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ABSTRACT
The goal of a threshold query is to detect all objects whose score
exceeds a given threshold. This type of query is used in many set-
tings, such as data mining, event triggering, and top-k selection.
Often, threshold queries are performed over distributed data. Given
database relations that are distributed over many nodes, an object’s
score is computed by aggregating the value of each attribute, apply-
ing a given scoring function over the aggregation, and thresholding
the function’s value. However, joining all the distributed relations
to a central database might incur prohibitive overheads in band-
width, CPU, and storage accesses. Efficient algorithms required to
reduce these costs exist only for monotonic aggregation threshold
queries and certain specific scoring functions.

We present a novel approach for efficiently performing general
distributed threshold queries. To the best of our knowledge, this is
the first solution to the problem of performing such queries with
general scoring functions. We first present a solution for mono-
tonic functions, and then introduce a technique to solve for other
functions by representing them as a difference of monotonic func-
tions. Experiments with real-world data demonstrate the method’s
effectiveness in achieving low communication and access costs.

1. INTRODUCTION
Many tasks require determining the set of objects whose score

exceeds a given threshold. Examples include data mining [12, 29],
event triggering [30], and top-k selection [11]. We refer to these
tasks as threshold queries.

Performing threshold queries over distributed database setups
can be very challenging. In many distributed setups, data is parti-
tioned over distributed nodes using the same set of attributes across
all n nodes1. Examples include sensor systems (e.g. NASA EOS
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[26]), retail databases (e.g. Wal-Mart [26]) and web applications
(e.g. Google [27]). In these setups, the score of an object o j is
computed by first aggregating its attribute vectors, denoted ~x j,i, to
obtain o j’s global attribute vector~x j (~x j,i is o j’s attribute vector in
the i-th node, so ~x j =

1
n ∑

n
i=1~x j,i), applying a scoring function f ()

over the aggregated attributes, and thresholding f (~x j) (see Section
3.1). Note that every data attribute is represented in every node. A
naive approach to compute such threshold aggregation queries is
to collect data to a central location. However, that may incur pro-
hibitively high costs, both for local storage accesses at each node
and for communication.

Such threshold aggregation functions are more powerful than
may appear at first sight; by expanding the object’s local data with
powers of its attributes, they can be used, for example, to compute
two fundamental data characteristics, the variance and maximum
functions (for the variance this holds since it can be expressed by
the average of the data components and the average of their squares;
more details, and a method to approximate the maximum, are in
Appendix I). Thresholding the (global) variance over aggregated
data is known to be difficult [16].

Aggregation threshold queries have been studied in distributed
setups, including distributed association rule mining [9, 29], ice-
berg queries [39], monitoring [17, 24] and distributed top-k queries
[5, 22, 36]. However, these algorithms are applicable only to mono-
tonic scoring function. Alas, in many applications the functions
which need to be computed and thresholded are non-monotonic,
as demonstrated by the following three examples (due to lack of
space, full details of these examples are deferred to Appendix II):

EXAMPLE 1. In a distributed search engine, we wish to find all
pairs of search terms whose global correlation coefficient is above
a certain threshold (meaning that queries which contain “term A”
tend to also contain “term B”). Here, “global” can refer to a query
log stored in a large distributed data center, or even over distant ge-
ographical locations. Generally, finding all pairs of objects whose
correlation coefficient is above a certain threshold is a very impor-
tant task [14, 37]. We shall return to this example in detail in the
experiments (Section 7).

EXAMPLE 2. A web application stores user’s activities over dis-
tributed servers, where users are identified by their ips. Each server
i contains a database of the number of urls visited by each user
j (urli

j) and the number of advertisements clicked the same user
(advi

j). A user’s global behavior is defined by the average over the
local nodes, i.e., url j = avg(urli

j) and adv j = avg(advi
j). Given a

distance measure f (url j,adv j) = (url j−A)2 +(adv j−B)2, where
A and B are given values, the application manger can cluster users
with similar distance. However, since f is non-monotonic, the local



values can be very different from the global one.

EXAMPLE 3. We wish to estimate the health of a distributed
system, measured by the uniformity of the local traffic and other
indicators at the distinct nodes. This can be done by performing
PCA (Principal Component Analysis) on a matrix which can be
written as an average of local matrices defined at the various nodes
[15, 19].

In all the above examples, the aggregate scoring functions are
non-linear and non-monotonic, and the data is distributed accord-
ing to our assumptions, i.e. every data attribute is represented in
every node.

In this paper we present what constitutes, to the best of our
knowledge, the first solution to the problem of performing dis-
tributed threshold aggregation queries with general (not necessarily
linear or monotonic) scoring functions. Our approach is to decom-
pose the query into a set of constraints on the local values held for
each object. The global score of objects for which the local con-
straints are satisfied is guaranteed to be below the threshold. Since
the nodes only report objects whose data do not satisfy the local
constraints, and since most objects do satisfy them, communica-
tion volume is drastically reduced.

We start with an algorithm for monotonic scoring functions, call-
ed TB(Tentative Bound)-Monotonic. This algorithm compiles lo-
cal constraints that minimize communication volume and local ac-
cesses. Monotonicity is used to efficiently detect a dominating set
and prune dominated objects. An efficient technique for checking
whether an object violates its local constraints is also introduced.

Using TB-Monotonic as a building block, we extend the tech-
nique to a general method, called the Tentative Bound (TB) Algo-
rithm, for queries that employ general (not necessarily monotonic)
scoring functions. We present a novel method for representing scor-
ing functions as a difference of two monotonic functions (d.m. rep-
resentation), which enables to resolve non-monotonic queries. We
handle both single variable and multivariate functions; for the lat-
ter, we develop a novel method for computing this representation.

Lastly, experiments on real-world data demonstrate the algo-
rithm’s effectiveness in achieving low communication and access
costs.

1.1 Contributions and Novelty
Distributed geometric constraints were introduced in [30, 31].

This work differs in several important aspects:

• The TB algorithm reduces communication in distributed data-
bases; the algorithms in [30, 31] are suited to distributed
streaming setups only.

• TB efficiently reduces the number of objects accessed in each
node, as opposed to accessing each object in each node in
[30, 31].

• TB is not limited in the number of objects, whereas the algo-
rithms in [30, 31] do not perform well for more than a few
thousand objects.

• TB provides an efficient method for verifying whether an ob-
ject satisfies the local constraints, as opposed to a difficult
optimization problem which must be solved in [30, 31].

• While the geometric “bounding theorem” from [30] is ap-
plied, it is the only component of previous work used here,
and its application is restricted to one phase of the TB-Mono-
tonic algorithm.

• The main technical idea of this paper – an algorithm for
querying general functions by representing them as a differ-
ence of monotonic functions – is, to the best of our knowl-
edge, entirely new.

The paper is structured as follows. Section 2 discusses related
work; section 3 presents notations and terminology, as well as a
review of distributed geometric constraints; section 4 present the
TB-monotonic algorithm for handling queries defined by mono-
tonic scoring functions; In sections 5 and 6 we present the TB al-
gorithm for general scoring function. Finally in sections 7 and 8
we present experimental results and conclusions.

2. RELATED WORK
Threshold queries serve as building blocks in many data mining

algorithms, including top-k queries, association rule mining, and
decision tree induction. Cao et al. in [5] have used threshold
queries for performing top-k algorithm over distributed databases.
Their TPUT algorithm consists of three phases: the first is used
to determine an estimated value of the kth highest scoring object,
the second performs a threshold query which prunes out objects
whose score is guarantee to be below the estimated value, and the
third searches for the top-k within the remaining objects. A lot of
work focused on improving the performance of the second phase.
Yu et al. [36] improved the threshold query by setting local con-
straints for each node using the distribution of the node’s values.
Recently, Michel et al. [22] improved the local constraints using the
node’s local index. However, these algorithms are limited to mono-
tonic functions only. In comparison, when applying our threshold
queries to top-k in the general case, we start by collecting the top-k
scoring objects from each node, and determining the k-th among
their scores. Then, we query for all objects whose score is above
this value, retrieve them, and find the top-k objects, which must be
in this group; see Section 4.

Other top-k algorithms were developed for distributed databases
[8, 21] and distributed peer-to-peer setups [3, 23, 32], but they,
too, are limited to monotonic functions. Recently, Xin et al. [34]
and Zhang et al. [38] suggested new approaches to apply thresh-
old decisions to top-k query algorithms defined by non-monotonic
scoring functions. However, these approaches are not applicable in
a distributed setup.

The challenge of performing threshold queries defined by non-
monotonic scoring functions was studied for building decision trees
over distributed setups. Decision tree induction is an iterative algo-
rithm, where each phase requires determining the highest scoring
attribute. This decision can be presented as a top-1 query. For
many applications, the score of the best attribute is computed by
non-monotonic functions, e.g., Information Gain and Gini Index.
For the Gini Index, Giannela et al. [12] have recently showed an
efficient technique to determine the best attribute over two nodes,
using very little communication. Another approach, presented by
Caragea et al. [6], replaced non-monotonic functions with an ap-
proximate monotonic functions. Xiong et al. [35] have also re-
placed the non-monotonic correlation coefficient function with a
monotonic function. However, these algorithms are tailored to spe-
cific scoring functions.

3. PRELIMINARIES
In this section, we summarize some notations and terminology

used in the paper. In addition, we briefly review the definition of
local geometric constraints, as presented in [30].



(a) Vectors’ convex hull and
a visualization of the domi-
nance relationship

(b) Local statistics vector
spheres

Figure 1: The convex hull of the local statistics vectors is out-
lined (a), and it is contained in the union of the local statistics
vector spheres, using the lower corner vector as a reference vec-
tor (b).

3.1 Notations and Terminology
The system consists of n nodes, p1, p2,..., pn, where each node

uses the same set of attributes. A query is initiated on an additional
node called the coordinator, denoted p0. There are m objects in the
system, denoted o1,o2,...,om, where various nodes can store data
vectors for the same object o j. The set of attributes for o j in node
i is a d-dimensional vector referred to as o j’s local statistics vector
and is denoted by~x j,i. The global statistics vector for o j is the aver-
age of its local statistics vectors,~x j =

1
n ∑

n
i=1~x j,i (the algorithm can

be easily applied for a weighted average as well). For any attribute,
we assume that each node maintains its local data structure to allow
immediate retrieval of the object with minimal/maximal value for
that attribute. Given a scoring function f (), the score of object o j
is f (~x j).

We say that a vector ~x dominates a vector ~y, denoted ~x �~y, if
all the components of~x are greater or equal than the corresponding
components of ~y. A function f () is said to be monotonically in-
creasing if~x �~y→ f (~x)≥ f (~y) (this is a natural generalization of
the familiar definition for univariate functions).

Given the set of all local statistics vectors of all objects, let B be
their minimal axis-aligned bounding box. We denote the corner of
B with the maximal value in each component as the upper corner
vector ~vupper, and the corner with the minimal value in each com-
ponent as the lower corner vector~vlower (~vupper and~vlower may not
correspond to actual data vectors). Clearly~vupper � ∀~x j,i �~vlower;
see Figure 1(a). Assuming that each node allows the immediate
retrieval of the objects with minimal/maximal value for each at-
tribute, the coordinator can easily compute ~vlower (~vupper) by col-
lecting these objects from each node in a single communication
phase.

3.2 Distributed Geometric Constraints
Given a d-dimensional set of local statistics vectors

~x j,1,...,~x j,n for an object o j, held by the various nodes, our goal
is to define local constraints on ~x j,1,...,~x j,n such that if all of the
local constraints are satisfied, the value of the scoring function f ()
over the global statistics vector, f (~x j), is guaranteed not to exceed
a given threshold τ .

In [30] continuous monitoring of data streams was addressed,
and a geometric method for constructing constraints on the local
statistics vectors proposed. Note that~x j belongs to the convex hull
of its local vectors, ~x j ∈Conv(~x j,1,~x j,2, ...,~x j,n), as depicted in Fig-

ure 1(a). Given an agreed upon common reference vector, e.g.,
~vlower or~vupper, the constraint on the local statistics vector at each
node is defined as follows: the node constructs a sphere centered
at the midpoint between~x j,i and the reference vector (~vlower), with
a radius equal to half the distance between them. This sphere is
referred to as the bounding sphere and is denoted by B(~vlower,~x j,i).
The local constraint of vector~x j,i is satisfied if the maximum score
received by all the vectors that belong to the sphere is below τ:
max~v∈B(~vlower ,~x j,i) f (~v) < τ. The bounding theorem in [30] guaran-
tees that the union of the bounding spheres constructed by all the
nodes will contain the convex hull of the local statistics vectors,

i.e., Conv(~x j,1, ...,~x j,n) ⊂
n⋃

i=1
B(~vlower,~x j,i) (as depicted in Figure

1(b)). Therefore, if the maximum score received by the vectors
that belong to the bounding spheres is below the threshold (i.e., all
the constraints are satisfied), then the score received by the global
statistics vector is also below the threshold.

4. QUERYING MONOTONIC FUNCTIONS
In this section we present a tentative bound algorithm, called TB-

Monotonic, for resolving distributed threshold aggregation queries
with monotonic scoring functions. TB-Monotonic uses local con-
straints, referred to as tentative upper bounds (TUBs), to reduce
the communication from the nodes to the coordinator and to min-
imize the local access cost. We first define TUBs and then de-
scribe how they are used in TB-Monotonic to reduce communica-
tion cost. TB-monotonic will be used as a building block to handle
non-monotonic scoring functions.

4.1 Tentative Upper Bound
We now present a method for decomposing distributed thresh-

old queries defined by monotonic scoring functions into a set of
local constraints. These constraints are based on the geometric
constraints described in section 3.2, but here they are applied in
a different way: skyline-related machinery is used to fuse the ge-
ometric constraints with the domination relation. The main idea
here is that the notion of dominance can be transferred from points
to their bounding spheres.

Given a monotonic scoring function f () and a threshold value τ ,
we want to create a constraint for every object’s vector ~x j,i. The
constraint on the local statistics vector~x j,i is defined as follows: let
u j,i denote the maximum score received by vectors that belong to
the bounding sphere defined by ~x j,i and ~vlower (defined in section
3.2), i.e., u j,i = max~z∈B(~vlower ,~x j,i) f (~z). Note that u j,i can be com-
puted locally, without communication. According to the bounding
theorem described in Section 3.2, the global vector of object o j is
contained in the union of the local bounding spheres. Therefore, if
u j,i is smaller than τ in every node, then the score for all the vec-
tors in the union of the local bounding spheres is below τ, hence
the global score is also below τ. We define the inequality (u j,i < τ)
as the local constraint of object o j at the node. The value u j,i is
referred to as the tentative upper bound (TUB) of o j in node i.

Similarly, we define a set of tentative lower bounds (TLB) for
an object. The TLB values of o j are determined by taking the
minimum score received by vectors that belong to the bounding
sphere defined by ~x j,i and the common reference vector ~vupper .
This minimum can be quickly approximated to very high accuracy
by a simple branch-and-bound algorithm, which makes use of the
monotonicity of f (). Note that an object’s score is guaranteed to be
bounded from below by at least one of the TLBs determined for it
by the various nodes.



4.2 The TB-Monotonic Algorithm
Following the TUB definition, we now describe the TB-Monotonic

algorithm for efficiently performing threshold queries over any mono-
tonic function f ().

First, the coordinator computes the common reference vector
~vlower, by requesting each node to send its objects with minimal
value for each attribute (Section 3.1). Based on this set of received
objects, the coordinator determines the global minimal value for
each attribute, which define~vlower.

Then, the coordinator sends ~vlower and the threshold query pa-
rameters, i.e., the scoring function f () and the threshold value τ ,
to all nodes. Using ~vlower and f (), each node can compile a list
of all the objects whose TUB exceeds τ (in the next subsection we
show how to do this efficiently). This list is referred to as the local
candidate list (LCL). One goal is to minimize the size of the LCL.
The nodes send the local statistics vectors of the objects in their
LCL’s to the coordinator; the coordinator then builds the union of
the LCL’s to form a global candidate set (GCS). The TUB’s most
important feature is to guarantee that the GCS contains all the ob-
jects whose global score exceeds τ . Most of the objects, whose
score does not exceed τ , are locally pruned by the TUB constraints
and do not belong to any LCL.

Finally, the coordinator asks the nodes for the local statistics vec-
tors which it did not yet receive, and which belong to objects in the
GCS. This allows to compute the global statistics vectors and global
score for all these objects, and to select those whose global score
exceeds the threshold.

4.3 Minimizing Local Accesses
The LCL, described in the previous section, contains all the ob-

jects whose TUB exceeds a given threshold τ . However, calculat-
ing the TUB value for every object in each node for every query
incurs high local storage access cost. In this section we show how
to compute the LCL by computing the TUB value for only a frac-
tion of the objects in each node, by using a progressive detection of
skyline objects.

Given a set of objects, their skyline contains the objects whose
local statistics vectors are not dominated by any local statistics vec-
tor. Given a set of objects in a node pi, we can therefore bound their
TUB value by bounding the TUB value of the skyline objects.

LEMMA 1. Let ~xa,i and ~xb,i be local statistics vectors for two
objects at the node pi. Furthermore, suppose ~xa,i dominates ~xb,i.
Then ua,i ≥ ub,i(the TUB value of the first object is greater than the
TUB value of the second object).

PROOF. The proof of Lemma 1 is given in Appendix III.

THEOREM 1. Let S be the set of skyline objects computed over
a set O of objects in node pi and a given threshold τ . If for every
object o j in S, u j,i < τ , then the TUB value for every object in O is
below τ .

PROOF. The proof of Theorem 1 is given in Appendix III.

Using Theorem 1, we present a progressive algorithm for construct-
ing the LCL, while minimizing the number of local accesses. Let O
be a set of objects in node pi. Upon initialization, this set contains
all the objects in pi. At each iteration, node pi computes the skyline
objects set S of O, and computes the TUB value of each object in
this set. If the TUB value of an object o j ∈ S is above τ , then o j
is removed from O and added to the LCL. Otherwise, this object
is kept in O. The iteration process terminates when the TUB value
of all objects in S is below τ . According to Theorem 1, since the
TUB value of each object in S is below τ , then the TUB values of

all current objects in O are below τ as well. In addition, it is guar-
anteed that at this point the LCL consists of all the objects whose
TUB exceeds τ .

Various algorithms were proposed for efficiently computing the
skyline over a database. These algorithm can be classified into two
categories: those which do not use pre-processing [4, 13, 10] (and
therefore have to make at least one pass over the database) and
those which use pre-processing such as indexing and sorting [18,
33, 25]. Since in many database applications attribute values are
already indexed in a tree structure (e.g., B-tree, R-tree), here we
have chosen to apply the branch-and-bound technique for skyline
computation (BBS), proposed by Papadias et al. in [25]. The BBS
algorithm explores an R-tree using a best-first search paradigm, and
has been shown to be optimal with respect to R-tree page accesses.
Experiments (Section 7) show that progressive detection of skyline
objects using BBS reduces the number of local accesses by two
orders of magnitude in comparison to accessing all the objects in
each node.

5. QUERYING GENERAL FUNCTIONS
In the previous sections we presented an algorithm for perform-

ing distributed threshold aggregation queries for monotonic scoring
functions. The monotonicity of the scoring function enabled to ex-
ploit domination relationships between objects to reduce commu-
nication and local accesses. In this section we propose to resolve
queries defined by a general, non-monotonic function, by repre-
senting it as a difference of two monotonic (d.m) functions. Given
a function f (), f () = m1()−m2() is a d.m. representation of f () if
m1() and m2() are monotonic. A large family of functions – those
of bounded variation – can be represented in such a manner; these
functions include, for example, all functions with bounded deriva-
tives in a certain domain. Also, every continuous function on a
closed and bounded domain can be arbitrarily approximated by a
function of bounded variation (see Section 6.1 and Appendix IV).
This enables the suggested method to deal with most, if not all,
functions which need to be computed in real-life applications.

We start by presenting an algorithm that exploits a d.m. repre-
sentation to efficiently resolve distributed threshold queries. Then,
we formally define a large class of functions and show how to con-
struct d.m. representations for its members.

5.1 The TB Algorithm
Given a d.m. representation f () = m1()−m2(), and a thresh-

old τ , we select an additional threshold referred to as the divid-
ing threshold, denoted by tdiv. The details of how to select tdiv
are discussed in next subsection . We now make the following
simple observation, which will serve as the basis for our algo-
rithm: for a vector ~x, if m1(~x) < tdiv and m2(~x) > tdiv − τ , then
m1(~x)−m2(~x) = f (~x)< τ . Therefore, if the global statistics vector
~x j of the object o j satisfies these two inequalities, we can conclude
that its score is below τ .

Once the dividing threshold has been selected, the coordinator
sends τ and tdiv to all nodes. Upon receiving τ and tdiv, each
node compiles an LCL, which consists of all objects whose ten-
tative upper bound (TUB) on m1(~x j,i) is above tdiv (using ~vlower
as the reference vector) and all the objects whose tentative lower
bound (TLB) on m2(~x j,i) is below tdiv−τ (using~vupper as the refer-
ence vector). The nodes send their LCL’s to the coordinator, which
compiles a global candidate set, as in the algorithm for monotonic
scoring functions. Note that the score of any object that does not
appear in the GCS is guaranteed to be below τ . As in the algorithm
for monotonic scoring functions, the coordinator requests that the
nodes send it the local statistics vectors for all the objects in the



GCS, determines their score, and outputs the objects whose score
exceeds τ .

5.2 Defining the Dividing Threshold
The selection of the dividing threshold (tdiv) may significantly

affect the performance of the TB algorithm. Given a scoring func-
tion f (), a threshold τ , and a d.m. representation of f (), tdiv affects
the size of the LCL at each node. Our goal is to select a value
for tdiv that minimizes the size of the global candidate list (i.e., the
union of the LCL’s determined at the various nodes). In this section
we present a simple method for selecting tdiv. Experiments show
that this method produces results that are not too far from those
achieved by selecting the optimal value.

We propose a two-phase approach for selecting tdiv. In the first
phase each node determines a tentative value for the local divid-
ing threshold, denoted ti. This local dividing threshold produces a
small LCL. In the second phase an average of the tentative values
is determined. This average value is used as the value for tdiv.

In order to determine ti at each node, the algorithm scans two
sorted lists: LTUB, which holds the local vectors in descending or-
der according to the value of their TUB on m1(), and LT LB, which
holds the local vectors in ascending order according to the value of
their TLB on m2(). Note that in practice, these lists are computed
incrementally on demand, using the skyline approach presented in
section 4.3, and their size is bounded according to Theorem 2. The
value of ti is determined by the following iterative algorithm: in the
kth iteration, the algorithm determines the vectors in position k from
LTUB and LT LB, denoted v′k and v′′k , respectively. If v′′k ≥ v′k− τ ,
then we set ti = v′k and terminate. Theorem 2 states that the size of
the LCL at the ith node produced by using ti as the dividing thresh-
old is at most twice the size of the smallest possible LCL.

THEOREM 2. Let X ′ be the size of the LCL at the ith node pro-
duced by using ti as the dividing threshold. Let t∗i be the dividing
threshold that produces the smallest LCL at the ith node, and let X∗

be its size. Then X ′ ≤ 2X∗+1.

PROOF. Let t∗i be the optimum local dividing threshold for node
i. According to the dividing threshold definition k1 vectors exist in
LTUB whose score exceeds t∗i (v′k1

≥ t∗i , v′k1+1 < t∗i ), and k2 vectors
exist in LT LB whose score is below t∗i −τ (vk2 ≤ t∗i −τ , v′′k2+1 > t∗i -
τ). Note that these vectors are the first values in LTUB and LT LB
respectively. Therefore the minimum size of the optimal candidate
set is X∗ = max(k1,k2). Without loss of generality, we assume that
X∗ = k1. Next, we show that our algorithm will terminate after at
most k1 + 1 iterations. In the k1 + 1 iteration, the value of v′′k1+1
is higher than v′k1+1 − τ: Since v′′k1+1 ≥ v′′k2+1(LT LB is sorted in
ascending order) and v′′k2+1 > t∗i − τ then v′′k1+1 ≥ v′′k2+1 > t∗i − τ >

v′k1+1− τ . Therefore ti = v′k+1 and the algorithm will terminate. If
ti = v′k+1 the number of vectors in node i that will be reported is
bounded by 2k1 +1 = 2X∗+1.

6. D.M. REPRESENTATION
In the previous section we assumed that the scoring function can

be represented as a difference of two monotonic functions. We now
show how to construct such a representation. We start by presenting
the notion of the total variation of a function.

6.1 Total Variation and the d.m. Representa-
tion

The total variation of a univariate function is a well-known mea-
sure in real analysis [7]. Intuitively, we can think of the variation
of a function f (x) over an interval [a,b] as follows: say the interval

represents an interval in time, and the value of the function repre-
sents the height of a buoy at a given time. The total variation of
the function over the interval, denoted V b

a ( f ), is the total distance
traveled by the buoy during the time represented by the interval.
Formally, the total variation of a multivariate function is defined as
follows:

DEFINITION 1. Let p = {~a = ~x0 ≺ ~x1 ≺ ... ≺ ~xn =~b} be a
partition of the multi-dimensional interval [~a,~b]. Let the variation
V ( f , p) of the multivariate function f (~x) over p be defined as
V ( f , p) = ∑

n
i=1 | f (~xi)− f (~xi−1)|, and let P(~a,~b) be the set of all

partitions of the interval [~a,~b]. The total variation V~b
~a ( f ) of the

function f (~x) over the interval [~a,~b] is defined as the supremum of
the variations over all possible partitions:
V~b
~a ( f ) = supp∈P(~a,~b)(V ( f , p)).

We say that a function is of bounded variation over the interval
[~a,~b] if its total variation is finite. The class of functions of bounded
variation over an interval is very large; for example, it contains all
functions with bounded derivatives in the interval. Also, most con-
tinuous functions are of bounded variation, and those which are not,
can be arbitrarily approximated by functions of bounded variation.
More on this in Appendix IV.

6.2 Variation Based d.m. Representation
In this section we show how to construct a d.m. representation

for any function of bounded variation. We define the d.m. repre-
sentation f (~x) = m∗1(~x)−m∗2(~x) on the interval [~a,~b] by

m∗1(~x) =
1
2
(V~x

~a ( f )+ f (~x)). (1)

m∗2(~x) =
1
2
(V~x

~a ( f )− f (~x)). (2)

In order to show that this representation is valid, we need to show
that m∗1(~x) and m∗2(~x) are monotonic.

LEMMA 2. Let f (~x) be a function over the domain [~a,~b], and
let~a≺~u≺~v≺~b. Then V~v

~a ( f )≥V~u
~a ( f )+ | f (~v)− f (~u)|.

PROOF. Recall that the total variations V~u
~a ( f ) and V~v

~a ( f ) are a
supremum on the variation of the respective sets P(~a,~u) and P(~a,~v).
We map every partition in P(~a,~u) to a partition in P(~a,~v) as fol-
lows: let p1 = {~a =~x0 ≺~x1 ≺ ... ≺~xn = ~u} ∈ P(~a,~u). We map
p1 to p2 = {~a =~x0 ≺~x1 ≺ ...≺~xn ≺~xn+1 =~v} ∈ P(~a,~v). Clearly,
V ( f , p2) =V ( f , p1)+ | f (~v)− f (~u)|. Since we mapped every mem-
ber of P(~a,~u) to a member of P(~a,~v) such that the variation of f (~x)
on the former exceeds its variation on the latter by | f (~v)− f (~u)|,
the total variation of f (~x) on the interval [~a,~v] exceeds the total
variation of f (~x) on [~a,~u] by at least | f (~v)− f (~u)|, as desired.

Next we prove that m∗1(~x) and m∗2(~x) are monotonic:

THEOREM 3. Let f (~x) be a function over the domain [~a,~b]. Let
m∗1(~x) and m∗2(~x) be defined as above. Then m∗1(~x) and m∗2(~x) are
monotonic.

PROOF. We need to show that m∗1(~x) is monotonic, i.e., for ev-
ery ~a ≺~x1 ≺~x2 ≺~b, m∗1(~x2) ≥ m∗1(~x1). According to Lemma 2,
V~x2
~a ( f ) ≥ V~x1

~a ( f ) + | f (~x1)− f (~x2)| . Using the inequality
| f (~x1)− f (~x2)| ≥ f (~x1) − f (~x2), we obtain
V~x2
~a ( f ) + f (x2) ≥ V~x1

~a ( f ) + f (x1). Employing Eq. (1) we obtain
that m∗1(~x2) ≥ m∗1(~x1), as desired. Similarly, it follows that m∗2(~x)
is monotonic.

In Figure 2 a representation of cos(x) as a difference of two
monotonic functions is provided.



Figure 2: d.m. representation example: cos(x) = m1(x)−m2(x).

6.3 Computing the Total Variation
The total variation of a continuously differentiable univariate

function over the interval [a,b] is well-known [7]:
V~b
~a ( f ) =

∫ b
a | f ′(x)|dx .

The following theorem allows to bound the total variation value
for differentiable two-dimensional functions.To the best of our know-
ledge, it is novel.

THEOREM 4. Given a differentiable function f (x,y) over the
interval [~a,~b], then V~b

~a ( f )≤
∫ ∫

S |
∂ 2 f

∂x∂y |dxdy+
∫

H |
∂ f
∂x |dx+

∫
V |

∂ f
∂y |dy

, where S is the rectangular region whose lower left corner is ~a, its
upper right corner~b, H is the lower horizontal edge, and V the left
vertical edge (note that this immediately proves that a function with
bounded derivatives if of bounded variation).

PROOF. The proof of Theorem 4 is given in Appendix IV.

If computing the integrals is difficult, one may use a dynamic pro-
gramming algorithm that computes an approximate total variation
value (details in Appendix IV).

7. EXPERIMENTAL RESULTS
In this section we evaluate the performance of the TB algorithm

for executing distributed threshold queries. We tested the algorithm
using three real-world datasets and two scoring functions, which
we now review.

7.1 Data Sets and Scoring Functions
We used the Reuters Corpus (RCV1-v2) [28], the AOL Query

Log [1] and the Netflix Prize dataset [2]. RCV1-v2 consists of
804,014 news stories, each tagged as belonging to one or more of
103 content categories. We restricted ourselves to the 42 categories
containing at least 10,000 news stories, and used a pre-computed
list of terms [20] contained in each news story. The AOL data
consists of log files collected from a large, centralized search en-
gine over three months. The log files contain the terms present in
the search queries. The Netflix data consists of ratings on 17,770
movies by 480,189 anonymous users. A full description of the data
sets is in Appendix V.

We used two different correlation functions to test the proposed
algorithm, defined over three and four attributes: Pearson’s corre-
lation coefficient and chi-square. Querying and thresholding cor-
relation functions is a very frequent task in data mining algorithms
[14, 37], such as collaborative filtering, association rule mining,
and decision tree construction. The dimensionality (i.e. number of
attributes) is similar to that of many aggregation query problems,

e.g. [5, 22, 34, 38]. A precise definition of the functions is provided
in Appendix V.

7.2 Performance Metrics
We used the following metrics:
Local and Global candidate sets – the number of objects which

satisfy the TUB and TLB constraints.
Communication cost – the number of messages sent during the

algorithm’s execution. For example, each object reported to the co-
ordinator in the first phase of the algorithm (computing ~vlower and
~vupper) is counted as a single transmission. Each object collected
by the coordinator in the second phase is counted as two transmis-
sions – the coordinator’s request and the node’s response.

Storage access cost – the number of objects that have been lo-
cally accessed by the nodes. We evaluated the reduction in local
access cost when using the approach described in section 4.3.

7.3 Algorithms
Naive – The naive solution collects the distributed data and com-

putes the threshold aggregation query in a central location. The
communication cost and access cost of this algorithm are equal to
the number of local statistics vectors. We use the naive algorithm
for comparison since we are not aware of any other algorithm for
thresholding general functions in a distributed setting.

TB – The tentative bound (TB) algorithm presented in this paper,
using the d.m. representation.

OPC – The Optimal Constraint Algorithm is an offline algorithm
used to compare the performance of the TB Algorithm vs. the best
that can be achieved using an optimal variants of our approach. The
OPC algorithm calculates the convex hull of each object’s local
statistics vectors and computes the maximum value of the scoring
function over this convex hull. It reports to the coordinator only
those objects whose maximum value over the convex hull exceeds
the given threshold. Thus, OPC determines the theoretical minimal
volume of communication that is mandatory for every convex hull-
based algorithm, that is, in which the global vector is known to be
the average of the local ones.

7.4 Results

7.4.1 Local and Global Candidate Set
We first tested the efficiency of the TUB and TLB constraints in

reducing the local and global candidate sets. We tested these con-
straints over the three data collections (QL-100, RT-42, RC-50), us-
ing Pearson’s correlation coefficient as a scoring function with the
first two collections, and chi-square with the RC-50 data. As Figure
5 demonstrates, these constraints on the average reduce the number
of objects in the LCL by three orders of magnitude in comparison
to the total number of objects in each node (left two columns). The
third column represents the GCS size. As the data distribution is
more homogeneous (QL-100,RC-50), the GCS’s size is similar to
the LCL’s size, relative to more heterogeneous data set (RT-42).

7.4.2 Communion Cost
We compared the communication cost incurred by Algorithm TB

with the cost incurred by the naive and OPC algorithms. We tested
each algorithm over the three collections of data (QL-100, RT-42,
RC-50). We present the performance for a few different threshold
values.

Figure 3 presents the communication cost incurred by the naive,
TB and OPC algorithms for different threshold values. In each
experiment, the TB communication cost is two to three orders of
magnitude lower than the naive approach. The reduction in com-



(a) Communication cost (QL-100) (b) Communication cost (RC-50) (c) Communication cost (RT-42)

Figure 3: Communication cost (log scale) for different threshold values. TB is two to three orders of magnitude better than the naive
algorithm, and at most one order of magnitude worse than OPC.

(a) Communication cost (QL-5..100) (b) Communication cost (RC-5..100) (c) Communication cost (RT-5..42)

Figure 4: Communication cost for different numbers of nodes. TB’s reduction in communication is maintained when the number of
nodes increases.

Figure 5: Local and global candidate
set size

Figure 6: TB algorithm over the Net-
flix dataset (NX)

Figure 7: Access costs for the
TB algorithm

munication increases with the decrease in threshold values, due to a
decrease in the size of the LCL in each node. The results of the TB
algorithm are close to the results of the OPC algorithm in QL-100
due to the homogeneous distribution of the data.

7.4.3 Scalability
We tested the algorithm’s scalability by comparing the commu-

nication cost for different numbers of nodes over the three data
collections (QL-100, RT-42, RC-50). Figure 4 presents the com-
munication cost incurred by the algorithm for different numbers of
nodes. The TB algorithm is scalable as the reduction in communi-
cation cost is maintained with the increasing number of nodes (i.e.,
between two to three orders of magnitude).

We also tested the TB algorithm scalability over the Netflix Prize
dataset, using Pearson’s correlation coefficient as the scoring func-
tion. Figure 6 presents from two to three orders of magnitude re-
duction in communication relative to the naive algorithm for vari-
ous numbers of nodes.

7.5 Access cost
Finally, We compared the access cost incurred by the TB algo-

rithm with that incurred by the naive and OPC algorithms. Figure 7
presents access costs for different numbers of nodes over different
data collections. TB’s access cost is two orders of magnitude lower
than the naive approach, and it scales with the number of nodes.

8. CONCLUSIONS
The TB algorithm applies local geometric constraints and a d.m.

representation to efficiently solve distributed threshold aggregation
queries. Experiments on real-world data demonstrate a reduction in
communication cost by two to three orders of magnitude in com-
parison with the naive method, while minimizing the computational
and storage access costs. The main novelty is in the treatment of
general scoring functions, by using the d.m. representation. To
the best of our knowledge, there is no previous solution for gen-
eral, non-monotonic functions, for the problems discussed in this



paper. In the future, we plan to apply the d.m. representation to
other types of database queries which are currently supported only
for monotonic functions.
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Appendix I: Computing the Variance and Max-
imum
Here we show that the variance and maximum can be represented
by the aggregation model (a function evaluated at the average data
vector). Suppose data is distributed over nodes, and we wish to
submit an alert when the data variance crosses a certain threshold.
The variance is a fundamental measure of data uniformity, and as
such there are numerous applications in which it needs to be mon-
itored [16]. Typically, the exact value of the variance at a given
instance is not important; one only needs to submit an alert when it
increases beyond a certain threshold. We will now show how to im-
plement this as a threshold aggregation query. Assume for simplic-
ity that the nodes hold scalar values (generalization to data vectors
is straightforward). The variance equals the average of the squared
values at the nodes, minus the square of the average value. Thus,
the nodes can expand their local vectors by adding the squared val-
ues, and the variance can be trivially computed from the average of
the expanded vectors.

The maximum of the local data vectors is also a very important
data characteristic. While it is not possible to exactly describe it
as a function on the average vector, it is possible to approximate it
with arbitrarily high precision by the following observation: given
positive numbers α1...αm, lim

n→∞
(αn

1 + ...+αn
m)

1
n = max{αi}. Thus,

by choosing a large enough n, and by having the nodes expand
their local data by its n-th power, we can arbitrarily approximate
the maximum with a function which can be evaluated at the average
vector.

Appendix II: Details of the Examples in the In-
troduction
Example 1:

A contingency table of two categorical variables X ,Y is a 2× 2
table which lists all the possibilities of mutual occurrences of X
and Y . Assume for example that X and Y are two terms which may
or may not appear in a given document. The contingency table of
these two terms is defined as

X present X absent
Y present a b
Y absent c d

(that is, a is the number of documents in which both X and Y are
present, etc.). The oft-used chi-square measure of the table is de-
fined as χ2 =

(ad−bc)2

(a+b)(a+c)(b+d)(c+d) . Assume now that we have a
database of documents, distributed between many nodes, and we
wish to compute the chi-square measure of two terms over the en-
tire database. Each node can compute its own contingency table
for the terms, and in the terminology introduced in Section 1, this
table is its attribute vector; the global attribute vector is the global
contingency table, which is just the sum (or average) of the local
ones. Thus, the global score of a pair of terms is the value of the
chi-square function evaluated at the sum of the local tables. To
demonstrate that this function is non-monotonic, let us look at the
following two local contingency tables:

12 4
3 13

,
8 16

17 9
, and their sum,

20 20
20 22

.

The chi-square values of the two local tables are 10.16 and 5.13,
and that of the sum of the tables is 0.046 – much smaller than the
values at the local tables. Now, assume two local tables:

11 1
2 1

,
1 3
1 17

, so that their sum is
12 4
3 18

.

The scores of the local tables are 1.3 and 1.49, and the score of
the sum table is 13.89. Therefore, the global score can be either
much larger or much lower than the local scores, which violates
monotonicity.

Example 2:
Various Internet-based service providers (e.g., search engines

and recommender systems) store users’ activity in order to im-
prove their performance. In this example, an advertisement system
stores users’ activity in a distributed database, containing a few ge-
ographically distributed nodes. Each node i logs the number of
urls visited by each user j (urli

j) and the number of clicked adver-
tisements (advi

j) which, in the terminology of Section 1, are the
attribute vectors at the nodes. A user’s global activity is defined
by the average value of the local values, i.e., url j = avg(urli

j) and
adv j = avg(advi

j). One wishes to retrieve all users whose activity
is similar to a given number of clicked urls (A) and clicked ad-
vertisements (B), by using the distance function f (url j,adv j) =

(url j − A)2 + (adv j − B)2. To demonstrate that this function is
non-monotonic, assume A = B = 2 and that a user’s activity is dis-
tributed over two nodes. At the first node the local attributes vector
is (url1

j = 1,adv1
j = 3) and at the second it is (url2

j = 3,adv2
j = 1).

The scores of the local vectors are f (1,3) = f (3,1) = 2, however
the global score is f ( 1+3

2 , 1+3
2 ) = 0 – that is, while the local vectors

are both at a distance 2 from A = B = 2, the average is equal to it.
On the other hand, if the local vectors are (4,4) and (2,2), the local
scores are 4 and 0, and the global score is 2. Hence, it is generally
not possible to bound the global score, given the local ones.

Example 3:
A distributed monitoring paradigm, aimed at detecting volume

and other types of anomalies in distributed systems, was introduced
in [19]. A low communication implementation was developed in
[15]. The basic algorithm proceeds as follows: assume n nodes
and m timesteps. The i-th node constructs a vector Yi of length
m, whose j-th entry is the volume of traffic at the j-th timestep at
the node. The health of the system is measured by aggregating the
n vectors Y1, ...Yn and computing their effective dimension, which
is the dimension of the lowest dimensional subspace, denoted F ,
which well-approximates all the Yi (typically, one demands that

n
∑

i=1
||PF (Yi)||2 ≥ (1− ε)

n
∑

i=1
||Yi||2, where PF is the projection oper-

ator onto F , and ε a small positive constant, typcially between 0.01
and 0.05). It is well-known that this dimension (denote it d) can
be calculated as follows: compute the matrix (denoted A) defined

by 1
n

n
∑

i=1
YiY t

i , compute A’s eigenvalues, ordered by size, λ1 ≥ λ2 ≥

...≥ λm, and find the smallest d such that λ 2
1 +...+λ 2

d
λ 2

1 +...+λ 2
m
≥ 1− ε . Note

that, in the terminology of Section 1, YiY t
i can be considered as the

attribute vector at the i-th node, and the decision on the health of
the system is reached by thresholding a function (the effective di-
mension) of their average. It remains to show that, generally, the
effective dimension is non-monotonic. As in Examples 1 and 2,
we demonstrate it with two cases. Let us look at the three matri-

ces

 1 0 0
0 0 0
0 0 0

,

 0 0 0
0 1 0
0 0 0

,

 0 0 0
0 0 0
0 0 1

. The effective

dimension of each is 1 (eigenvalues of each are 1,0,0) but the effec-
tive dimension of their average is 3 (eigenvalues are 1,1,1). To see
that the opposite may occur, assume that the i-th node holds e1 and
ei, where ek,k = 1...n are the vectors of the standard basis. Clearly
the effective dimension at each node is 2 (two eigenvalues are 1 and
the rest are zero). One of the eigenvectors of the global matrix A is
equal to 1, and the rest are equal to 1

n (the large eigenvalue is due to



e1, which is present in all nodes, and thus its eigenvalue is n times
larger than the ones corresponding to the other ei’s, which are only
present in a single node). Thus, the effective dimension tends to 1
as n increases (since the eigenvalues are squared and then added,
the total contribution of the small eigenvalues is of order 1

n ). To
summarize, the effective dimension of the average matrix can be
either larger or smaller than that of the local matrices, proving that
it is indeed non-monotonic.

Appendix III: Dominating Bound Theorem
Proof of Lemma 1:

PROOF. We start by observing the following properties of the
domination relationship: given three vectors ~v1, ~v2, and ~v3, where
~v1 dominates~v2, and~v2 dominates~v3:

1. The domination relationship is transitive, i.e,~v1 dominates~v3.
2. For any monotonic function f (), f (~v1)≥ f (~v2)≥ f (~v3).
3. The translation operation preserves the domination relation-

ship, i.e. given a constant vector~y,~v1 +~y dominates~v2 +~y.
4. Multiplication by a positive scalar preserves the domination

relationship, i.e, given α > 0, α~v1 dominates α~v2.
5. The distance between ~v1 and ~v3 is greater than the distance

between~v3 and~v2, i.e, ‖~v1−~v3‖> ‖~v2−~v3‖.
Given two objects oa and ob, where oa locally dominates ob at

the node pi (i.e,~xa,i dominates~xb,i), we make several observations.
It was required that ~vlower be dominated by all the local statistics
vectors, thus~xb,i dominates~vlower. Next, we examine B(~vlower,~xa,i)
and B(~vlower,~xb,i), the bounding spheres created for oa and ob. The

centers of these spheres are ~vlower+~xa,i
2 and ~vlower+~xb,i

2 respectively.
We denote these centers by ~ca,i and ~cb,i. According to (3) and (4)
above, ~ca,i dominates ~cb,i. In addition, the radius of the bounding
sphere created for oa is greater than the radius of the bounding
sphere created for ob (follows from (5) above).

Recall that u j,i, the tentative upper bound for an object o j, is the
maximum score received for the vectors in the object’s bounding
sphere, i.e, u j,i = max~v∈B(~vlower ,~x j,i)( f (~v)).

We claim that for any monotone scoring function f (), ua,i ≥ ub,i.
Let~z ∈ B(~vlower,~xb,i) be a vector such that f (~z) = ub,i, i.e,~z is the
vector in the bounding sphere defined for ob that maximizes the
scoring function f (). Now we show how to match~z with a vector
~z′ ∈ B(~vlower,~xa,i), such that ~z′ dominates ~z. Since ~z′ belongs to
B(~vlower,~xa,i), its score does not exceed ua,i, i.e, f (~z′)≤ ua,i.

Since ~z′ dominates~z, its score is equal or higher than the score
of~z, which is ub,i, i.e, ub,i ≤ f (~z′).

It follows that ua,i ≥ ub,i, as desired.
We match ~z′ to~z as follows: let δ (~z) be the offset of~z from the

center of the sphere, i.e, δ (~z) =~z−~cb,i. Then ~z′ =~ca,i +δ (~z).
Figure 8 illustrates the constructs described above. It depicts

the reference vector,~vlower (blue square), the local statistics vector
~xa,i for the object oa (green circle), and the vector ~xb,i for ob (red
circle). Note that ~xa,i dominates ~xb,i. The bounding spheres for
each object are depicted. The centers of the bounding spheres are
depicted by the green and red diamonds. The figure depicts a vector
~z that belongs to B(~vlower,~xb,i), and the corresponding vector ~z′ in
B(~vlower,~xa,i).

Note that since the radius of the bounding sphere for oa is larger
than the radius of the bounding sphere for ob, if~z belongs to
B(~vlower,~xb,i), then~z′ belongs to B(~vlower,~xa,i), as desired. In ad-
dition, note that we can express~z and ~z′ as follows: ~z =~cb,i +δ (~z)
and ~z′ =~ca,i +δ (~z).

Since ~ca,i dominates ~cb,i then ~z′ dominates~z, as desired. There-

Figure 8: Two local vectors~xa,i and~xb,i are depicted, such that
~xa,i dominates~xb,i. The tentative upper bound defined by~xa,i is
guaranteed not to be smaller than that defined by~xb,i.

fore, it follows that ua,i ≥ ub,i.

Proof of Theorem 1:
PROOF. Let~x j,i be the local statistics vector of object o j in node

pi. If o j ∈ Si, then by definition u j,i < τ . If o j /∈ S, then according
to the skyline definition, there exists an object ok, ok ∈ S, such that
~xk,i �~x j,i. Since u j,i ≤ uk,i (Lemma 1) and uk,i < τ , then u j,i <
τ .

Appendix IV: Proofs, Algorithms, and Concepts
Relating to Total Variation
Proof of Theorem 4:

PROOF. To generalize the computation of the total variation of
univariate functions to functions of two variables, we apply Green’s
Theorem, which states that for a domain D with boundary C, and
two functions P,Q, the following holds:∫ ∫

D

(
∂Q
∂x
− ∂P

∂y

)
=
∫

C
(Pdx+Qdy) . For any function f , we

then have
∫ ∫

D

∂ 2 f
∂x∂y

=
∫

C

∂ f
∂y

dy. Taking D to be the rectangle in

Figure 9a and C its boundary yields
∫ ∫

D

∂ 2 f
∂x∂y

= f (p1)+ f (p3)−

f (p2)− f (p4). Let us now look at a typical sum among the ones
which define the total variation of f over a rectangle S: | f (p5)−
f (p1)|+| f (p7)− f (p5)| (see Figure 9b). We have f (p5)− f (p1)=
[ f (p5) + f (p1)− f (p2)− f (p6)] + [ f (p2)− f (p1)]+ [ f (p6)−
f (p1)] =

∫ ∫
A

∂ 2 f
∂x∂y +

∫ p2
p1

∂ f
∂x +

∫ p6
p1

∂ f
∂y . Similarly, f (p7)− f (p5) =

[ f (p7)+ f (p5)− f (p8)− f (p4)]+[ f (p4)+ f (p2)− f (p5)− f (p3)]
+[ f (p8) + f (p6)− f (p5)− f (p9)] + [ f (p3)− f (p2)] + [ f (p9)−
f (p6)] =

∫ ∫
C

∂ 2 f
∂x∂y +

∫ ∫
B

∂ 2 f
∂x∂y +

∫ ∫
D

∂ 2 f
∂x∂y +

∫ p3
p2

∂ f
∂x +

∫ p9
p6

∂ f
∂y . Com-

bining these two identities and using the well-known inequality
|
∫

g| ≤
∫
|g| (which holds for every function g), as well as the tri-

angle inequality, yields that | f (p5)− f (p1)|+ | f (p7)− f (p5)| ≤∫ ∫
S |

∂ 2 f
∂x∂y |+

∫ p3
p1
| ∂ f

∂x |+
∫ p9

p1
| ∂ f

∂y |.

This can be extended to prove that this is an upper bound for the
total variation of f over S. Note the resemblance of this expression
to the bound of a univariate functions: in both cases the bound is
expressed as an integral over the absolute values of the derivatives
over the domain in which the total variation is computed. This idea
can be extended to higher dimensions.

Approximating the total variation
It may be that the integrals which need to be computed in Theorem
4 cannot be exactly evaluated. In this case, one can use a discrete



(a) (b)

Figure 9: Computing total variation of functions in two vari-
ables.

TOTALVARIATIONAPPROXIMATION( f ,px, py ,G):
// Init

G(x0,y0) = f (x0,y0)
FOR i = 1 TO N1 DO
G(xi,y0) = G(xi−1,y0)+ | f (xi,y0)− f (xi−1,y0)|

FOR j = 1 TO N2 DO
G(x0,y j) = G(x0,y j−1)+ | f (x0,y j)− f (x0,y j−1)|

// Compute G Values
FOR i = 1 TO N1 DO

FOR j = 1 TO N2 DO
val1 = G(xi−1,y j)+ | f (xi,y j)− f (xi−1,y j)|
val2 = G(xi,y j−1)+ | f (xi,y j)− f (xi,y j−1)|
G(xi,y j) = max(val1,val2)

DONE
DONE

RETURN G;

Figure 10: A dynamic programming algorithm to approximate
the total variation values.

approximation to the total variation. We now present a dynamic
programming algorithm that computes an approximate total varia-
tion value. We describe the solution for the two-dimensional case,
but it can easily be generalized to any dimension.

Given a function f (x,y) over the range [(ax,ay)..(bx,by)], we
want to approximate the value of
V (x,y)
(ax,ay)

( f )= supp∈P((ax,ay),(x,y))(V ( f , p)). Let px = {ax = x0≺ x1≺
...≺ xN1 = bx} be a partition of the x axis and py = {ay = y0 ≺ y1 ≺
...≺ yN2 = by} a partition of the y axis. Using these partitions, we
construct a grid, G = [px× py]. Using the dynamic programming
algorithm described in Figure 10, we approximate the total varia-
tion at each of G’s vertices (xi,y j). The computational complexity
is O(N1N2). As N1 and N2 increase, G’s values are closer to the
total variation; however, the computational complexity increases.
An example of the total variation of a two dimensional function
computed using the dynamic programming algorithm is provided
in Figure 11.

The class of functions of bounded variation
The family of functions of bounded variation is broad enough to
cover most, if not all, cases of practical interest. For example, ev-
ery function with bounded derivatives in a closed domain (e.g. a
closed box) is of bounded variation; this follows from Theorem 4.
The class of such functions covers, for examples, all multivariate
polynomials. This is especially important since, according to the
famous Stone-Weierstrass Theorem, every continuous function in
a closed and bounded domain can be arbitrarily approximated by
multivariate polynomials. Since the d.m. representation can rep-
resent any multivariate polynomial, it can arbitrarily approximate

Figure 11: The total variation of a multivariate function. Left:
function, right: total variation.

Figure 12: Left: a part of the graph of xsin( 1
x ). Right: the

graph on top (red) super-imposed with a polynomial approxi-
mation (green).

any continuous function – even if it is not of bounded variation.
Consider for example the function f (x) = xsin( 1

x ) over the inter-
val [0,1] (where f (0) is defined to be 0). This example embodies
the class of functions which may not be of bounded variation: such
functions must either be unbounded, or have an infinite number of
orientation changes, i.e. they have to “zigzag” an infinite number
of times; this is because the total variation is the sum of vertical dis-
placements the function’s graph makes. Moreover, the sum of the
magnitude of these “zigzags” must diverge to infinity. This hap-
pens in the case of xsin( 1

x ) since the sum of its vertical changes,
or “zigzags”, is equal to the harmonic series. We are not aware
of any function of practical interest which has this property. It’s
interesting to note that even this rather pathological example – be-
ing continuous – can be arbitrarily approximated by a polynomial,
hence, up to a an arbitrarily small error, it can be approximated by
a difference of monotonic functions (see Figure 12).

Lastly, let us note that continuity (and, of course, differentiabil-
ity) are not necessary conditions for bounded variation; for exam-
ple, every function which is piecewise continuous and with a finite
number of jump discontinuities is also of bounded variation.

Appendix V: Datasets and Monitored Functions
We used these datasets to construct four data collections:

QL-100 – we simulated data for a set of 100 nodes by splitting
the centralized query log in round robin fashion. Each node i con-
tained 360K vectors representing pairs of search terms A,B and
consisting of f i

A, f i
B, f i

AB, which denote the number of occurrences
of wordA, wordB, and wordA with wordB in the node. The goal
was to find the pairs of terms for which Pearson’s correlation co-
efficient exceeds a given threshold. Other numbers of nodes were
simulated (QL-5, QL-10, QL-25 and QL-50).

RC-50 – we partitioned the Reuters Corpus to 50 nodes, such
that each node contained 16,000 news stories. Each node contained
50K vectors, where the vector corresponding to a word-category



pair consisted of their local contingency table. The goal was to find
terms whose chi-square measure vis-a-vis the category “CCAT” ex-
ceeds a certain threshold. Other numbers of nodes were simulated
(RC-5, RC-10, RC-25, and RC-100).

RT-42 – we divided the Reuters Corpus into 42 partitions accord-
ing to the different categories (if a story was tagged as belonging to
more than one category, we randomly selected one of them). Each
partition simulated data held by one node. Each node contained 1M
vectors, each consisting of ( f i

A, f i
B, f i

AB), as in QL-100. We queried
for pairs of terms whose correlation exceeded a given threshold.
While the data in QL-100 and RC-50 is homogeneously distributed
among the nodes, the RT-42 data is inhomogeneous (data is ho-
mogeneous if an object’s local statistics vectors over the different
nodes have similar values). Other numbers of nodes were simulated
(RT-5, RT-10 and RT-25).

NX-100 – we divided the Netflix data to 100 nodes. Each node
consists of a set of randomly chosen users. Each node contained

2M vectors representing pairs of movies, where each vector corre-
spond to the number of viewers which rate each movie individually
and the number of viewers which rate both movies. Other numbers
of nodes were simulated (NX-10, NX-25 and NX-50).

Functions
The following functions were used in the experiments:

Pearson’s Correlation Coefficient – given objects A,B, Pearson’s
correlation coefficient estimates the relation between them. For
example, in the query log datasets, let f i

A( f i
B) be the number of

queries in node i containing term A(B), and f i
AB the number of

queries containing both A and B. The local statistics vector at the
ith node is~xAB,i = ( f i

A, f i
B, f i

AB). Pearson’s correlation coefficient is
ρ(~xAB) =

fAB− fA fB√
( fA− f 2

A)( fB− f 2
B)

, where~xAB = ( f A, fB, fAB) is the global

statistics vector.
Chi Square – please see Appendix II.


