
Applying Property Testing
to an Image Partitioning Problem

Igor Kleiner, Daniel Keren, Ilan Newman, and Oren Ben-Zwi

Abstract—Property testing is a rapidly growing field of research. Typically, a property testing algorithm proceeds by quickly

determining whether an input can satisfy some condition, under the assumption that most inputs do not satisfy it. If the input is “far”

from satisfying the condition, the algorithm is guaranteed to reject it with high probability. Applying this paradigm to image detection is

desirable since images are large objects and a lot of time can be saved by quickly rejecting images which are “far” from satisfying a

certain condition the user is interested in. Further, typically most inputs are, indeed, “far” from the sought images. We demonstrate this

by analyzing the problem of deciding whether a binary image can be partitioned according to a template represented by a rectangular

grid, and introduce a quick “rejector,” which tests an image extracted from the input image, but whose size, as well as the time required

to construct it, are constants which are independent of the input image size. With high probability, the rejector dismisses the inputs

which are “far” from the template.

Index Terms—Property testing, image partitioning.

Ç

1 INTRODUCTION

IMAGES are very large objects; therefore, it may take a great
deal of time to test whether a certain property holds for a

given image. In recent years, rejection-based algorithms were
introduced; they rely on the assumption that most input
images are quite “far” from the images which satisfy the
property and can be quickly rejected.

We suggest a rejection-based approach which follows the
paradigm of the rapidly growing field of property testing. A
typical property testing algorithm very quickly rejects all of
the inputs which are “far” from satisfying the sought
property. A trivial example is the following: We wish to
accept only images whose average gray level is in a certain
small interval. From simple probabilistic considerations, if
the average of a small random sample of pixels from an
image I is far from this interval, then—with a very high
probability—I’s average is also far from the interval.

Here, we address a more involved problem. Given an
image, we wish to determine whether it can be partitioned
into a rectangular grid such that its blocks approximately
conform to a given template. For example, both images in
Fig. 1 conform to the template represented by

0 1 1
0 1 0
1 0 1

0
@

1
A

(a definition of “conforming to a template” will be provided
in Section 4, but the idea is obvious).

This problem is highly nontrivial due to the very large
number of possible partitions. This type of problem is

important for image database search (for example, one may
wish to find all images in which there is sand at the bottom
and sea at the top). Such a partitioning is often a preliminary
step in content-based image retrieval (CBIR) and, more
specifically, region-based image retrieval (RBIR) [18].

Another reason for choosing this problem is the follow-
ing: We wish to demonstrate that property testing can be
applied to reduce a decision problem in computer vision to
a problem whose size is very small relative to the original
problem. For some tasks, such as face detection, one can try
to achieve such size reduction by using “representative
regions” (as in [17]), which, with high probability, can
be used to determine whether the image is a face or not. The
nature of the partitioning problem discussed here excludes
the existence of such regions because the partition lines can
be located anywhere in the image; hence, such regions (e.g.,
eyes) can be practically anywhere in the image and have to
be found first. We wish to demonstrate that, nonetheless,
the size of the problem can be reduced.

Let us emphasize that we are not suggesting an
algorithm to solve the partitioning problem, but only to
reduce its size so that the “small” problem will be—with high
probability—equivalent to the original problem. Specifi-
cally, we assume that an algorithm to answer queries about
the existence of a partition already exists, but that its running
time depends on the image size, and, when given an
arbitrary image I, we construct from it an image of constant
size I 0 such that the question of whether I can be partitioned
in a manner conforming to a given template can be reduced
to the question of whether the much smaller I 0 can be thus
partitioned.

For simplicity and conciseness, we assume that the
images are binary, but the analysis is general and can be
extended to gray level and color images.

1.1 Structure of the Paper

Next, we survey previous work (Section 2), and shortly
discuss property testing (Section 3). Some definitions are

256 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

. The authors are with the Department of Computer Science, University of
Haifa, Haifa 31905, Israel. E-mail: dkeren@cs.haifa.ac.il.

Manuscript received 6 May 2009; accepted 22 Oct. 2009; published online
19 Aug. 2010.
Recommended for acceptance by D. Forsyth.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2009-05-0282.
Digital Object Identifier no. 10.1109/TPAMI.2010.165.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

provided in Section 4. In Section 5, the problem is defined
and bounds on the sampling process derived. Section 6
includes the experimental results, and conclusions are
offered in Section 7.

2 PREVIOUS WORK

We are only aware of one paper, [12], which applies property
testing to images. In that paper, binary images are treated as
0� 1 matrices, and the following questions are solved:

. Is the set of dark pixels a half-plane (i.e., the set of all
pixels which lie above or below a straight line
passing through the image)?

. Is the set of dark pixels convex?

. Is the set of dark pixels connected?

These questions are settled with an error probability
smaller than 1

3 by testing the values of s sample pixels; s
does not depend on the size of the image but only on a user-
defined parameter �. The algorithm is guaranteed to accept
images which satisfy the condition (e.g., being a half-plane)
and to reject, with probability at least 2

3 , inputs which are
more than �-far from satisfying the condition (meaning that
the values of at least an � fraction of the pixels have to be
flipped for the condition to hold; a more formal definition is
provided in Section 3).

In [12], the conditions tested are rigid (e.g., even one
pixel of the wrong color can cause a set to not be a half-
plane). While such rigid conditions are usually easier to test,
this definition may turn out to be too restrictive for real
images due to noise or the presence of small objects of the
“wrong” color; in this paper, we allow a “softer” definition
(Section 4). Also, the allowable set of shapes we examine is
very large, and not restricted to connected shapes.

Lindenbaum [11] deals with the question of how much
data are required to recognize a rigid object in the presence
of clutter and assuming the object has undergone some
(e.g., affine) transformation. Our work differs in the fact that
the transformation is not rigid (the images in Fig. 1 are not
affinely equivalent) and in the general approach of using
the property testing paradigm.

In recent years, there has been growing interest in image
detection algorithms which are based on fast rejection. These
algorithms use the observation that, typically, most inputs
are far from satisfying the criteria for acceptance—e.g., in
the case of face detection, large input images are scanned to
see whether they contain faces—and most subimages are
very far from being a face. Rejection-based algorithms
usually employ a quick test (or a cascade of simple tests)
which rejects most input images. Some examples are [2], [9],
[14], [4], [8], [16], [15], [13].

The rejection-based approach shares some of the char-

acteristics of property testing, which is a relatively new

discipline within theoretical computer science [6], [5]. A

typical property testing algorithm distinguishes with a

certain probability (usually taken to be 2
3) between an input

with a certain property and an input which is “far” from

satisfying the property; the sample size and/or the

complexity depend on just how “far” it is. A more rigorous

definition follows.

3 PROPERTY TESTING AND REJECTION-BASED

ALGORITHMS

We now present a rather brief introduction to property

testing. For convenience, we replace the abstract notion of

an “object” by that of an image.
The distance between two n� n binary images I and J is

defined to be the number of pixels in which they differ. A

propertyP is defined as some condition(s) which an image I
can satisfy, in which case one also writes I 2 P. The distance

of an image I from the property is minfJ jJ2PgdðI ;J Þ, where

dðI ;J Þ is the distance between I and J . The relative distance

from I to P is the distance from P divided by the size of I .

This size will be assumed fixed hereafter, and for simplicity,

it will be assumed that all images are binary and of sizen� n.
An image is �-far from P if its relative distance to P is at

least � . A property is ðm; �Þ-testable if there is an algorithm

that for every input I queries at most m pixels and, with

probability at least 2
3 , distinguishes between images with

the property and images which are �-far from it.

One settles for the 2
3 factor because a constant number of

runs of the algorithm will reduce the error probability very

quickly. If the test is run l times and we choose to reject or

accept by a majority vote, an error can occur only if we err

more than l
2 times in total, but the probability for a single

error is � 1
3 . The probability of an error in the majority vote

is known, in this case, to be bounded by c1
expð�c2lÞffi

l
p for some

constants c1; c2, hence, it is of order expð��ðlÞÞ.

4 PRELIMINARIES

We now introduce some simple definitions relating to the

property of being close and far from a given k� k binary

partition.
Given an n� n binary matrix M (which represents an

image), the set of columns of M is denoted by Mc, and the

set of rows is denoted by Mr.

Definition 2.1. Given an n� n binary matrix M, a k-column

partition of M is a k-subset S ¼ f1 � s1; s2; . . . ; sk ¼ ng of

½n� ¼ f1; 2; . . . ; ng (assume s0 ¼ 0). A block Bi �Mc

(i 2 ½k�) is the set of the columns si�1 þ 1; si�1 þ 2; . . . ; si.

Define a k-rows partition in a similar manner.

Definition 2.2. Given an n� n binary matrix M, a k� k-

partition (hereafter called a partition) of M is the intersection

of a k-column partition with a k-rows partition. The block Bi;j

of the partition is the intersection of the block Bi of the

columns partition with the block Bj of the rows partition.

KLEINER ET AL.: APPLYING PROPERTY TESTING TO AN IMAGE PARTITIONING PROBLEM 257

Fig. 1. Two images which conform to the same template.

Definition 2.3. Given an n� n binary matrix M and a k� k
binary matrix T called a template (usually k� n), we say
that T represents M if there is a k� k-partition of M to
monochromatic blocks (blocks which have all entries in M with
the same value), where every block Bi;j in M has the same
value as Ti;j.

We note here that while the definition of “monochro-
matic” appears to be restrictive, it can be modified to, e.g.,
“having all gray levels between 80 and 90,” without making
any change in the algorithm, but we will stick with the
simple definition as it is easier to follow. The second item in
Section 7 briefly deals with more general treatment of gray-
level images.

When dealing with real images, it is reasonable to relax
Definition 2.3 by the following:

Definition 2.4. Given an n� n binary matrix M, a k� k
template T , and a k� k-partition PT of M, PT is �-close to
T if no more than �jBi;jj pixels of every block Bi;j in PT can be
flipped, with the result being a partition satisfying Defini-
tion 2.3. Otherwise, we say that PT is �-far from T .

Definition 2.5. Given an n� n binary matrix M and a k� k
template T , we say that T is �-close to representing M if there
is a k� k-partition PT of M, where PT is �-close to T .
Otherwise, we say that T is �-far from representing M.

It is reasonable to bound the minimal size of a block from
below (else even one pixel will be considered a legitimate
block, which clearly does not make sense). This motivates
the following definition:

Definition 2.6. Given an n� n binary matrix M and a
parameter 0 < � < 1, a partition PT of M is called a
�-partition (or legal partition) if every block in PT is of
size at least �n� �n.

Definition 2.7. Given an n� n binary matrix M and a k� k
template T , we say that T is ð�; �Þ-close to representing M if
there is a k� k �-partition of M which is �-close to T .
Otherwise, we say that T is ð�; �Þ-far from representing M.

Hereafter, we assume � is fixed and deals only with
�-partitions, so we will use �-close(far) instead of ð�; �Þ-
close(far). Also, we will usually drop the “close to repre-
sent...” and just say that M is close(far) from T .

5 PROBLEM DEFINITION AND ANALYSIS

Now, we can formalize the requirements from the algorithm:
Given an n� n binary input imageM, a k� k template T ,

and three parameters, � < � and �, the output of the
algorithm should be the following:

. If T is �-close to M, the algorithm accepts with
probability at least 2

3 .
. If T is �-far from M, the algorithm rejects with

probability at least 2
3 .

Typically, � will be determined by the user as it controls
how much the sought images can deviate from the given
template. However, � is a parameter that controls how
many images will be rejected quickly versus the time and

space complexity of the rejection stage. More on this in
Sections 5.1.6, 5.1.7, and 6.

The algorithm commences by constructing a t� t
image M 0, which is much smaller than M (t will depend
only on �, �, and �, and not on n, the size of M). The quick
rejection stage searches for a partition of M 0, which is
constructed as follows: First, we sample independently at
random r pixels from M (where r does not depend on n
either; both r and twill be determined in Section 5). Then,M
is partitioned by a uniform t� t grid to a collection of cells C,
each of which contains n

t � n
t pixels of M. Then, the ði; jÞ

entry of M 0 is defined to be a pair ðs; wÞ, where w is the
number of samples which fell in the ði; jÞ cell of C and s is the
number of 1s among them. Fig. 2 depicts a schematic
description of how M 0 is constructed. Note that the time
required to construct M 0 is a constant, independent of the
size of M (as opposed to standard resolution reduction,
which smooths an image and then subsamples it; this yields
a small image, but the time required to construct it is
proportional to the size of M).

As is evident from the definition and Fig. 2, the pixels of
the constant-size image M 0 are not 0 or 1, but have two
parameters each (the total number of samples which fell in
the respective cell and the number of 1s among them). But,
for the partitioning problem, this makes no difference; all
we need to know is the percentage of 0s in a certain region,
and that is trivial to compute from the pixels of M 0.

It remains to choose the values of r and t. We achieve this
by first computing the probability that the quick rejection
stage fails, and then we proceed to set r and t so that this
probability is below 1

3 .

5.1 Analysis

We split the analysis into two cases: first, assume M is �-far
from T , then assume M is �-close to T . We show in both
cases that the error probability is less than 1

3 .

5.1.1 Outline

Define �0 ¼ 9�þ�
10 . In Sections 5.1.2 to 5.1.4, we will prove that

for a suitable choice of t and r; if M is �-close to a template T ,
then, with probability � 2

3 , M 0 is not �
0
-far from T , and that if

258 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 2. Schematic description of the construction of M 0 given M for the
case n

t ¼ 3. The randomly sampled pixels are marked by a red X. The
square outlined by the green edges represents the extent of M 0

1;1, so
M 0

1;1 ¼ ð2; 3Þ.

M is �-far from T , then, with probability � 2
3 , M 0 is �0-far

from T (hereafter we will usually assume T is fixed and use

�-close(far) instead of �-close(far) to T).
Therefore, �0 serves as a threshold value, which separates

between �-far and �-close inputs (see Fig. 3). We want that, with

high enough probability, if the input n� n image M is �-far,

then the constant-size image built from it, M 0, will be �0-far;

and that ifM is �-close, then, with high enough probability,M 0

will not be �
0
-far. After this goal is obtained, the algorithm

proceeds as follows: GivenM, sample from it to constructM 0.

If M 0 is �0-far, cast M away (remember that we are interested

only in �-close inputs and, with high probability, these do not

become �0-far). If M 0 is not �0-far, then M passed the

“quick rejection stage,” and it has to be tested to see whether

it is �-close. This test can be lengthy since it is performed on the

large input imageM; our goal is to choose a good value for � so

that not too manyMs will pass the quick rejection stage. As �

gets closer to �, fewerMs will pass this stage—but, as we will

see in Section 5.1.4, the closer � gets to �, the largerM 0 becomes

and the more pixels have to be sampled.
What about images that are neither �-close nor �-far?

These images lie in a “gray zone” and we cannot predict

whether they will pass the quick rejection stage or not. The

idea—common in both property testing and quick rejection

methods developed for image detection—is to choose a � so

that most input images will be �-far; this being possible

since most input images are far from conforming to the

template. We’ll get back to the question of choosing � in

Sections 5.1.6 and 5.1.7.
Why is �0 chosen to be 9�þ�

10 ? First, note that due to the

sampling process, we have to relax the �-far condition, and

indeed �0 < �. Other values between � and � are possible

(more on this in Section 5.1.4).

5.1.2 Far

First, we assume M is �-far and show that the algorithm

rejects with probability at least 2
3 .

Let Blocks be the set of all legal blocks in M 0 (a block is

legal iff each of its sides is at least a portion � of the entire

image—see Definition 2.6). A simple upper bound is

jBlocksj � t4. We denote by #samb the number of samples

in a block b.
In order to obtain the required bounds, we have to

demand that a minimal number of samples fall in each legal

block. The expected value of the number of samples in the

smallest possible block is �2r (recall that there are r samples

altogether). We demand that, with high probability, every

block will contain at least �2r
2 samples, denoting � ¼ �2r

2 . A

sample in which each block has at least � samples is called

“good,” else it is called “bad.”
We union bound the probability for a bad sample by

summing over all possible blocks to obtain:

Prðbad sampleÞ �
X

b2Blocks
Prð#samb � �Þ

¼
X

b2Blocks
Prð#samb � 2� � �Þ:

Applying Chernoff’s inequality [3] (we use the form PrðX <

ð1� �ÞEðXÞÞ < expð� �2EðXÞ
2 Þ, and note that the expectation

for the number of samples in the smallest possible block is

2�) yields:

Prðbad sampleÞ � t4e��2r=8: ð1Þ

Next, we assume that the original image M is �-far, and

prove that if enough samples are taken, the constant-size

image M 0 is with high probability �0-far. This is an

important result from a practical point of view since it

guarantees that it is enough to slightly relax the condition

KLEINER ET AL.: APPLYING PROPERTY TESTING TO AN IMAGE PARTITIONING PROBLEM 259

Fig. 3. A schematic description of the approach. �-far and �-close inputs are separated by whether the constant-size images constructed from them
are, with high probability, �

0
-far or not. We do not know what happens when the input is neither �-far nor �-close; the idea is to choose �, so that not

many such images exist (Sections 5.1.6, 5.1.7).

for an input image to be far, in order to guarantee that the

constant-size image built from it will also be far—and the

assumption is that the large majority of inputs are indeed

far; this assumption is borne out in practice (Section 5.1.7).
To bound the probability that M 0 is �0-far, note that every

legal partition of M has at least one �-far block. Every
partition of M 0 induces a partition of M. To obtain the
bound, we will use only one �-far block in this induced
partition and assume that only � samples fell in it (clearly,
these two assumptions can only increase the probability
since � is a lower bound on the number of block samples in
a “good” sample).

Using Chernoff’s inequality again, the probability that

there will be no more than a ratio of �0 “bad pixels” in the

sampled block is bounded as follows:

Prð#ðbadpixelsÞ � ��0Þ

¼ Pr #ðbadpixelsÞ � �� � �ð� � �Þ
10

� �

¼ Pr #ðbadpixelsÞ � �� 1� � � �
10�

� �� �

� exp � 1

2

�2r�

2

� � �
10�

� �2
 !

;

this has to be multiplied by t4 (to account for all blocks),

yielding the bound

t4 exp � 1

2

�2r�

2

� � �
10�

� �2
 !

: ð2Þ

5.1.3 Close

Next, we bound the probability that an �-close M will yield a
�0-far M 0. In Fig. 4, let the dark lines denote an �-close

partition P of M, and let the red lines be those of a t� t
“coarse” partition (that is, a partition of M 0), which are the
closest from above (left) to the horizontal (vertical) lines of
P (�1;�2 denote the distances between the lines).
Obviously, �1;�2 � � ¼ n

t . Let us look at a block of this

coarse partition, shaded in blue. One may verify that the
percentage of “bad” pixels in it is bounded from above by

�ð�nÞ2 þ�1ð�2 þ �nÞ þ�2ð�1 þ �nÞ
ð�n��þ�1Þð�n��þ�2Þ

ð3Þ

(recall that the original block, bounded by the dark lines,
has a ratio of at most � “bad” pixels. Assume that the
rectangular regions added to it contain only “bad” pixels,
and that its area was the smallest possible, i.e., �ð�nÞ2. The
expression in (3) is therefore an upper bound on the
percentage of “bad” pixels in the block).

Clearly, the expression in (3) is bounded from above by

�ð�nÞ2 þ 2�ð�þ �nÞ
ð�n��Þ2

: ð4Þ

Define the size of the small image,M 0, to be t ¼ 5
�ð���Þ , yielding

� ¼ n
t ¼

�nð���Þ
5 . Then, the bound in (4) assumes the form

�þ 2ð���Þ
5

�
1þ ���

5

�
�
1� ���

5

�2
: ð5Þ

A lengthy exercise involving some inequalities and calculus
(which will be omitted) proves that the expression of (5) is
bounded from above by 8�þ2�

10 (recall that, obviously, we
assume � > �).

So, we proved that the expectation of the percentage of
“bad” pixels in a block of the coarse image is no more than
8�þ2�

10 . To bound the probability that the percentage in the
sample from the block exceeds �0 ¼ 9�þ�

10 , we again use a
Chernoff bound to obtain (after multiplying by the number
of blocks, k2), that this probability is bounded by

k2 Prð#ðbadpixelsÞ � ��0Þ

¼ k2 Pr #ðbadpixelsÞ � �
2r

2

9� þ �
10

� �� �

¼ k2 Pr #ðbadpixelsÞ � �
2r

2

8� þ 2�

10

� �
9� þ �
8� þ 2�

� �� �

¼ k2 Pr #ðbadpixelsÞ � �
2r

2

8� þ 2�

10

� �
1þ � � �

8� þ 2�

� �� �

� k2 exp � �
2r

120

ð� � �Þ2

4� þ �

 !

ð6Þ

(this bound was obtained by the upper tail bound

PrðX > ð1þ �ÞEðXÞÞ < expð� �2EðXÞ
3 Þ, which is correct, for

0 � � � 1 [7]).
Note that all the bounds (1), (2), (6) do not depend on n,

the size of the original image. Intuitively, this is due to the
fact that the property, we are testing, does not depend on n
either, but only on the parameters k; �; �; �.

5.1.4 Values for t and r

Given �, we choose t, the size of M 0, and the number of
sampled pixels r, so as to ascertain that the probability that
M is �-far and M 0 is not �0-far, and the probability that M is
�-close and M 0 is �0-far, are both smaller than 1

3 (as indicated
earlier, to render these probabilities small to an arbitrary
degree, we run the tests l times, resulting in error

260 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 4. A schematic description for the analysis in Section 5.1.3.

probabilities of expð��ðlÞÞ; therefore, a constant number of

runs reduces the error probability by an exponential factor).

Since the bounds were derived under the assumption that

the sample is “good,” we demand that the bound in (1) be

smaller than 1
6 , and we demand the same for the bounds in

(2) and (6). Altogether, this yields the following require-

ments, obtained by extracting r from the inequalities

defined by demanding that the expressions in (1), (2), (6)

are smaller than 1
6 :

t ¼ 5

�ð� � �Þ ;

r >
8cþ 32 logðtÞ

�2
;

r >
400½cþ 4 logðtÞ��

�2ð� � �Þ2
;

r >
120½cþ 2 logðkÞ�ð4� þ �Þ

�2ð� � �Þ2
;

where c ¼ logð6Þ:

ð7Þ

As noted, the size of M 0 and the number of samples used to

construct it do not depend at all on the size of the original

image M. They do increase as the template size k increases,

and as the relative length/width of the smallest allowable

blocks �, and the difference � � �, decrease. As � approaches

�, it is harder to distinguish �-close images from �-far images.
One can use the derivations presented here to construct

other bounds; for example, taking �0 to be closer to �, or

taking t to be larger (say, 10
���) will reduce the number of

samples. The optimal choice of bounds depends on what

the user prefers (the tradeoff between smaller M 0 versus

more samples), and the probability of a random image to be

�-far from the template. We touch on this formidable

question in Sections 5.1.6, 5.1.7.

5.1.5 A Closer Look at the Bounds

In this section, we look at some typical values of the error
probability bounds. There are three possible types of errors:

. Small sample error (1): The sample does not have
enough pixels in each M

0
block in order to satisfy the

assumptions guaranteeing the correctness of the next
two bounds.

. False positive error (2): M is �-far but M
0

is not �0-far.
. False negative error (6): M is �-close but M

0
is �0-far.

In Section 5.1.4, we provided bounds for t (the size of M 0)
and r (the number of samples from M used to construct
M 0). These bounds guarantee that all three probabilities are
smaller than 1

6 , thus the overall probability for false
negatives/positives is smaller than 1

3 . However, for typical
values of the problem parameters (k; �; �; �), at least one of
the bounds is usually much smaller than 1

6 ; hence, the actual
error probabilities are small, and so it is usually not
required to run many tests before reaching a decision about
the input image. It also allows a simple and efficient
algorithm, based on cascading the value of the user-
determined parameter �, to quickly and accurately reject
inputs, which are far. Before describing this algorithm,
some examples of the three bounds, for fixed input
parameters k; �; � and varying values of �, are presented
in Fig. 5 (the rationale behind choosing � as the varying
parameter is that it is chosen by the user). Note that the real
values of the bounds can be easily calculated for each set of
parameters, using (1), (2), and (6).

5.1.6 Cascading the Value of �

As demonstrated in Fig. 5, for large values of �, the type of
error we want to prevent—false negatives—is very small.
This suggests the following algorithm: Start with a large �0

(e.g., 0.9). Recalling that a larger � results in a smaller t (the

KLEINER ET AL.: APPLYING PROPERTY TESTING TO AN IMAGE PARTITIONING PROBLEM 261

(a) (b)

Fig. 5. (a) Plots of false negative error (green) and false positive error (red) for k ¼ 5, � ¼ 0:05, � ¼ 0:1, and � between 0.1 and 0.9. (b) The same
as,(a) for k ¼ 4, � ¼ 0:2, � ¼ 0:1, and � between 0.2 and 0.9. In both cases, and for all values of �, small sample error was much smaller than both of
the plotted error probabilities, never exceeding 10�12.

first of (7)), this step can be performed quickly, since the
main bottleneck for testing M 0 is its size t. All of the images
which have passed the initial value �0 are tested with a
smaller value, �1, and so on. Input images which do not
conform to the template T will be gradually discarded,
with those farther from T (�-far for larger �) being rejected
in earlier stages, at a lower computational cost; also, the
probability that this process erroneously discards images
which match the template is exceedingly small. A greater
computational effort must be dedicated to images which
have made it through more stages of the cascade since t
will then be larger; however, as we empirically demon-
strate in Section 5.1.7, only a very small fraction of images
make it through.

In order to determine the efficiency of the cascade
algorithm, we need to know what percentage of the inputs
will be rejected for each value of �. Note that this question
hardly depends on the value of the user-supplied � since the
algorithm is designed to reject images which are �0-far,
where �0 ¼ 9�þ�

10 ; clearly, �0 is barely influenced by �.

5.1.7 Percentage of Natural Images which are �-far from

a Given Template

In this section, we empirically test, for various values of �
and a few templates T , the percentage of natural images
which are �-far from T . Knowledge of this percentage
allows us to design the �-cascade described in Section 5.1.6
and to estimate the running time.

The question, therefore, is: For a given template T and
values of � and �, what percentage of inputs are �-far from T
(when only �-partitions are considered)? The answer can
possibly be estimated from work on the distribution of
natural images [10], [19], but it is beyond the scope of this
paper. Instead, we calculated it in some test cases. The
results computed for 5,000 binary images (some of which
are depicted in Fig. 7) are presented in Fig. 6.

As the results demonstrate, candidates for the more
“complicated” pattern are easier to reject than candidates

for the simpler pattern. The reason for this is clear—there

are more images, which are close to a “simple” pattern than

to a “complicated” one. Last, note that the large majority of

input images are rejected quickly, requiring a very small

amount of computation.

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

0
BB@

1
CCAðleftÞ and

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

0
BB@

1
CCAðrightÞ

Horizontal axis represents �, vertical is percentage.

Green is for � ¼ 0:05, red is � ¼ 0:1, and black is � ¼ 0:15.

Note that, for the more “complicated” template on the right,

a higher percentage of natural images are farther from it

and, hence, will be rejected quickly.

262 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 6. Plots of the percentage of binary images which are �-far from the template.

Fig. 7. Some of images used to compute the empirical statistics of the
quick rejection rate.

6 EXPERIMENTS

In order to test the compatibility of the theoretical analysis

with real images, we ran tests on 5,000 binary images, all of

which were larger than 1;000� 1;000 pixels (average

number of pixels was 2:43 	 106), and compared the results

to those obtained on the subsampled, constant-size images.

6.1 Experimental Setup

In order to ascertain the correctness of the experiments, the

testing was “brute force”: In order to test whether an image

conforms to a given k� k template, we checked all possible

partitions of the image to a k� k grid. It is intractable to

actually go through all partitions (for example, for k ¼ 4

and � ¼ 0:1, a 1;000� 1;000 image has about 2:5 	 1021 legal

partitions, from a total of 1024 partitions). The computa-

tional complexity, however, can be reduced by observing

that, given a partition and a block which is �-far from the

appropriate block in the template, it is possible to provide a

simple lower bound on how far the block will become after

one of its partition lines is translated: If the original block’s

area was A and � of its pixels (that is, �A) were of the wrong

color, then, if its area is increased by B, at least �A
AþB pixels in

the new block will also be of the wrong color. Thus, not all

partitions should be checked. However, the computational

burden for large images is still very high. We used two

strong servers and a PC cluster for the experiments. The

cascade algorithm for successive rejection (Section 5.1.6)

was used, with � starting at a value of 0.9 and being reduced

by 0.1 at every stage. The following templates were tested,

with various values of � and �:

A ¼
1 1 1

1 1 0

1 0 0

0
B@

1
CA; B ¼

0 1 1

0 1 0

1 0 1

0
B@

1
CA; C ¼

1 1 1 1

1 1 1 1

1 1 0 0

1 0 0 0

0
BBB@

1
CCCA;

D ¼

1 1 1 1

1 1 0 1

1 0 0 1

0 0 0 0

0
BBB@

1
CCCA; E ¼

1 1 0 1 1

1 1 0 1 0

1 0 0 1 1

0 1 0 0 0

0 0 1 0 1

0
BBBBBB@

1
CCCCCCA
:

6.2 Results

Since input images which make it through all stages of
the cascade rejector are rigorously tested (that is, not the
reduced image, but the image itself is checked against the
template), no “false positives” are possible in this final
testing stage. This could be modified—e.g., we can decide to
reject an image with a parameter � by testing a � which is
very close to �—but that is not a crucial difference since
such images, according to the first of (7), will be rather large
anyway, and testing them does not save a great deal of
computation versus testing the original. The error percen-
tage of this heuristic depends on the size of the “gray zone”
(Fig. 3 and discussion in Section 5.1.1) of images, which are
not �-close nor �-far.

Thus, the correctness is measured by the number of
“false negatives,” that is, images M which are �-close to the
template but for which the reduced-size image M

0
is

rejected for some �.
As noted in Section 5.1.5, the probability for such “false

negatives” is very low for large �, and is bounded by 1
6 for

smaller values of � when only a very small percentage of
images remain (since small sample error is very small for
typical parameter values). This allows us to run the testing
stage for small � a few (e.g., five) times, reducing the
probability of error to ð16Þ

5 ¼ 1:28 	 10�4 without significantly
affecting the overall running time. Also, 1

6 is a theoretical
bound, computed assuming a worst- case scenario (that all
of the “missed area” in the proof in Section 5.1.3 is of the
wrong color). The “false negative” probability is therefore
very small, and false negatives were not encountered in any
of the experiments we ran.

6.3 Further Reducing the Size of M 0

Since using the image size t and sample complexity r of (7)
yielded no errors, a natural question is: How much “slack”
is present in the bounds for r and t? Especially, can t be
reduced while maintaining fidelity? To test this, we ran
experiments not only with the value of t as given in (7), but
also with smaller values, and checked the results against the
ground truth. The results for the templates B;D;E are
presented in Tables 1, 2, and 3 for some values of � and �.
Each table entry contains the percentage of input images
which conform to the template, but were erroneously
classified as negative, for values of t which are 0:8t0 (left),
0:6t0 (center), and 0:4t0 (right), where t0 is the theoretical
bound. Recall that there were no such misclassifications for
the correct t ¼ t0 value.

KLEINER ET AL.: APPLYING PROPERTY TESTING TO AN IMAGE PARTITIONING PROBLEM 263

TABLE 1
Ratios of False Negatives for Values of t Smaller than t0, the Bound in (7)

Each entry contains the result for 0:8t0 (left), 0:6t0 (center) and 0:4t0 (right).

As these results indicate, the algorithm performs with

reasonable accuracy for reduced images whose sizes are

smaller than the theoretical bound. The accuracy decreases

when the template size k increases, when the minimal block

area decreases, and most importantly, when the factor by

which the theoretical bound is reduced decreases. Still, at a

value of only 40 percent of the theoretical bound, the

accuracy is reasonable. In Fig. 8, an example of a

misclassified image is provided.

7 SOME POSSIBLE EXTENSIONS

. 3D data: All of the definitions and theorems in this
paper can be immediately extended to 3D data (such
as medical images and video spatiotemporal slabs).
The only modification of the bounds in (7) is that the
power of � will be 3 instead of 2, and that the

coefficients of logðtÞ will be multiplied by a factor of
3
2 (since there are now t6 possible blocks).

. Grey-level images: The treatment of gray-level images

proceeds much like for the binary case. One can use

the Hoeffding-Azuma inequality [1], which is better

suited to a continuous and bounded domain. For

example, one may define a partition of a gray-level

image as one in which the average of a certain block

is bounded in some interval, and the probability that

this condition holds needs to be approximated from

a small sample. The following form of the Hoeffd-

ing-Azuma inequality can be used, where Xi are the

grey-levels of the samples: If X1 . . .Xn are random

variables bounded by B, then Prð
Pn

i¼1 Xi � LÞ �
expð�L2

2nB2Þ (a further condition is that distinct X0is be

uncorrelated, but this can be achieved by normal-

izing them to zero mean). Thus, if B is a hypothetical

bound on the gray-levels of the block, its validity can

be tested by the above inequality, proceeding along

similar lines as for binary images.
. More general shapes or partitions: Dealing with more

general partitions—for example, by allowing parti-
tioning lines which are not straight—can be dealt
with in much the same way as in this work since it is
area-based; the shapes of the regions do not make a
real difference.

8 CONCLUSIONS AND FUTURE RESEARCH

We presented a sampling scheme based on the idea of

property testing that can be used to reduce the decision

whether an input image of arbitrary size conforms to a

certain template to the same decision for an image whose

size depends only on the size of the template, the area of the

264 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

TABLE 2
The Same as Table 1, for a 4� 4 Template

TABLE 3
The Same as Table 1, for a 5� 5 Template

Fig. 8. An image, which conforms to template D (� ¼ 0:2; � ¼ 0:15) but

which failed the test for the value of t which is 0.4 of the theoretical

bound.

minimal partition block allowed, and a measure of

correspondence with the template—not on the input size.

Extensive experiments were carried out to test the validity

of the method and the tightness of the bound on the

reduced-size images. A simple cascade algorithm was

presented which very quickly rejects inputs that are farther

away from the template.
Future work will address extending the testing scheme to

more general cases (Section 7), as well as applying property

testing to other computer vision problems.

ACKNOWLEDGMENTS

This paper greatly benefited from the comments and

corrections of four anonymous reviewers. This research

was supported by Israel Science Foundation grants 1011/06

and 1220/04, and Israel Ministry of Science grant 3/3422.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method. John Wiley and
Sons, 2000.

[2] S. Baker and S.K. Nayar, “Pattern Rejection,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 544-549, 1996.

[3] H. Chernoff, “A Measure of Asymptotic Efficiency for Tests of a
Hypothesis Based on the Sum of Observations,” Annals of Math.
Statistics, vol. 23, pp. 493-507, 1952.

[4] M. Elad, Y. Hel Or, and R. Keshet, “Rejection Based Classifier
for Face Detection,” Pattern Recognition Letters, vol. 23, no. 12,
pp. 1459-1471, Oct. 2002.

[5] E. Fischer, “The Art of Uninformed Decisions: A Primer to
Property Testing,” Bull. European Assoc. for Theoretical Computer
Science, Computational Complexity Column, vol. 75, pp. 97-126,
2001.

[6] O. Goldreich, S. Goldwasser, and D. Ron, “Property Testing and
Its Connection to Learning and Approximation,” J. ACM, vol. 45,
pp. 653-750, 1998.

[7] T. Hagerup and C. Rueb, “A Guided Tour of Chernoff Bounds,”
Information Processing Letters, vol. 33, no. 6, pp. 305-308, 1990.

[8] Y. Hel-Or and H. Hel-Or, “Real-Time Pattern Matching Using
Projection Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.

[9] D. Keren, M. Osadchy, and C. Gotsman, “Antifaces: A Novel, Fast
Method for Image Detection,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 7, pp. 747-761, July 2001.

[10] A.B. Lee, K.S. Pedersen, and D. Mumford, “The Nonlinear
Statistics of High-Contrast Patches in Natural Images,” Int’l
J. Computer Vision, vol. 54, nos. 1-3, pp. 83-103, Aug. 2003.

[11] M. Lindenbaum, “An Integrated Model for Evaluating the
Amount of Data Required for Reliable Recognition,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 19, no. 11, pp. 1251-
1264, Nov. 1997.

[12] S. Raskhodnikova, “Approximate Testing of Visual Properties,”
Proc. Sixth Int’l Workshop Approximation Algorithms for Combinator-
ial Optimization Problems, pp. 370-381, 2003.

[13] M. Ratsch, G. Teschke, S. Romdhani, and T. Vetter, “Wavelet
Frame Accelerated Reduced Support Vector Machines,” IEEE
Trans. Image Processing, vol. 17, no. 12, pp. 2456-2464, Dec. 2008.

[14] S. Romdhani, P. Torr, B. Schoelkopf, and A. Blake, “Efficient Face
Detection by a Cascaded Support-Vector,” Proc. Royal Soc. London,
vol. 460, no. 2501, pp. 3283-3297, 2004.

[15] H. Sahbi and D. Geman, “A Hierarchy of Support Vector
Machines for Pattern Detection,” J. Machine Learning Research,
vol. 7, pp. 2087-2123, 2006.

[16] J. Sun, J.M. Rehg, and A.F. Bobick, “Automatic Cascade Training
with Perturbation Bias,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, vol. 2, pp. 276-283, 2004.

[17] P. Viola and M.J. Jones, “Robust Real-Time Face Detection,” Int’l J.
Computer Vision, vol. 57, no. 2, pp. 137-154, May 2004.

[18] J. Vogel and B. Schiele, “Semantic Modeling of Natural Scenes for
Content-Based Image Retrieval,” Int’l J. Computer Vision, vol. 72,
no. 2, pp. 133-157, Apr. 2007.

[19] Y. Weiss and W.T. Freeman, “What Makes a Good Model of
Natural Images?” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 1-8, 2007.

Igor Kleiner is a PhD candidate under the
supervision of Professors Ilan Newman and Yuri
Rabinovich in the Computer Science Depart-
ment at the University of Haifa. His research
interests include finite metric spaces and image
processing.

Daniel Keren received the PhD degree from the Hebrew University in
1991, and then spent three years as a postdoctoral researcher at Brown
University. Since then, he has been with the Computer Science
Department at the University of Haifa. His main research interests
include computer vision, regularization, and monitoring of large-scale
distributed systems.

Ilan Newman received the BSc and MSc
degrees from the Technion and the PhD degree
from the Computer Science Department at the
Hebrew University in 1992. He has been with the
faculty at the University of Haifa since 1992. His
current research interests include finite metric
embeddings, combinatorial algorithms, property
testing, and computational complexity.

Oren Ben-Zwi is a PhD candidate under the supervision of professor
Ilan Newman in the Computer Science Department at the University of
Haifa. His research interests include algorithmic game theory, property
testing, combinatorics, and theory of computer science.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KLEINER ET AL.: APPLYING PROPERTY TESTING TO AN IMAGE PARTITIONING PROBLEM 265

