Hierarchical Decision Tree Induction in Distributed Genomic Databases

Amir Bar-Or, Daniel Keren, Assaf Schuster, and Ran Wolff

[^0]
Abstract

Classification based on decision trees is one of the important problems in data mining and has applications in many fields. In recent years, database systems have become highly distributed, and distributed system paradigms such as federated and peer-to-peer databases are being adopted. In this paper, we consider the problem of inducing decision trees in a large distributed network of genomic databases. Our work is motivated by the existence of distributed databases in healthcare and in bioinformatics, and by the emergence of systems which automatically analyze these databases, and by expectancy that these databases will soon contain large amounts of highly dimensional genomic data. Current decision tree algorithms require high communication bandwidth when executed on such data, which large-scale distributed systems. We present an algorithm that sharply reduces the communication overhead by sending just a fraction of the statistical data. A fraction which is nevertheless sufficient to derive the exact same decision tree learned by a sequential learner on all the data in the network. Extensive experiments using standard synthetic SNP data show that the algorithm utilizes the high dependency among attributes, typical to genomic data, to reduce communication overhead by up to 99%. Scalability tests show that the algorithm scales well with both the size of the dataset, the dimensionality of the data, and the size of the distributed system.

Index Terms

data mining, distributed algorithms, decision trees, classification.

Appendix I

Proofs of Bounds

Lemma 1: For any GiniIndex $\left(P_{1}\right)$, $\operatorname{GiniIndex}\left(P_{2}\right), n_{1}, n_{2}$, an upper bound on GiniIndex (P) is given by:

$$
\begin{equation*}
\text { Upper bound }=\frac{n_{1} \text { GiniIndex }\left(P_{1}\right)+n_{2} \text { GiniIndex }\left(P_{2}\right)}{n_{1}+n_{2}} \tag{1}
\end{equation*}
$$

Proof: Following the previous notations, GiniIndex (P) is given by:

$$
\text { GiniIndex }(P)=\frac{\frac{\left(a_{11}+b_{11}\right)^{2}+\left(a_{12}+b_{12}\right)^{2}}{a_{11}+a_{12}+b_{11}+b_{12}}+\frac{\left(a_{21}+b_{21}\right)^{2}+\left(a_{22}+b_{22}\right)^{2}}{a_{21}+a_{22}+b_{21}+b_{22}}}{a_{11}+a_{12}+a_{21}+a_{22}+b_{11}+b_{12}+b_{21}+b_{22}}
$$

while the upper bound provided in this lemma is given by:
Upper bound $=$
$\frac{\frac{\left(a_{11}\right)^{2}+\left(a_{12}\right)^{2}}{a_{11}+a_{12}}+\frac{\left(b_{11}\right)^{2}+\left(b_{12}\right)^{2}}{b_{11}+b_{12}}+\frac{\left(a_{21}\right)^{2}+\left(a_{22}\right)^{2}}{a_{21}+a_{22}}+\frac{\left(b_{21}\right)^{2}+\left(b_{22}\right)^{2}}{b_{21}+b_{22}}}{a_{11}+a_{12}+a_{21}+a_{22}+b_{11}+b_{12}+b_{21}+b_{22}}$

Now, to prove that Upper bound $-\operatorname{GiniIndex}(P) \geq 0$, it is enough for the following inequalities to hold:

$$
\begin{aligned}
& 1: \frac{\left(a_{11}\right)^{2}+\left(a_{12}\right)^{2}}{a_{11}+a_{12}}+\frac{\left(b_{11}\right)^{2}+\left(b_{12}\right)^{2}}{b_{11}+b_{12}}-\frac{\left(a_{11}+b_{11}\right)^{2}+\left(a_{12}+b_{12}\right)^{2}}{a_{11}+a_{12}+b_{11}+b_{12}} \geq 0 \\
& 2: \frac{\left(a_{21}\right)^{2}+\left(a_{22}\right)^{2}}{a_{21}+a_{22}}+\frac{\left(b_{21}\right)^{2}+\left(b_{22}\right)^{2}}{b_{21}+b_{22}}-\frac{\left(a_{21}+b_{21}\right)^{2}+\left(a_{22}+b_{22}\right)^{2}}{a_{21}+a_{22}+b_{21}+b_{22}} \geq 0
\end{aligned}
$$

It is straightforward to verify that inequality 1 is equivalent to:

$$
\frac{\left(a_{11} b_{12}-a_{12} b_{11}\right)^{2}}{\left(a_{11}+a_{12}+b_{11}+b_{12}\right)\left(a_{11}+a_{12}\right)\left(b_{11}+b_{12}\right)} \geq 0
$$

The above inequality is always satisfied, since both the numerator and denominator are always positive (all variables are non-negative). Inequality 2 is handled in the same manner.

Lemma 2: Let $P_{1}, P_{2}, n_{1}, n_{2}$ be given. Furthermore, let the candidate binary split decision divide P_{1} into two subsets, $P_{1}^{\text {left }}$ and $P_{1}^{\text {right }}$, with sizes of $n_{1}^{\text {left }}$ and $n_{1}^{\text {right }}\left(n^{1}=n_{1}^{\text {left }}+n_{1}^{\text {right }}\right.$) respectively. Then a lower bound on $\operatorname{GiniIndex}(P)$ is given by:

$$
\begin{equation*}
\text { Lower Bound }=\frac{\text { GiniIndex }\left(P_{1}\right)}{\left[1+\frac{n_{2}}{n_{1}}\right]\left[1+\max \left\{\frac{n_{2}}{n_{1}^{\text {left }}}, \frac{n_{2}}{\left.n_{1}^{\text {right }}\right\}}\right\}\right]} \tag{2}
\end{equation*}
$$

Proof: Recall that GiniIndex (P) is given by:

$$
\text { GiniIndex }(P)=\frac{\frac{\left(a_{11}+b_{11}\right)^{2}+\left(a_{12}+b_{12}\right)^{2}}{a_{11}+a_{12}+b_{11}+b_{12}}+\frac{\left(a_{21}+b_{21}\right)^{2}+\left(a_{22}+b_{22}\right)^{2}}{a_{21}+a_{22}+b_{21}+b_{22}}}{a_{11}+a_{12}+a_{21}+a_{22}+b_{11}+b_{12}+b_{21}+b_{22}}
$$

since all entries are positive, the above expression is bounded from below by (recall that $\left.n_{1}=a_{11}+a_{12}+a_{21}+a_{22}, n_{2}=b_{11}+b_{12}+b_{21}+b_{22}\right)$:

$$
\frac{1}{1+\frac{n_{2}}{n_{1}}} \frac{\frac{\left(a_{11}\right)^{2}+\left(a_{12}\right)^{2}}{\left(a_{11}+a_{12}\right)\left[1+\frac{b_{11}+b_{12}}{a_{11}+a_{12}}\right]}+\frac{\left(a_{21}\right)^{2}+\left(a_{22}\right)^{2}}{\left(a_{21}+a_{22}\right)\left[1+\frac{b_{21}+b_{22}}{a_{21}+a_{22}}\right]}}{n_{1}}
$$

But this expression is clearly bounded from below by

$$
\begin{aligned}
& \frac{1}{1+\frac{n_{2}}{n_{1}}} \frac{\frac{\left(a_{11}\right)^{2}+\left(a_{12}\right)^{2}}{a_{11}+a_{12}}+\frac{\left(a_{21}\right)^{2}+\left(a_{22}\right)^{2}}{a_{21}+a_{22}}}{1+\max \left\{\frac{n_{1}^{\text {left }}}{n_{1}^{\text {left }},}, \frac{n^{r i g h t}}{n_{1}^{r i g h t}}\right\}}= \\
& \frac{1}{1+\frac{n_{2}}{n_{1}}} \frac{\text { GiniIndex }\left(P_{1}\right)}{1+\max \left\{\frac{n_{2}^{\text {left }}}{n_{1}^{\text {left }},}, \frac{n_{2}^{\text {right }}}{\left.n_{1}^{\text {right }}\right\}}\right\}}
\end{aligned}
$$

and the proof follows immediately by noting that $n_{2} \geq n_{2}^{\text {left }}, n_{2}^{\text {right }}$. Note that $n_{2}^{\text {left }}, n_{2}^{\text {right }}$ don't need to be known - only the total size n_{2}.

We note here that, in general, it is impossible to derive a lower bound on the Gini index of a union; this is possible only if one population is quite smaller than the other, in which case a bound can be derived from the relative sizes and the Gini index of the larger population. Nevertheless, as we show in our experiments the lower bound becomes especially useful when outliers occur in the data. In such cases small populations report attributes which are entirely different from those reported by the majority of the population. By using the lower bound the algorithm can overcome small amounts of missing data (about the attributes reported by the majority) and by that avoid the need for additional communication.

A. Information Gain Function

Lemma 3: For any InfoGain $\left(P_{1}\right)$, InfoGain $\left(P_{2}\right), n_{1}, n_{2}$, an upper bound on $\operatorname{InfoGain}(P)$ is given by

$$
\begin{equation*}
\frac{n_{1} \operatorname{InfoGain}\left(P_{1}\right)+n_{2} \operatorname{InfoGain}\left(P_{2}\right)}{n_{1}+n_{2}} \tag{3}
\end{equation*}
$$

Proof: Recall that InfoGain (P) equals

$$
\begin{array}{r}
\text { InfoGain }(P)= \\
\frac{\left(a_{11}+b_{11}\right) \log \left((A+B)_{11}\right)+\left(a_{12}+b_{12}\right) \log \left((A+B)_{12}\right)}{n_{1}+n_{2}}+ \\
\frac{\left(a_{21}+b_{21}\right) \log \left((A+B)_{21}\right)+\left(a_{22}+b_{22}\right) \log \left((A+B)_{22}\right)}{n_{1}+n_{2}}
\end{array}+
$$

where the following definitions have been adopted for brevity:

$$
\begin{aligned}
& A_{11}=\frac{a_{11}}{a_{11}+a_{12}}, A_{12}=\frac{a_{12}}{a_{11}+a_{12}}, \\
& A_{21}=\frac{a_{21}}{a_{21}+a_{22}}, A_{22}=\frac{a_{22}}{a_{21}+a_{22}}
\end{aligned}
$$

Similar notations are used for B and $A+B$, e.g., $\left.(A+B)_{11}=\frac{a_{11}+b_{11}}{a_{11}+b_{11}+a_{12}+b_{12}}\right)$.

Similarly, InfoGain $\left(P_{1}\right)$ and InfoGain $\left(P_{2}\right)$ are given by

$$
\begin{gathered}
\text { InfoGain }\left(P_{1}\right)= \\
\frac{a_{11} \log \left(A_{11}\right)+a_{12} \log \left(A_{12}\right)+a_{21} \log \left(A_{21}\right)+a_{22} \log \left(A_{22}\right)}{n_{1}} \\
\text { InfoGain }\left(P_{2}\right)= \\
\frac{b_{11} \log \left(B_{11}\right)+b_{12} \log \left(B_{12}\right)+b_{21} \log \left(B_{21}\right)+b_{22} \log \left(B_{22}\right)}{n_{2}}
\end{gathered}
$$

We now define the auxiliary variables

$$
\lambda_{1}=\frac{a_{11}+a_{12}}{a_{11}+a_{12}+b_{11}+b_{12}}, \quad \lambda_{2}=\frac{a_{21}+a_{22}}{a_{21}+a_{22}+b_{21}+b_{22}}
$$

Clearly

$$
\begin{aligned}
& (A+B)_{11}=\lambda_{1} A_{11}+\left(1-\lambda_{1}\right) B_{11}, \\
& (A+B)_{12}=\lambda_{1} A_{12}+\left(1-\lambda_{1}\right) B_{12} \\
& (A+B)_{21}=\lambda_{2} A_{21}+\left(1-\lambda_{2}\right) B_{21}, \\
& (A+B)_{22}=\lambda_{2} A_{22}+\left(1-\lambda_{2}\right) B_{22}
\end{aligned}
$$

In order to make the notations less cumbersome, let us bound one summand of InfoGain (P) (the other summands are handled similarly):

$$
\begin{aligned}
& \left(a_{11}+b_{11}\right) \log \left((A+B)_{11}\right)= \\
& \frac{a_{11}+b_{11}}{(A+B)_{11}}(A+B)_{11} \log \left((A+B)_{11}\right)= \\
& \frac{a_{11}+b_{11}}{(A+B)_{11}}\left(\lambda_{1} A_{11}+\left(1-\lambda_{1}\right) B_{11}\right) \log \left(\lambda_{1} A_{11}+\left(1-\lambda_{1}\right) B_{11}\right)
\end{aligned}
$$

Since the function $x \log (x)$ is convex, the last expression is bounded from above by

$$
\begin{aligned}
& \frac{a_{11}+b_{11}}{(A+B)_{11}}\left(\lambda_{1} A_{11} \log \left(A_{11}\right)+\left(1-\lambda_{1}\right) B_{11} \log \left(B_{11}\right)\right)= \\
& a_{11} \log \left(A_{11}\right)+b_{11} \log \left(B_{11}\right)
\end{aligned}
$$

Hence InfoGain (P) is bounded from above by

$$
\begin{aligned}
& \left(a_{11} \log \left(A_{11}\right)+a_{12} \log \left(A_{12}\right)+a_{21} \log \left(A_{21}\right)+a_{22} \log \left(A_{22}\right)+\right. \\
& \left.b_{11} \log \left(B_{11}\right)+b_{12} \log \left(B_{12}\right)+b_{21} \log \left(B_{21}\right)+b_{22} \log \left(B_{22}\right)\right) /\left(n_{1}+n_{2}\right)= \\
& \frac{n_{1} \text { InfoGain }\left(P_{1}\right)+n_{2} \text { InfoGain }\left(P_{2}\right)}{n_{1}+n_{2}}
\end{aligned}
$$

Lemma 4: Let P_{1}, n_{1}, n_{2} be given. Furthermore, let the candidate split decision divide P_{1} into two subsets, $P_{1}^{\text {left }}$ and $P_{1}^{\text {right }}$, with size $n_{1}^{\text {left }}$ and $n_{1}^{\text {right }}$ respectively. Then a lower bound on InfoGain (P) is given by:

$$
\begin{equation*}
\left[\frac{1}{1+\frac{n_{2}}{\min \left\{n_{1}^{\text {et } t, ~}, n_{1}^{\text {right }}\right\}}} \cdot \frac{1}{1+\frac{n_{2}}{n_{1}}}\right] \text { InfoGain }\left(P_{1}\right) \tag{4}
\end{equation*}
$$

Proof: Following the proof of Lemma 3, let us now bound $\left(a_{11}+b_{11}\right) \log \left((A+B)_{11}\right)=$ $\left(a_{11}+b_{11}\right) \log \left(\lambda_{1} A_{11}+\left(1-\lambda_{1}\right) B_{11}\right)$ from below. Since $\log (x)$ is concave, $\left(a_{11}+b_{11}\right) \log \left(\lambda_{1} A_{11}+\right.$ $\left.\left(1-\lambda_{1}\right) B_{11}\right)$ is bounded from below by $\left(a_{11}+b_{11}\right)\left(\lambda_{1} \log \left(A_{11}\right)+\left(1-\lambda_{1}\right) \log \left(B_{11}\right)\right)$, which (since $\log \left(A_{11}\right), \log \left(B_{11}\right)$ are negative and b_{11} is positive) is bounded from below by $\lambda_{1} a_{11} \log \left(a_{11}\right)$. Continuing in much the same way as in the previous proof, we obtain:

$$
\operatorname{InfoGain}(P) \geq\left[\frac{1}{1+\frac{\left.n_{2}, a_{12}+a_{22}\right\}}{\min \left\{a_{11}+a_{12}\right\} a_{21}}} \cdot \frac{1}{1+\frac{n_{2}}{n_{1}}}\right] \operatorname{InfoGain}\left(P_{1}\right)
$$

Recall that $a_{11}+a_{12}=n_{1}^{\text {left }}$ and $a_{21}+a_{22}=n_{1}^{\text {right }}$, thus proving the lemma.
We summarize our results with the following theorems:
Theorem 1: Let P be a population of size n, and $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ a partition of P into k subpopulations of sizes $n_{1}, n_{2}, \ldots, n_{k}$ respectively. Let $G()$ denote the gain function (information gain or Gini index). Then an upper bound on $G(P)$ is given by:

$$
G(P) \leq \frac{\sum_{i=1}^{k} n_{i} G\left(P_{i}\right)}{\sum_{i=1}^{k} n_{i}} .
$$

Note that above theorem is a trivial generalization of lemmas 1 and 3.
Theorem 2: Let P be a population of size n, and $\left\{P_{1}, P_{2}\right\}$ a partition of P into two subpopulations of sizes n_{1}, n_{2} respectively. Assume that the candidate split divides P_{1} into two subsets, $P_{1}^{\text {left }}$ and $P_{1}^{\text {right }}$, with sizes $n_{1}^{\text {left }}$ and $n_{1}^{\text {right }}$ respectively. Let $G()$ denote the gain function (information gain or Gini index). Then, lower bounds on $G(P)$ is given by:

$$
G(P) \geq \frac{G\left(P_{1}\right)}{\left[1+\frac{n_{2}}{n_{1}}\right]\left[1+\frac{n_{2}}{\min \left\{n_{1}^{1 l_{2} t}, n_{1}^{r_{1}^{2 g h t}}\right\}}\right]}
$$

[^0]: A. Bar-Or is with HP Cambridge research lab.
 D. keren is with the Haifa University - Israel
 A. Schuster is with the Technion - Israel Institute of Technology
 R. Wolff is with the University of Maryland at Baltimore County

