let us �t a line to n noisy points,
where the noise is uniform in unit size circles around
the data; we have to omit the details for lack of
space, however it is easy to see that the integral
de�ning the probability for a data point pi is pro-
portional to the length of the line's intersection with
the unit circle around pi. Hence, �nding the optimal
line is equivalent to �nding the line that pierces all
the n circles centered at the data points, such that
the product of its lengths of intersections with the
circles is maximal.

It is interesting to note that, in the standard �t-
ting paradigm (under uniform noise), the probabil-
ity for every line which intersects the circles around
the data points, is identical. The method described
here therefore yields a \sharper" result (albeit not
necessarily unique). See Appendix II for an exam-
ple of �tting a line to points under uniform noise
(Fig. 3).

4 Extending the Paradigm to Non-
Parametric Models

The algorithms described and implemented in
Sections 2,3 to parametric models, can be extended
to general, non-parametric curves. Following the
previous derivations, it is easy to see that the prob-
ability of a curve C, given sparse data fpigni=1, is
proportional to

�n
i=1

Z
C

Pr(pijp)Pr(pjC)dp

if the curve is represented by discrete points
fcjgmj=1, this probability may be approximated by
the following expression:

1

Ln(C)
�n
i=1(

m�1X
j=1

exp(�
kcj � pik2

2�2
)kcj+1 � cjk) (1)

where L(C) is the curve's length (as in the para-
metric models, we de�ne Pr(pjC) as 1

L(C)). The

factor kcj+1 � cjk stands for the length element of
the curve.

In this work, we combined this term with a stan-

dard \smoothness term", such as

Z
C

(C2
xx + 2C2

xy +
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C2
yy)dC, to arrive at an optimal solution. Thus, the

paradigmmay be viewed as standard regularization,
with the \data term" replaced by Eq. 1.

It is worthwhile to look at Eq. 1 and see how it
leads to a curve which \sticks to the data". Parts
of the curve which are far away from the data con-
tribute little to the integrand, due to the presence
of the

exp(�
kcj � pik

2

2�2
)

term, which becomes smaller as we move away from
the data. However, they result in a larger value of
L(C), which leads to a smaller value for the entire
expression. This is amply demonstrated for data
which consists of a noised version of a step function
(Fig. 4 in Appendix II); note that the �tted curve
does not su�er from the well-known \Gibbs phe-
nomena", which yields spurious curve parts away
from the data.

We have implemented the optimization of Eq. 1
via the Powell method [13]. The problem is non-
trivial, as it involves many parameters (the x and y

coordinates of the m points comprising the curve).
However, convergence did not take more than a few
minutes on a workstation.

5 Implicit Polynomials
In recent years, there is growing interest in �t-

ting data with implicit models, mainly polynomials.
This representation is very e�cient both for recog-
nition purposes [15], and for quickly determining
whether a point is in the object or not [16, 5]. A
problem which has still to be solved is that often
spurious parts appear in the polynomial's zero-set,
such as loops, components which are far from the
data, folds, etc. Some heuristics have been sug-
gested to overcome this problem [5, 17], and re-
cently a more robust method was suggested which
solves the problem in the case of a starshaped ob-
ject [6]. However, there isn't yet any solution which
is guaranteed to work in the general case.

The Bayesian �tting method described here has
good potential to solve this problem, because it pe-
nalizes extraneous portions in the zero-set. We have
applied it with success to some non-starshaped ob-
jects (lack of space prevents us from displaying the
results here). There is, however, a computational
problem: while, for the explicit models discussed
in this work so far, there is a direct, simple rela-
tion between the parameters of the model and its
geometric realization, that is not the case for the
implicit model. Hence, in every step of the opti-
mization process, the zero-set has to be computed,
substantially increasing the running time.

6 Conclusion and Further Research
We have presented a fully Bayesian paradigm

for �tting parametric and non-parametric models,
which is natural, mathematically rigorous, and su-
perior to the classical MSE method, albeit in a
higher computational cost, mostly required in op-
timizing non-trivial cost functions for the �tted
model. In the future, we hope to try and allevi-
ate this problem, as well as to extend the paradigm
to other models, such as splines.
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7 Appendix I
We will now show how to evaluate the integral

in Section 2.2. Without loss of generality, it can be
expressed as

Z
x2+y2=r2

exp(�[(x� a)2 + (y � b)2])ds

substituting x = r cos(�), y = r sin(�) gives

r exp(�(r2+a2+b2)

Z 2�

0

exp(2ar cos(�)+2br sin(�))d�

using the complex substitution

� = exp(i�); d� =
d�

i�
; cos(�) =

� + 1
�

2
; sin(�) =

� � 1
�

2i

transforms this integral to

Z
k�k=1

exp(2ar
� + 1

�

2
+ 2br

� � 1
�

2i
)
d�

i�
=

Z
k�k=1

exp(A� +
B

�
)
d�

i�

(A = ar � ibr; B = ar + ibr)

using the residue theorem, and since the free coe�-

cient in the expansion of exp(A�+ B
�
) is
X
n�0

(AB)n

(n!)2
,

the �nal expression for the integral is

X
n�0

[(a2 + b2)r2]n

r(n!)2 exp(r2 + a2 + b2)

which converges quickly due to the fast growing
(n!)2 factor in the denominator.
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8 Appendix II: Some Results
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Figure 1: Examples of MSE �t and suggested �t for circle. In both cases, the true circle is a thin black line,
the noised data points are designated by crosses (Gaussian noise with unit variance), the MSE �t is in small
circles, and the suggested �t is in small squares. These examples re
ect the typical result that, when the
noise is large with regard to the radius, the MSE �t is very biased, while the suggested �t is not (see Section
2.2). The improvement of the suggested method is much more apparent for the right circle (radius 1) than
for the left circle (radius 3).

Figure 2: Straight line segment (upper segment), noised line points (little crosses), and line segment �tted
using the suggested method (lower segment). It is not a portion of the best MSE �t line.
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Figure 3: Fitting a line to points with uniform noise in the shape of a circle. The resulting line has a nice
intuitive interpretation: it is the line which maximizes the product of lengths of its intersections with the
circles around the data points.
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Figure 4: Regularized �t to a sampled step function, demonstrating the well-known Gibbs phenomena
(left), and a �t to same data obtained using the novel Bayesian method suggested in this paper (right).

1063-6919/99 $10.00 (c) 1999 IEEE


