
Adaptive Clustering for Monitoring Distributed Data Streams

Maria Barouti∗ Daniel Keren† Jacob Kogan‡ Yaakov Malinovsky§

Abstract

Monitoring data streams in a distributed system is a chal-

lenging problem with profound applications. The task of

feature selection (e.g., by monitoring the information gain

of various features) is an example of an application that re-

quires special techniques to avoid a very high communication

overhead when performed using straightforward centralized

algorithms. The proposed approach enables monitoring val-

ues of a threshold function over distributed data streams

through a set of constraints applied independently on each

cluster of streams. The clusters are designed to adapt them-

selves to the data stream. We report experiments with clus-

tering approach that yield communication load reduction.

Keyword list: adaptive stream mining, convex analy-
sis, distributed system, clustering

1 Introduction

In many emerging applications one needs to process a
continuous stream of data in real time. The current
contribution is motivated by results reported in [4],
where a more general type of monitoring query is
described as follows:

Let S = {s1, . . . , sn} be a set of data streams
collected at n nodes N = {n1, . . . ,nn}. Let
v1(t), . . . ,vn(t) be d-dimensional, real-valued, time
varying vectors derived from the streams. For a function
f : Rd → R we would like to monitor the inequality

f

(

v1(t) + . . .+ vn(t)

n

)

> 0(1.1)

while minimizing communication between the nodes. In
e.g. [4, 3] a few real-life applications of this monitoring
problem are described; see also Section 2 here.

The present paper deals with the information gain
function (see Section 2 for details). Rather than focus

∗Math. and Stat., UMBC, Baltimore, MD 21250,

bmaria2@umbc.edu
†Department of Computer Science, Haifa University, Haifa

31905, Israel, dkeren@cs.haifa.ac.il
‡Math. and Stat., UMBC, Baltimore, MD 21250, ko-

gan@umbc.edu
§Math. and Stat., UMBC, Baltimore, MD 21250,

yaakovm@umbc.edu

on the values of f we consider the location of the vectors
vi(t) relative to the set Z+(f) = {v : f(v) > 0}. We
restate (1.1) as

v(t) =
v1(t) + . . .+ vn(t)

n
∈ Z+(f).(1.2)

As a simple illustration, consider the case of three
scalar functions v1(t), v2(t) and v3(t), and the identity
function f (i.e. f(x) = x). We would like to monitor
the inequality

v(t) =
v1(t) + v2(t) + v3(t)

3
> 0

while keeping the nodes silent as long as possible.
One strategy is to verify the initial inequality v(t0) =
v1(t0) + v2(t0) + v3(t0)

3
> 0 and to keep the nodes silent

while

|vi(t)− vi(t0)| < δ = v(t0), t ≥ t0, i = 1, 2, 3.

The first time t when one of the functions, say v1(t),
crosses the boundary of the local constraint, i.e. |v1(t)−
v1(t0)| ≥ δ the nodes communicate, t1 is set to be t,
the mean v(t1) is computed, the local constraint δ is
updated and made available to the nodes. The nodes
are kept silent as long as the inequalities

|vi(t)− vi(t1)| < δ, t ≥ t1, i = 1, 2, 3

hold [5]. The numerical experiments conducted in [5]
with the dataset described in Section 5 show that (a)
the number of time instances the mean violates (1.1)
is a small fraction (< 1%) of the number of time
instances when the local constraint is violated at the
nodes, (b) the lion’s share of communications (about
75%) is required because of a single node violation of
the local constraint δ.

If, for example, the local constraint is violated at
n1, i.e. |v1(t)− v1(t0)| ≥ δ, and at the same time

v1(t)−v1(t0) = −[v2(t)−v2(t0)],while |v3(t)−v3(t0)| < δ

then |v(t) − v(t0)| < δ, f(v(t)) > 0, and update of the
mean can be avoided. Separate monitoring of the two

node cluster {n1,n2} would require communication in-
volving two nodes only, and could reduce communica-
tion load. In this paper we advance clustering approach
to monitoring. A specific clustering strategy applica-
ble with a variety of norms leading to communication
savings is the main contribution of this work.

In Section 2 we present a relevant Text Mining
application. Section 3 provides motivation for node
clustering. A specific implementation of node clustering
is presented in Section 4. Experimental results are
reported in Section 5.

2 Text Mining application

Let T be a textual database (for example a collection
of mail or news items). We denote the size of the set T
by |T|. We will be concerned with two subsets of T:

1. R–the set of “relevant” texts (e.g. texts not labeled
as ”spam”),

2. F–the set of texts that contain a “feature” (word
or term for example).

We denote complements of the sets by R, F respectively
(i.e. R ∪ R = F ∪ F = T), and consider the relative
size of the four sets F∩R, F∩R, F∩R, and F∩R as
follows:

x11(T) =
|F ∩R|

|T|
, x12(T) =

|F ∩R|

|T|
,

x21(T) =
|F ∩R|

|T|
, x22(T) =

|F ∩R|

|T|
.

(2.3)

Note that 0 ≤ xij ≤ 1, and x11 + x12 + x21 + x22 = 1.
The function f is given by

∑

i,j

xij log

(

xij

(xi1 + xi2)(x1j + x2j)

)

,(2.4)

where log x = log2 x throughout the paper. The
information gain for the “feature” is provided by f [1].

As an example, we consider n agents installed on n

different servers, and a stream of texts arriving at the
servers. Let Th = {th1, . . . , thw} be the last w texts

received at the hth server, with T =
n
⋃

h=1

Th. Note that

xij(T) =
n
∑

h=1

|Th|

|T|
xij(Th),

i.e., entries of the global contingency table {xij(T)}
are the weighted average of the local contingency tables
{xij(Th)}, h = 1, . . . , n.

3034 620 162 70 38 26 34 17 5 0
1 2 3 4 5 6 7 8 9 10

Table 1: first row–number of time instances when a
local constraint has been violated by exactly k nodes,
k = 1, 2, . . . , 10; second row–number of nodes–violators,
r = 0.0025, l2 norm, the feature is “bosnia”

To check that the given “feature” is sufficiently
informative with respect to the target relevance label
r, one may want to monitor the inequality

f (x11(T), x12(T), x21(T), x22(T))− r > 0(2.5)

while minimizing communication between the servers.

3 Clustering for monitoring: motivation

In what follows we denote a norm of a vector v by
‖v‖. A specific choice of a norm will be indicated when
needed.

The monitoring strategy proposed in [5] and applied
to data streams generated from the data described
in Section 5 leads to 4006 time instances in which
the local constraints are violated, and the root is
updated. Table 1 shows that in 3034 out of 4006 time
instances, communications with the root are triggered
by constraint violations at exactly one node.

The results suggest to cluster nodes to reduce
communication load. Each cluster π will be equipped
with a “coordinator” c. If n′ ∈ π violates its local
constraint at time t, then the coordinator collects
vectors vn(t) − vn(ti) from all n ∈ π, computes
the mean, and checks whether the mean violates the
coordinator constraint δ(c). We shall follow [4] and
refer to this step as “the balancing process.” If δ(c) is
violated, the mean of the entire dataset is recomputed.

A standard clustering problem is often described
as “. . . finding and describing cohesive or homogeneous
chunks in data, the clusters” [2]. For the problem
at hand we would like to partition the set of nodes
N into k disjoint clusters Π = {π1, . . . , πk}. If

1

|πi|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈πi

[vn(t)−vn(tj)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<δ for each i, then one has

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈N

vn(t)−vn(tj)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

k
∑

i=1

|πi|

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈πi

vn(t)−vn(tj)

|πi|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< δ.

Hence the “new” mean
1

n

∑

n∈N

vn(t) belongs to Z+(f)

if the “old” mean
1

n

∑

n∈N

vn(tj) belongs to this set. A

possible definition for quality of a partition Π is

Q(Π)= max
i∈{1,...,k}

{

1

|πi|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈πi

[vn(t)−vn(tj)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}

(3.6)

Our aim is to identify k and a k cluster partition Πo that
minimizes (3.6). Our monitoring problem requires to
assign nodes {ni1 , . . . ,nil} to the same cluster π so that
the total average change within cluster

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

|π|

∑

n∈π

[vn(t)− vn(tj)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

for t > tj

is minimized. Hence, unlike classical clustering proce-
dures, this one needs to combine “dissimilar” nodes to-
gether.

The proposed partition quality Q(Π) (see (3.6))
generates three immediate problems:

1. The single cluster partition always minimizesQ(Π).

2. Computation of Q(Π) involves future values vn(t),
which are not available at time tj when the clus-
tering is performed.

3. The individual clusters’ sizes should affect the
clustering quality to account for the balancing
process communication.

4 Clustering for monitoring: implementation

We define the quality of the cluster π by

q(π) =
1

|π|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈π

[vn(t)− vn(tj)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ α|π|,(4.7)

where α ≥ 0 is a scalar parameter. The quality of the
partition Π is defined by

Q(Π) = max{q(πi) : i = 1, . . . , k}.(4.8)

When α = 0 the partition that minimizes Q(Π) is a
single cluster partition (that we would like to avoid).
When max

n∈N

||vn(t)− vn(tj)|| = m ≤ α the optimal

partition is made up of n singleton clusters. We focus
on 0 < α < m that depends on t and tj , and show below
how to avoid this dependence.

In order to compute Q(Π) at time tj one needs to
know vn(t) at a future time t > tj which is not available.
We shall use past values of vn(t) for prediction. For
each node n we build “history” vectors hn(tj) that
accumulate the weighted history of changes, with the
current change carrying a weight twice as much as the
previous one. When the vector set is normalized by the
magnitude of the longest vector in the set, the range for

α conveniently shrinks to [0, 1], and the induced optimal
partitioning remains the same. In what follows we set
h = max

n∈N

||hn(tj)||, assume that h > 0, and describe a

clustering procedure for the normalized vector set

{a1, . . . ,an}, ai =
1

h
hni

(tj), i = 1, . . . , n.

We start with the n cluster partition Πn (each cluster is
a singleton). If a k cluster partition Πk, k > 2 is already
available we:

1. Identify the partition cluster πj with maximal norm
of its vectors’ mean.

2. Identify cluster πi so that the merger of πi with πj

produces a cluster of smallest possible quality (4.7).

The partition Πk−1 is obtained from Πk by merging
clusters πj and πi. The final partition is selected
from the n− 1 partitions {Π2, . . . ,Πn} as the one that
minimizes Q given by (4.8).

If there is reason to believe that e.g. the following
inequality

2‖v1(t)− v1(ti)‖ ≤ ‖v2(t)− v2(ti)‖(4.9)

always holds, then the number of node violations may
be reduced by imposing node dependent constraints

‖v1(t)−v1(ti)‖<δ1=
2

3
δ, and ‖v2(t)−v2(ti)‖<δ2=

4

3
δ

so that the wider varying stream at the second node
enjoys larger “freedom” of change, while the inequality

∣

∣

∣

∣

∣

∣

∣

∣

v1(t) + v2(t)

2
−

v1(ti) + v2(ti)

2

∣

∣

∣

∣

∣

∣

∣

∣

<
δ1 + δ2

2
= δ

holds true. Assigning “weighted” local constraints re-
quires information provided by (4.9). With no ad-
ditional assumptions about the stream data distribu-
tion this information is not available. We estimate the
weights through past values ‖vj(t)− vj(ti)‖.

1. Start with the initial set of weights

w1 = . . . = wn = 1, W1 = . . . = Wn = 1.(4.10)

2. At the next time t, each node nj computes updates

Wj =
1

2
Wj + ‖vj(t)− vj(ti)‖, with Wj(t0) = 1.

Next time when the distance δ from the mean to the
boundary of Z+(f) is updated, each node nj broadcasts

Wj to the root, the root computes W =

n
∑

j=1

Wj , and

transmits the updated δ(nj) = wjδ where wj = n×
Wj

W
back to node j. For a coordinator c of a node cluster π

the constraint δ(c) =
1

|π|

∑

n∈π

δ(n).

norm mean updates broadcasts

l1 2591 67388
l2 3140 81650
l∞ 3044 79144

Table 2: Number of mean computations, and broadcasts
for feature “febru” with threshold r = 0.0025, no
clustering

norm alpha root coordinator total
mean mean broadcasts
update update

l1 0.70 1431 0 38665
l2 0.80 1317 0 35597
l∞ 0.65 1409 0 38093

Table 3: Number of root and coordinator mean com-
putations, and total broadcasts for feature “febru” with
threshold r = 0.0025 with clustering

5 Experimental results

The data streams analyzed in this section are generated
from the Reuters Corpus RCV1–V2. The data is avail-
able from http://leon.bottou.org/projects/sgd

and consists of 781, 265 tokenized documents.
Each document is labeled as belonging to one

or more categories. We follow [4] and label a
vector as “relevant” if it belongs to the “COR-
PORATE/INDUSTRIAL” (“CCAT”) category, and
“spam” otherwise. Following [4] we focus on three fea-
tures: “bosnia,” “ipo,” and “febru.” Each experiment
was performed with 10 nodes, where each node holds a
sliding window containing the last 6,700 documents it
received.

First we use 67, 000 documents to generate initial
sliding windows. The remaining 714, 265 documents are
used to generate datastreams, hence the selected feature
information gain is computed 714, 265 times. For the
experiments described below, the threshold value r is
predefined, and the goal is to monitor the inequality
f(v)− r > 0 while minimizing communication between
the nodes.

The numerical experiment reported in [5] with the
feature “febru,” and the threshold r = 0.0025 are shown
in Table 2 where a broadcast is defined as one time
transmission of information between different nodes.
We run the node clustering monitoring for the same
feature and threshold with α = 0.05, 0.10, . . . , 0.95. The
best result for l1, l2, and l∞ norms with respect to α are
presented in Table 3, and the result shows about 50%

norm mean updates broadcasts

l1 3053 79378
l2 4006 104156
l∞ 3801 98826

Table 4: Number of mean computations, and broad-
casts, for feature “bosnia” with threshold r = 0.0025,
no clustering

norm alpha root coordinator total
mean mean broadcasts
update update

l1 0.65 3290 2 89128
l2 0.55 3502 7 97602
l∞ 0.60 3338 2 91306

Table 5: Number of root and coordinator mean compu-
tations, and total broadcasts for feature “bosnia” with
threshold r = 0.0025 and clustering

decrease in the number of broadcasts.
Next we turn to the features “ipo” and “bosnia.”

While communication savings for “ipo” are similar to
those presented above for “febru”, an application of
clustering to monitoring “bosnia’s” information gain
appears to be far less successful. Results obtained
without clustering in [5] are presented in Table 4.
Application of the clustering procedure leads to a slight
decrease in the number of broadcasts in case of the l2
and l∞ norms (see Table 5). In case of the l1 norm, the
number of broadcasts increases. This is just a reminder
that clustering is no universal remedy, and in some cases
better performance is achieved with no clustering.

References

[1] Gray, R.M.: Entropy and Information Theory.
Springer–Verlag, New York, (1990)

[2] Mirkin, B.: Clustering for Data Mining: A Data
Recovery Approach. Chapman & Hall/CRC, Boca
Raton, (2005)

[3] Gabel, M. and Schuster, A. and Keren, D.:
Communication-efficient outlier detection for scale-out
systems. In BD3@VLDB, 19-24, (2013)

[4] I. Sharfman and A. Schuster and D. Keren: A Geo-
metric Approach to Monitoring Threshold Functions
over Distributed Data Streams, ACM Transactions on
Database Systems, 32, 23:1-23:29, (2007)

[5] Kogan, J.: Feature Selection over Distributed Data
Streams through Convex Optimization. Proceedings of
the Twelfth SIAM International Conference on Data
Mining (SDM 2012), SIAM, 475-484, (2012)

