
Topologically Faithful Fitting of
Simple Closed Curves

Daniel Keren

Abstract—Implicit representations of curves have certain advantages over explicit

representation, one of them being the ability to determine with ease whether a

point is inside or outside the curve (inside-outside functions). However, save for

some special cases, it is not known how to construct implicit representations which

are guaranteed to preserve the curve’s topology. As a result, points may be

erroneously classified with respect to the curve. The paper offers to overcome this

problem by using a representation which is guaranteed to yield the correct

topology of a simple closed curve by using homeomorphic mappings of the plane

to itself. If such a map carries the curve onto the unit circle, then a point is inside

the curve if and only if its image is inside the unit circle.

Index Terms—Implicit fitting, topologically faithful fitting, Jordan-Schoenflies

theorem.

�

1 INTRODUCTION

THE problem of representing free-form shapes as zero-sets of
implicit functions has been studied in the realms of computer vision,
graphics, and robotics. Implicit fitting has the advantage that it
allows the user to very quickly determine whether a point is inside
the shape or not, and also to approximate its distance from the
shape. This is beneficial for obstacle avoidance, ray tracing, and
object modeling. Implicit models can also be applied for object
recognition by using invariants [16], [7], [4], [10], [5], [22]. In this
work, the discussion will be restricted to free-form curves which are
simple and closed; these cover a large class of interesting shapes.

Given a curve C, represented by discrete measurements
fðxk; ykÞgnk¼1, the goal is to recover a function fðx; yÞ such that its
zero-set, defined by Zf ¼ fðx; yÞ=fðx; yÞ ¼ 0g, approximates C.
Usually, this is achieved by minimizing a cost function such asPn

k¼1 f
2ðxk; ykÞ. Better results are achieved by using cost functions

which provide a more accurate approximation to the geometric
distance between the zero-set and the points [9], [11], [20], [1], [17],
[13], [15], [3], [8], [19].

A problem which has plagued implicit fitting is the following:
Even if the zero-set approximates the data well, it may have a very
different topology. The source of this problem lies in the fact that
the cost functions used for fitting only measure whether the data
points are close to the zero-set, but they do not relay anything
about the zero-set’s topology. For example, spurious components
of the zero-set which lie far from the data are not penalized, neither
are self-intersections, loops, etc. Various efforts were undertaken to
solve this problem including a heuristic which searches for
extraneous components and penalizes them [17], methods which
seek to approximate not only the data, but also its gradients [6], [2],
[12], [18], and restricting the fitting to polynomials which are
guaranteed to have a “nice” zero-set [9]. However, all these
methods are either restricted in the type of curves they can
approximate, or are liable to fail and result in zero-sets with a
different topology than that of the data they attempt to fit. Usually,
it is desired to fit a simple closed curve. However, the fit may have
a very different topology. For example, see [2], [9].

This paper offers an implicit fitting paradigm which solves
this problem, as it is guaranteed to return a simple closed curve.
The fit is actually “semiexplicit;” a curve C is assigned a
homeomorphism h from the plane R2 to itself, which maps C

onto the unit circle S1 (recall that a function is a homeomorphism
if it is 1-1, onto, continuous, and its inverse is continuous). Thus,
to determine whether a point p is in the interior of C, it is enough
to test whether hðpÞ is in the interior of S1. If h is easy to
compute, this provides a simple solution to the inside-outside
problem for C, because it is trivial to determine whether a point
is in the interior of S1. For the sake of brevity, a slight abuse of
terminology will be adopted in the rest of this paper: “In C (or
S1)” will mean “in the interior of C (or S1).”

Since h is from R2 to itself, it has two components,
h1ðx; yÞ; h2ðx; yÞ : R2 ! R. If h maps C ¼ fðxk; ykÞg closely onto
the unit circle, this means that for all k, ðh1ðxk; ykÞ; h2ðxk; ykÞÞ is close
to the unit circle, hence h2

1ðxk; ykÞ þ h2
2ðxk; ykÞ � 1. So, the zero-set of

the implicit function h2
1ðx; yÞ þ h2

2ðx; yÞ � 1 is a good approximation
to C. Depending on the application, one may either use h as an
inside-outside function, or use h2

1 þ h2
2 � 1 as an implicit representa-

tion of the curve. Polynomial representations have attracted
considerable interest; if h1; h2 are polynomials, so is h2

1 þ h2
2 � 1.

1.1 Structure of the Paper

In Section 2, the mathematical foundations for the fitting algorithm
are laid, and polynomial mappings discussed. Section 3 describes
the fitting algorithm and, in Section 4, two additional families of
mappings are described. Some examples are provided in Section 5,
and conclusions are offered in Section 6.

Note: due to lack of space, all proofs are omitted. Those
interested in them are welcome to e-mail the author at
dkeren@cs.haifa.ac.il.

2 TOPOLOGICAL CONSIDERATIONS

The Jordan-Schoenflies Curve Theorem [21] states that for any simple
closed curveC in the plane, there is a homeomorphicmapping of the
plane to itself which maps C onto the unit circle S1. Also, the
restrictions of this homeomorphism define homeomorphisms
between the inside and outside of C and the inside and outside,
respectively, of the unit circle. As depicted in Fig. 1, such amapping
allows the user to reduce the computation of the inside-outside
function for C to the trivial computation of the inside-outside
function for S1: p is in C iff its image under the mapping is in S1.

The proof of the Jordan-Schoenflies Theorem does not offer a
mechanism to construct the desired homeomorphism. The rest of
this paper deals with the question of computing homeomorphic
mappings from the plane to itself under which the image of a given
curveC approximates theunit circle. The following lemma is helpful
in proving that some of the mappings used in this paper are indeed
homeomorphisms:

Lemma 1. Let hðx; yÞ : R2 ! R2 be a 1-1 continuous onto mapping
such that

lim
kðx;yÞk!1

khðx; yÞk ¼ 1

(such conditions will in general be referred to as limit conditions).
Then, h is a homeomorphism of the plane onto itself.

2.1 Monotonic Functions and Polynomial Mappings

The following lemma shows how to construct homeomorphic
mappings of the plane to itself from monotonic functions in one
variable.

Theorem 1. Let f1ðtÞ; g1ðtÞ; f2ðtÞ; g2ðtÞ be continuous strictly monotonic
increasing functions of one variable t, such that

lim
t!1

f1ðtÞ ¼ lim
t!1

f2ðtÞ ¼ lim
t!1

g1ðtÞ ¼ lim
t!1

g2ðtÞ ¼ 1 ð1Þ

lim
t!�1

f1ðtÞ ¼ lim
t!�1

f2ðtÞ ¼ lim
t!�1

g1ðtÞ ¼ lim
t!�1

g2ðtÞ ¼ �1 ð2Þ

(note that conditions (1) and (2), together with the monotonicity and
continuity conditions, imply that f1; f2; g1; g2 are 1-1 and onto fromR
to itself).
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Then, the following mapping from R2 to itself is 1-1 and onto:

ðx; yÞ ! ðf1ðxÞ þ f2ðyÞ; g1ðxÞ � g2ðyÞÞ: ð3Þ

The geometric idea behind the proof is outlined in Fig. 2.

Lemma 2. If hðx; yÞ = ðf1ðxÞ þ f2ðyÞ; g1ðxÞ � g2ðyÞÞ, where f1; f2; g1; g2
are polynomial functions satisfying the conditions of Theorem 1, then
limkðx;yÞk!1 khðx; yÞk ¼ 1.

Monotonic polynomials are natural candidates for the functions
f1; f2; g1; g2 because they are easy to compute, they satisfy the limit
conditions of Theorem 1 (hence, according to Lemmas 1 and 2, the
mappings associated with them as defined in Lemma 2 are
homeomorphisms), and because it is easy to characterize the
polynomials that are strictly monotonically increasing—their
derivatives must be everywhere positive. This condition can be
enforced using the following observation.

Lemma 3. Let pðxÞ be a polynomial in one variable which is everywhere
positive. Then, there exist two polynomials p1ðxÞ; p2ðxÞ such that
pðxÞ ¼ p21ðxÞ þ p22ðxÞ.
Combining these observations, it is easy to characterize

everywhere, monotonically increasing polynomials of degree
2nþ 1: Every such polynomial is the indefinite integral of
p2ðxÞ þ q2ðxÞ, where pðxÞ; qðxÞ are arbitrary nth degree polyno-
mials. For example, every quintic monotonically increasing
polynomial can be expressed as

c5x
5 þ c4x

4 þ c3x
3 þ c2x

2 þ c1xþ c0 ¼
Z

½ða2 x2 þ a1 xþ a0Þ2þ

ðb2 x2 þ b1 xþ b0Þ2�dx ¼ 1

5
a2

2 þ 1

5
b22

� �
x5 þ ð1

2
a1 a2 þ

1

2
b1 b2Þx4þ

2

3
a0 a2þ

1

3
a21þ

2

3
b0 b2þ

1

3
b21

� �
x3þða0 a1 þ b0 b1Þx2 þ ða20 þ b20Þxþ c;

so every such polynomial can be parameterized by the following
formulae

c5 ¼
1

5
a2

2 þ 1

5
b2

2; c4 ¼
1

2
a1a2 þ

1

2
b1b2;

c3 ¼
2

3
a0a2 þ

1

3
a1

2 þ 2

3
b0b2 þ

1

3
b1

2;

c2 ¼ a0a1 þ b0b1; c1 ¼ a0
2 þ b0

2; c ¼ c0;

ð4Þ

where the ai are free parameters. The representation may not
be 1-1, but that is not a problem, as the goal is to parameterize
all monotonically increasing polynomials. Note that, obviously,
only odd degree polynomials can be everywhere monotonic.

3 THE FITTING ALGORITHM

Given a family of homeomorphisms h from the plane to itself,
indexed by a family of parameters par, the paradigm for fitting a
curve is straightforward. If the curve is given as a set of points

fðxk; ykÞgnk¼1, then the following optimization problem should be
solved

argmin
par

Xn
k¼1

ðkhparðxk; ykÞk � 1Þ2; ð5Þ

if the minimum is close to zero, this means that C was mapped
closely onto the unit circle, allowing for a representation as
described in Section 2. The number of parameters varies according
to the type of mapping h used. If, for example, a mapping like the
one in (4) is used, then the total number of parameters is 28 (seven
for each of the four quintics—the a2; a1; a0; b2; b1; b0; c of (4)).

3.1 Stabilization

Experience has demonstrated that a straightforward minimization
of (5) may yield a mediocre description for complicated shapes,
even if the value of (5) is small; this happens because h may map a
large portion of the curve’s points to a relatively small area near
the circle, while mapping the other points to a sparse subset of the
circle. This means that h has very small derivatives in a large
subset of the curve C, which is not desirable for the following
reason: p is determined to be inside C if hðpÞ is inside S1. If h
changes very slowly near C, the following situation may occur:
khðpÞk ¼ 1� � for a certain p 2 C, for a small positive �. But, if h
changes slowly near p, then hðp0Þ may be smaller than 1 for points
p
0
which are far from C; and these points will also be determined to

be in C, thus reducing the quality of the fit (see Fig. 3).
Themethod used to stabilize the fitting closely resembles the one

used in [2], [6]. Regular behavior of the mapping near the curve was
enforced by requiring that two “stripes” around it—internal and
external—will be mapped to circles inside and outside the unit
circle. To implement this, the expression in (5) is modified to

argmin
par

"Xn
k¼1

ðkhparðxk; ykÞk � 1Þ2þ
Xn1

l¼1

ðkhparðXl; YlÞk � 1þ �Þ2þ

Xn2

m¼1

ðkhparðXm;YmÞk � 1� �Þ2
#
;

ð6Þ

where fðXl; YlÞg and fðXm;YmÞg, respectively, range over an inner
and outer stripe of C.

3.2 Optimization

In all tests, the Nelder-Mead method [14] was used to recover the
optimal mapping. This holds true also for the mappings described
in Section 4. The error term defined in (5) is nonpolynomial, due to
the presence of the norm term. Replacing (5) (or, equivalently, all
the summands in (6)) by argminpar

Pn
k¼1ðkhparðxk; ykÞk2 � 1Þ2�
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Fig. 1. If h is the homeomorphism guaranteed by the Jordan-Schoenflies Theorem,
then one can determine whether a point p is in C by testing whether hðpÞ is in S1

(which is very easy to determine). For example, p1 2 C because hðp1Þ 2 S1, and
p2 62 C because hðp2Þ 62 S1. Cases in which a point in C will be mapped to the
exterior of S1 (such as p3), or vice-versa (such as p4) are not possible.

Fig. 2. A sketch of the geometric idea behind the proof of Theorem 1. The set of
points ðx; yÞ for which f1ðxÞ þ f2ðyÞ ¼ X is a curve “extending from ð�1;1Þ to
ð1;�1Þ,” and the set of points ðx; yÞ for which g1ðxÞ � g2ðyÞ ¼ Y is a curve
“extending from ð�1;�1Þ to ð1;1Þ.” These two curves have to intersect, hence
there’s a point ðx�; y�Þ which satisfies both equations, so hðx�; y�Þ ¼ ðX; Y Þ.



results in an eighth degree polynomial: The parameterization is
quadratic in the free variables (see (4)), hence the norm squared is a
quartic, and the squaring operation denoted by 2� raises the total
degree to eight. Therefore, many local minima may be present. The
Nelder-Mead optimization method, combined with simulated
annealing as presented in [14], is useful for “crawling out” of
local minima.

3.3 Compositions of Homeomorphisms

Since the composition of two homeomorphisms is also a home-
omorphism, complicated shapes may be fitted by composing a few
mappings such as those described in Section 2. The drawback is that
thedegree of the compositionofpolynomialmappings is theproduct
of the individual degrees; for example, composing three quintics
results inamappingofdegree 125.Even thoughsuchmappingshave
far less degrees of freedom than a general polynomial mapping of
degree 125, they tend to be unstable. A trade off should be sought
between thenumberofmappings in the composite and theirdegrees,
in order to avoid very highdegrees in the composite. Eventually, this
restriction limits the complexity of the shapes which can be
described.

4 OTHER FAMILIES OF MAPPINGS

Two other families of mappings have been studied in addition to

the polynomial mappings of Section 2. A short description follows.

4.1 Complex Polynomials

Since the curve can be viewed as lying inside the complex plane, it
can be described by homeomorphisms of the complex plane to
itself. It is clear, however, that there are no 1-1 polynomial maps
from the complex plane to itself (save for the linear ones, which
have no descriptive power). However, if the curve C is known to
lie inside the unit disk D (which is trivial to obtain by scaling), it is
easy to see that if h is 1-1 on D and, as before, h maps C to S1, then
C can be described by h�1ðS1Þ \D. A family of complex
polynomials which are 1-1 on D, is provided by the following
simple lemma:

Lemma 4. Let P ðzÞ ¼ anz
n þ an�1z

n�1 þ . . .þ a1zþ a0 be a polyno-

mial with complex coefficients ai. If

ja1j > 2ja2j þ 3ja3j þ . . .þ njanj; ð7Þ

then P ðzÞ is 1-1 on the unit disk D.

It is straightforward to parameterize polynomials which satisfy
(7). For example, once a2 . . . an were chosen, then a1 can be
parameterized by

a1 ¼ ð2ja2j þ 3ja3j þ . . .þ njanj þ �2Þ cosð�Þ þ ð2ja2j þ 3ja3j þ . . .þ
njanj þ �2Þ sinð�Þi;

where � and � are arbitrary real numbers.

4.2 Trigonometric Polynomials

For objects with a “wavy” boundary, which pose a formidable
difficulty to polynomial representations, good results were
obtained by using the same representation as in (3), but with
f1; f2; g1; g2 trigonometric polynomials. As for algebraic polyno-
mials, these trigonometric polynomials are guaranteed to be
monotonically increasing by integrating a sum of squares of
trigonometric polynomials. For example, a representation may be
provided byZ

½ða1 sinðxÞ þ a2 sinð2xÞ þ a3 sinð3xÞÞ2 þ ðb1 sinðxÞ þ b2 sinð2xÞþ

b3 sinð3 xÞÞ2�dx ¼
1

2
ða21 þ a22 þ a23 þ b21 þ b22 þ b23Þxþ ðb2b3 þ b1b2 þ a2a3 þ a1a2Þ sinðxÞþ

1

2
� 1

2
a1

2 þ a1a3 þ b1b3 �
1

2
b1

2

� �
sinð2xÞ � 1

3
ðb1b2 þ a1a2Þ sinð3xÞ�

1

4
a1a3 þ

1

2
a2

2 þ 1

2
b2

2 þ b1b3

� �
sinð4xÞ � 1

5
ða2a3 þ b2b3Þ sinð5xÞ�

1

12
ða32 þ b3

2Þ sinð6xÞ:

Note that the limit conditions of Theorem 1 and Lemma 1 still hold
because of the linear term, which surpasses the trigonometric
terms as x ! 1, just as the higher order term surpassed the other
terms in the proof of Lemma 2. So, the proof of Lemma 2, as all the
other previous results, still holds, and these trigonometric
mappings can be used for faithful description.

5 RESULTS

The algorithm was tested on a few shapes, and its performance
compared to that of the 3L fitting method proposed in [2]. The
algorithm was also tested in the presence of noise.

5.1 The 3L Algorithm

The basic idea behind the 3L algorithm is to transform an implicit
fitting problem to an explicit one. This is achieved by forcing the
fitted polynomial to behave “nicely” at the vicinity of the shape, by
making the shape’s distance transform approximate. Usually, two
isodistance stripes are built around the shape—one on the inside and
one on the outside (see also [6]). Then, an explicit fitting paradigm
attempts to recover a polynomial which obtains a negative value on
the inner stripe, a positive value on the outer stripe, and a value of
zero on the shape itself. The great advantage of the 3Lmethod is in its
simplicity (the explicit fitting is a quadratic problem), and in that, it
allows to achieve good control in the shape’s vicinity. However, it
does not prevent the occurrence of extraneous components of the
zero set.

5.2 The Shapes

Due to space limitations, the results for only four shapes are
presented. Hopefully, they cover a spectrum of shape that is wide
enough to evaluate the algorithm’s performance. There is one
simple shape (“pear”), a more complicated shape (“hand”), a shape
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Fig. 3. (a) If h changes very slowly in the vicinity of the curve C, p0 may be misclassified as lying inside it. (b) Stabilizing h by using “stripes.”



with a “wavy” boundary (“grape cluster”), and a shape with cusps
(“bunny”). The shapes are depicted in Fig. 4. For each shape, the
type of function used for the fitting, and the number of degrees of
freedom (or parameters), are provided for the two methods. The
topologically faithful fitting consistently required less degrees of
freedom, hence resulting in a simpler, more compact description.
For example, two complex polynomials of degree twowere required
for the “pear” shape (a total of eight parameters) when using
topologically faithful fitting, while 3L fitting required a sixth-degree
polynomial with 28 parameters. There were substantial differences
in the other shapes as well. Possibly, this problem of 3L fitting could
be alleviated by applying the observations in [16], to the effect that
not all coefficients are important for the representation.

In all the examples, the data is depicted in green, and the fitted
curve in blue. Since in many cases the fit overlaps with the data,
usually the fitted curve is “thinned out.” This is achieved by
randomly coloring half of the curve’s points with the color of the
data. For better visual effect, the fit as well as the data are dilated to a
width of four to five pixels. The results for the pear shape are
depicted in Fig. 5, those for the hand shape in Fig. 6, and those for the
grape cluster shape in Fig. 7.

5.3 Choosing the Model

The fitting algorithmdescribed in this paper can be implemented for
various types of functions described in Sections 2 and 4—poly-
nomials, trigonometric functions, and complex polynomials. More-
over, each of thesemodels has its ownhierarchy (such as polynomial
degree). The elaborate choice of the “correct” type and degree of

model, as undertaken in [16], is outside the scope of this paper.
Roughly, the following rules of thumb can be offered: For simple
shapes, complexpolynomials of a lowdegree suffice; for objectswith
a “wavy” boundary, trigonometric polynomials achieve better
results. As in the case of the “competing” 3L fitting, for every
hierarchy of functions used, there is a saturation point beyondwhich
the fit’s quality does not improve when the complexity of the model
increases.

Note that the 3L fit falters at the “wavy” areas of the curve, and
contains singularities. A certain stabilization of the 3L fit had to be
applied. If the fitting is carried out by directly minimizing the target
function associated with the explicit fitting described in Section 5.1,
the result is very unstable, yielding a fit with many singularities in
the zero set (Fig. 7b). In order to stabilize the solution, backward
substitutionwith singular valuedecomposition (SVD)wasused [14].
This solution results in a more stable zero set, however, its quality
depends on theminimum allowed for the singular value in the SVD.
When that value is too large, the fit’s quality decreases; in Fig. 8a, the
result for a value of 10�6 is depicted.While the zero set is “nicer,” the
fitmoves away from the data. The result in Fig. 8bwas the best I have
been able to obtain, and it corresponds to a value of 4 � 10�9.

In order to try and improve the 3L fitting result for objects with
“wavy” boundaries, I have also implemented it with trigonometric
functions—instead of a basis of the shape xnym, a basis composed
of the functions sinðnxÞ cosðmyÞ; cosðnxÞ sinðmyÞ; sinðnxÞ sinðmyÞ;
cosðnxÞ cosðmyÞ was used. This improved the results somewhat
(Fig. 8c). However, the finer “wiggles” in the boundary are still
missed. It is interesting to note that, for the grape cluster shape,
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Fig. 5. (a) Pear shape (green) and topologically faithful fit (blue), using two complex polynomials of degree two (eight parameters). (b) 3L sixth degree fit (28 parameters).
Note extraneous components. (c) Topologically faithful fit with strong Gaussian noise.

Fig. 6. (a) Hand shape (green) and topologically faithful fit (blue), using three polynomial mappings of degree five (60 parameters). (b) 3L 16th degree fit (153 parameters).
Note extraneous components. Using polynomials with higher degrees did not improve the fit.

Fig. 4. Four shapes used in the fitting experiments: pear, hand, grape cluster, and bunny. The stripes used for computing the 3L fit to the grape cluster are also depicted.



trigonometric functions yield better results both for the 3L fitting
and for the topologically faithful method.

5.4 Global Behavior of the 3L Fit

In order to depict the global behavior of the 3L fit, a plot of the zero
sets for the best 3L polynomial and trigonometric fits to the grape
cluster over a larger area are included (Fig. 9).As canbe expected, the
zero set of the trigonometric fit is periodic innature. In both cases, the
topology of the zero set is very different from that of the curve.

5.5 A Shape with Cusps

A result for a shape with cusps is provided next; this is the
“bunny” shape (Fig. 10). Both algorithms “smooth out” the cusps
at the ears’ ends, which are apparent in the original shape (Fig. 4).
A different method of display was chosen here, since the difference
between the data and the fits is only in the very fine details.

Although, theoretically, cusps can be fit by implicit polynomials
(such as x2 þ y3), in practice, they pose a difficult problem for
implicit fitting, which tends to round or “smooth out” the cusps.
This problem was also exhibited by the topologically faithful
method suggested in this paper.

6 CONCLUSIONS AND FUTURE WORK

A novel method for fitting simple closed curves was presented. The
method uses homeomorphic mappings of the plane to itself, which

map the curve close to the unit circle. These maps allow the quick

computation of the curve’s inside-outside function, and also define

an implicit representation of the curve. The main novelty and

advantage is that the fit is guaranteed to have the same topology as

the curve. The method was compared with the 3L fitting method,

and while the latter is faster and simpler to implement, the
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Fig. 7. (a) Grape cluster shape (green) and topologically faithful fit (blue), using two trigonometric mappings with a total of 128 parameters. (b) 3L 20th degree fit
(231 parameters). Note extraneous components. Using polynomials with higher degrees did not improve the fit. (c) Topologically faithful fit with strong Gaussian noise.

Fig. 8. (a) Grape cluster shape (green) and 3L 20th degree fit with a 10�6 lower limit on singular values (blue). (b) 3L 20th degree fit with a 4 � 10�9 lower limit on singular
values, which represents the best 3L polynomial fit obtained in the experiments. Note extraneous components. Using polynomials with higher degrees did not improve
the fit. (c) 3L fit with trigonometric functions, 180 parameters.

Fig. 9. Global behavior of 3L fit for grape cluster shape, with (a) a polynomial basis and (b) trigonometric.

Fig. 10. (a) Topologically faithful fit for bunny shape, using two polynomial
mappings of degree five (40 parameters). (b) Tenth degree 3L fit (66 parameters).



descriptions yielded by the suggested method are usually more
compact than the 3L solution, they approximate the data somewhat
better, and they do not suffer from extraneous components.
Behavior under noise was “reasonable” in that the fit did not
exhibit bias under noise. When the noise is very large and the fine
outlines of the shape destroyed—as in the “grape cluster” shape in
Fig. 7—the fitting finds a curve which passes in the “center” of the
noisy points, thus approximating the rough outline of the original
shape. The method is limited in the complexity of shapes it can
describe, since composing many homeomorphisms results in very
high degrees which cause numerical instabilities. Also, the fitting—
like the 3L and other implicit fitting methods—tends to somewhat
“smooth out” cusps.

Future work will first concentrate on extending these results to
surfaces.
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