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A Rejection-Based Method for Event Detection in Video
Margarita Osadchy and Daniel Keren

Abstract—This paper offers a natural extension of the newly in-
troduced “anti-face” method to event detection, in both the gray-
level and feature domains. For the gray-level domain, spatio-tem-
poral templates are created by stacking the individual frames of the
video sequence, and the detection is performed on these templates.
In order to recognize the motion of features in a video sequence,
the spatial locations of the features are modulated in time, thus
creating a one-dimensional vector which represents the event in
the detection process. The following applications are presented: 1)
detection of an object under three-dimensional (3-D) rotations in a
video sequence simulated from the COIL database; 2) visual recog-
nition of spoken words; and 3) recognition of two-dimensional and
3-D sketched curves. The technique is capable of detecting 3-D
curves in viewing directions which substantially differ from those
in the training set. The resulting detection algorithm is very fast
and can successfully detect events even in very low resolution. Also,
it is capable of discriminating the desired event from arbitrary
events, and not only from those in a negative training set. Possible
applications of the techniques offered in this paper are in man–ma-
chine interaction, surveillance, and search and summarization in
video databases.

Index Terms—Event detection, rejectors, visual speech recogni-
tion.

I. INTRODUCTION

WE PRESENT in this paper a new approach to event de-
tection which is fast and robust under geometric trans-

formations, variation in the time duration of an event, and low
resolution of images.

A recently proposed detection method, anti-faces [14], is
shown to be very effective in the case of rich image collections
which contain images under different geometric transforma-
tions such as scale, rotations, and projective distortions. Here
we extend the method to image sequences. Consequently,
the event detection method inherits the speed and robustness
to geometrical distortions, which are the strongest features
of anti-faces. We show that the temporal domain can be
incorporated into anti-faces scheme as a third dimension. This
implies that the extended method will be also robust to scale
changes in time (different time durations). Specifically, change
of speed (duration) in a time sequence can be seen as an affine
transformation in three dimensions: .
Since the anti-face method works well for two-dimensional
(2-D) affine transformation, it is reasonable to assume that its
extension performs well for three-dimensional (3-D) affine
transformations.
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The algorithm proceeds by stacking the individual frames into
spatio-temporal templates, and the detection is performed on
these templates. The detection is done by applying detectors
which are designed to yield small results on the sought event
and large results on a “random” event. The detectors have the
added bonus that they act in an independent manner, so that their
false alarms are uncorrelated; consequently, the percentage of
false alarms exponentially decreases in the number of detectors.
This leads to a very fast detection algorithm, requiring only a
small number of convolutions between the detectors and video
sequence (viewed as vectors).

The proposed algorithm is able to discriminate the desired
event from arbitrary “natural” sequences, and the “nonevents”
are not restricted to a small predetermined training set of neg-
ative examples. This greatly simplifies the computation of the
detectors—no database of negative examples is required—and
also makes the detection more general.

We present three examples of applications that demonstrate
a wide applicability of the proposed method. First, we show a
synthetic example of rotating objects which demonstrates that,
given a proper training, our method is robust to rotation, scale,
and speed of the event. By proper training we mean that the
training set must homogeneously sample the sought class of
events. For example, if we want to detect variations in scale,
samples from the desired range of scales should be present in
the training set. As a result, the size of the training set will grow
with the complexity of the class. However, the efficiency of the
detectors is hardly affected by the complexity of the class. This
was shown empirically in [14] by comparing the performance of
the anti-faces with the eigenface method [25] on image classes
of increasing complexity (different geometrical distortions). Ex-
perience has shown that, while the dimension of the face space
in the eigenface method increased rapidly with the class com-
plexity, there was almost no change in number of anti-face de-
tectors required for correct detection.

The next experiment shows an application for visual speech
recognition, which demonstrates that, even using low-resolu-
tion images, the proposed method is capable of discriminating a
given word from very similar words. The last example is a fea-
ture-based application where we recognize the motion of fea-
tures in a video sequence.

A. Previous Work

It is commonly accepted to divide the area of event de-
tection into two parts: human action recognition and general
motion-based recognition. Most of the approaches for under-
standing human actions require the existence of features which
can be extracted from each frame of the image sequence, and
then action recognition is performed on those features. Some of
these techniques construct a 3-D body model [24], [10], [13],
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Fig. 1. Stacking frames. The sought event is represented by the sequence of
video frames extending from I to I .

[27], [29], and some compute image measurements and apply
temporal models to interpret the results [16], [12], [21], [3], [5].

Other related work focuses on direct motion recognition
[28], [19], [6], [1], [8]. One of the interesting recently proposed
venues of research is the modeling of actions by basic flow
fields, estimated by principal component analysis (PCA) from
training sequences [1], [2]. The obvious difficulty with such
an approach is that computing optical flow is nonrobust, which
can affect recognition results. This is remedied by introducing
robust estimation techniques.

The research proposed in [17] for lip reading is relevant to our
approach, as it also uses frame stacks. The sequence of images
of a spoken letter was taken as a 3-D template, where the third
dimension is time. The authors extended the eigenface tech-
nique [25] to detect sequences of spoken letters.

The lip reading task was also studied in [4], [9], [11], [15],
and [18]. Most of the techniques extract some features of the
mouth area from each frame and then perform recognition by
matching.

Another attempt to unify the spatial and temporal domains
is offered in [6]. A “motion-history image” (MHI), which rep-
resents the motion at the corresponding spatial location in an
image sequence, is built. This image captures only motion-re-
lated information. As mentioned by the authors, the weakness of
such a technique is that in some cases it cannot discriminate be-
tween different motion directions, for instance, arm-waving in
opposite directions. Another drawback is that the approach will
fail in the case of motion with self-occlusion. In later work [7],
the recognition framework was modified by computing local
motion fields from the original MHI using a gradient-based mo-
tion pyramid and then characterizing an action by a polar his-
togram of motion orientations.

II. EVENT DETECTION IN VIDEO: THE GRAY-LEVEL DOMAIN

A naive approach for event detection is to perform object
detection in each frame and then classify the object’s motion.
Due to low resolution of the video, illumination variability, and
self-occlusion, this trivial solution may be limited. In addition,
in event detection we are interested more in information ex-
isting “between the frames” than in the individual frames. Hence
we use an entire sequence corresponding to the sought event
as a 3-D template (Fig. 1) where two dimensions are spatial
and the third dimension is temporal. For technical simplicity
hereafter, we shall view such a template as a vector of size

.

A. Motivation

The recently proposed anti-face method [14] builds on the
observation that natural images are usually smooth, in a sense
that most of their energy is concentrated in the low frequencies.
The same principle applies to video sequences: when viewed as
a vector, the frame stack will usually be smooth. This follows
from the fact that the change in natural video sequences is
gradual; therefore, the function describing the variation in the
temporal domain is smooth, as are the individual frames. As
was formally proved in [14], the absolute value of the inner
product of two smooth vectors is, on the average, large.
We use this result to discriminate between a given event and
“random” events. We build a set of filters (that we shall call
detectors) that are smooth, thus their inner product with a
random natural sequence of images will be large on average.
We also require from the detectors to yield small inner products
(hence “anti-sequences”) with the events from the training set,
in opposite to the large response that they yield for a “random”
event. This provides a good discrimination between the positive
class and any other event—not only negative examples.

More formally, if is a candidate for a detector to the class
(collection of events that should be detected), suppose that

not only is small for , but also that is smooth.
Then, if , there is a high probability that will
be large; this allows us to reject , that is, determine that it is
not a member of . Thus, a candidate event will be rejected
if, for some detector , is larger than some -specific
threshold.

B. Computing the Detectors

To find the first anti-sequence detector, , the following op-
timization problem should be solved (here we assume that is
a training set):

1) is of unit norm.
2) should be small for every image stack in .

Note that every input is also normalized for the condition
to make sense.

3) should be as smooth as possible under the first and
second constraints.

As was shown in [14], a commonly used image smoothness
measure transformed to a frequency domain
becomes a diagonal operator as follows:

(1)

where are the discrete cosine transform (DCT) coeffi-
cients of an image . In [14], (1) was used as a smoothness
constraint for the detectors. We extend this constraint to image
sequences by adding the third dimension associated with time;
consequently, the smoothness constraint for the event detector

becomes

(2)

where index is associated with the temporal domain,
is the 3-D DCT transform of , and is a scale factor adjusting
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spatial and temporal “speeds.” It was chosen so that the average
of the absolute values of derivative in time is equal to the average
of the absolute values of derivative in the spatial domain.

Since vectors are normalized to unit length, it is obvious
that, by minimizing , we force the dominant values of the
DCT transform to concentrate in the small values
of — n other words, we make the detector smooth.

The solution for the optimization problem defined above
proceeds as follows. First, choose an appropriate value for

; experience has taught us that it doesn’t matter

much which value is used, as long as it is substantially smaller
than the absolute value of the inner product of two random
sequences. Next, minimize

(3)

and, using a binary search on , set it so that .

We have used the Nelder–Mead method [20] for the optimiza-
tion. The optimization is performed in the 3D DCT domain, and
the inverse 3-D DCT of the optimum is the desired detector (note
that the detection itself is carried out directly on the grey levels;
the DCT domain is used only in the offline computation of the
detectors).

There is a computational problem in the training stage, since
stacking video frames results in very high dimensional vectors.
Stacking one second of video with 25 fps and frame resolution
of 100 60 produces a vector of dimension 150 000. One of the
solutions is to compute only low frequencies of the detectors
and pad the rest with zeros. However, once the detectors are
recovered, their application is very fast.

C. Independent Detectors

Usually, a single detector is not sufficient to detect a given
event with no false alarms; hence we apply several detectors
which act independently, as was first proposed in [14]. Note
that anti-face detectors are indeed independent under the as-
sumption (made in [14]) that natural images behave according
to Boltzman distribution which assigns higher probabilities to
smoother images as follows:

(4)

From (1) and (4), it follows that the DCT coefficients of are
independent random Gaussian variables. Thus, if and are
detectors, then and are also Gaussian
random variables; this implies that if they are uncorrelated

(5)

then they are also independent. As was shown in [14], (5) results
in the following condition:

(6)

where and are the DCT coefficients of image detectors
and .

Since the smoothness assumption holds also for natural se-
quences,1 we can extend the independence condition in (6) to
video by adding temporal domain as a third dimension as fol-
lows:

(7)

where and are the 3-D DCT coefficients of and .
After is found, it is straightforward to recover ; the only

difference is the additional condition in (7), and it is easy to in-
corporate this condition into the optimization scheme. The other
detectors are found in a similar manner.

D. Detection Process

The detection process is very simple: an image sequence is
classified as a given event, if and only if (iff) the absolute value
of its inner product with each detector is smaller than some
(detector specific) threshold. Only sequences which passed the
threshold test imposed by the first detector are examined by
the second detector, etc. Typically, the threshold was chosen as
twice the maximum over the absolute values of the inner prod-
ucts of the given detector with the members of a training set for

. This factor of two allows detection not only of the members
of the training set, but also sequences which are close to them.

The resulting detection algorithm is very fast; typically,
operations are required to classify a sequence of

pixels (when viewed as a vector), where .

III. FEATURE-BASED EVENT DETECTION

The idea of frame stacking can also be applied to detect ac-
tions characterized by the movement of features (here, we used
it to recognize symbols outlined by a laser pointer, and the fea-
ture was the pointers’ image in any given frame). Each feature
moving in a video sequence produces a curve ( ) in
the spatio-temporal domain, which we shall call an “activity
curve.” The activity curve contains more than the geometric
structure of the curve—it is also characterized by the speed and
direction in which a point moves on the curve. Extracting the
spatial positions of a feature in each frame and combining them
to a single vector allows to apply the anti-sequence method to
detection.

First, the sequence of triplets ( ) has to be con-
verted to functions of one variable . The simplest method
is to define the detection of an event as the detection of both

and . However, this simple approach is susceptible
to symmetries in the spatio-temporal domain. For example, let
us look at the case of a circle drawn counterclockwise; then,

, . In the case of clockwise rotation,
, . Since the classification is based

on the absolute values of inner products between the detectors
and the templates, it will not be able to discriminate between a
counterclockwise and a clockwise drawn circle. To remedy this
problem, we modulate and by . For example, we can

1By “natural sequences” we mean video sequences which, on the average,
vary smoothly in space and time; this covers the very large majority of sequences
which are of practical importance.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 4, APRIL 2004 537

Fig. 2. COIL subset used in rotation sequence test.

define the corresponding curves as and (this is
done, of course, both in the training and detection stages).

IV. EXPERIMENTAL RESULTS

The following applications are studied: object rotation, visual
speech recognition, and recognition of sketches outlined by a
laser pointer. In all tests, the detection was very robust; on the
average, there was a difference by a factor of more than ten in the
detectors’ response on the positive versus negative examples.

A. COIL Rotation Sequences

Two sets of experiments are presented. For the first test, we
took 20 objects (Fig. 2) from the well-known COIL database2

and simulated three types of video sequences: clockwise and
counterclockwise rotation, and static. Then, for each object we
built anti-sequences that discriminate clockwise rotation from
other activities of the same object or other objects. The COIL
database captures the objects in 5 rotation intervals. We created
a training set from sequences of length five, capturing clockwise
rotation with a 1– phase between the sequences. For example,
the first sequence consists of the respective object in 0 , 5 , 10 ,
15 , and 20 angles; the second extends from 10 to 30 , and
so on. In total, the training set included 35 sequences for each
object. The test sequences for clockwise rotation were also cre-
ated with a 10 phase between the sequences, but they started
with 5 , then 15 , and so on. The counterclockwise rotation and
static sequences of the same object were created with 5 phase.
Hence, the experiment included 289 sequences, all of them dis-
joint from the training set. Ten anti-sequences were sufficient
to discriminate the clockwise rotation of each object from the
counterclockwise rotation of the same object and from any ac-
tivity of the other items of the COIL database, with no misclas-
sifications. The method produced 1% of false positives in static
sequences. The reason for this is the short duration of the rota-
tion sequences, since some of the objects hardly change during
some of the sequences.

2Available. [Online]. http://www.cs.columbia.edu/CAVE/research/softlib/
coil-100.html

Fig. 3. Scale difference between different sequences.

Fig. 4. Anti-faces failed to discriminate between these similar objects,
however, anti-sequences were able to discriminate between them.

The proposed method was applied to detect rotations in a
wide range of velocities, extending from 5 to 20 between
frames, with 4.8% of false alarms. This result demonstrates that
the anti-sequence method is robust to variations in the event’s
duration. We should also mention that some of the tested ob-
jects change their scale a lot between the different sequences
(see Fig. 3). However, the proposed method was able to handle
both rotations and scales.

The next experiment was performed in order to compare the
anti-sequence approach (viewed as an object detector) with anti-
faces [14] applied to individual frames. The anti-face method
required three to six detectors to discriminate an object from
dissimilar items. To distinguish between the similar objects it
usually required ten detectors, but it failed to discriminate be-
tween the objects in Fig. 4.

This experiment demonstrates that anti-sequences work well
not only as event detectors, but they can also enhance object
detection, which proves that the frame-stacking approach
is more robust than what can be achieved by analyzing the
individual frames. That is, applying anti-sequences as object
detectors yields better results than applying object detection in
all the individual frames.

In the second set of experiments, we addressed a more gen-
eral problem: locate all instances of a particular object (a cup),
performing clockwise rotation in the video sequence including
the same cup performing rotations in both directions, a static
cup, and several similar static and rotating objects. In this ex-
periment, the search was performed in both the spatial and tem-
poral dimensions. Fig. 5 shows fragments of the test sequence
with the detection results marked by a white square around the
detected image region. Six anti-sequences for the cup (Fig. 6)
were sufficient to correctly detect its clockwise rotation.

B. Visual Speech Recognition

Next, we tested anti-sequences in recognition of spoken
words. We captured 23 sequences of the word “psychology,”
uttered by a single speaker. Ten of them were used as a
training set to generate the anti-sequences. The 13 remaining
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Fig. 5. Fragment from the test sequence. Detection results for the five-frame
sequences of clockwise cup rotation. The white squares mark the beginning of
the detected sequences.

Fig. 6. First three cup anti-sequences. Note the smoothness in the spatial and
temporal domains.

sequences and 20 other words were used in the recognition test.
The acquired sequences had slight variations in global head
movements and changes in the duration of the articulation.
To reduce these undesirable variations, spatial alignment of
the mouth position (see Section IV-B1) and time warping
(see Section IV-B2) of the sequences were performed in the
preprocessing step. Note that we used time warping because
the training set contained only ten sequences, which are not
enough to capture variability in articulation. However, we
expect that a larger training set will allow for the removal of the
time warping step from the algorithm. One of the “psychology”
sequences was chosen as a reference (Fig. 7), and all of the test
sequences were aligned and warped against it. The resulting
sequences contained 26 images downsized and cropped to
24 16 pixels and centered around the lips. Since the mouth is
symmetric in the direction, we used only half of the images.

1) Spatial Alignment: Individual frames were aligned
against the first frame of the reference sequence by extracting
distinct features on the face and warping the frames by a
corresponding rigid transformation. The features were the tip
of the nose and two areas in the forehead; these were chosen as
they do not change much while the person is talking.

2) Temporal Warping: Temporal warping was performed in
the same way as described in [17]. The algorithm is based on
the dynamic programming algorithm of Sakoe and Chiba [22].

Let be the reference sequence with size , and let be
an input sequence with size that should be warped to size

Fig. 7. Reference sequence for the word “psychology.”

Fig. 8. The word “crocodile” warped to the length of the reference sequence.

Fig. 9. The word “psychological” warped to the length of the reference
sequence.

. The warping algorithm uses the DP-equation in symmetric
form with a slope constraint of 1 as follows:

where is the distance from the th element
of the sequence to the th element of the sequence . The
initial conditions are

for

The minimal argument chosen for the calculation of at the
point ( ) defines the path from the previous point to the current
one, thus creating a path from (1,1) to ( ). Each point on the
path indicates which frames from the input sequence match to
frames in the reference sequence. In the case of two frames from
the input sequence matching to one frame in the reference se-
quence, they are averaged to create a single frame. If one frame
from the input sequence matches two frames from the reference
sequence, it is duplicated. At the end of this process, the input
sequences are warped to the size of the reference sequence.

3) Results: The experiment’s goal was to recognize the
word “psychology” in a test set that contained 13 instances
of “psychology” which did not appear in the training set
and 20 other words. The words tested for recognition were:
“crocodile,” “dinosaur,” “encyclopedia,” “transform,” “in-
tegrable,” “associative.” “homomorphism,” “leadership,”
“differential,” “deodorant,” “commutative,” “anthropology,”
“trigonometry,” “psychological,” “anthology,” “astrology,”
“cardiology,” “dermatology,” “genealogy,” and “university.”
We have chosen the words such that some of them are totally
different from “psychology” (like “crocodile” in Fig. 8), one
word is very similar (“psychological” in Fig. 9), and the others
have the same suffix (“ology”) like the sought word (Fig. 10
shows the word “anthology”).

Three anti-sequences (Fig. 11) sufficed to recognize all in-
stances of “psychology” in the test set, with no misclassifica-
tions.
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Fig. 10. The word “anthology” warped to the length of the reference sequence.

Fig. 11. First anti-sequence (of three) for the word “psychology.” Since the
mouth is symmetric, the anti-sequence frames are half the size of the images.

Fig. 12. (a) One of the “infinity” sequences used for training, (b) and (c)
Schematic drawings of the infinity symbol traversed in two different directions.
(d) The symbol�, one of the negative test examples. (e) A curve used for testing
the detection scheme.

C. Symbol/Sketch Detection

This experiment concerned recognition of sketched symbols,
and the results can also be applied to gesture detection. Var-
ious symbols were outlined with a laser pointer on a white back-
ground, and the process was captured on video. Then, the sym-
bols were segmented from the background, and linear interpo-
lation was applied in order to normalize them in space and time,
which yielded a representation of each symbol as a vector with
200 points. Anti-sequence detectors were then constructed and
applied to the one-dimensional vectors. The sought symbol was
the infinity sign drawn at a certain order, shown in Fig. 12(b).
The test set contained this symbol as well as the infinity sign
drawn in a different direction, and other symbols (Fig. 12): ,

, , circle, square, and the digits 6, 8, 9. Two detectors suf-
ficed to correctly detect the sought sketch with no false alarms,
in all 50 tests performed. As shown in Fig. 11(a), detection was
robust under both local and global deformations in the curve,
which result from it being outlined by hand. Such deformations
pose considerable difficulty for recognition methods which use
differential invariants, as they are very susceptible to local dis-
tortions.

D. Sketch Detection in Three Dimensions

So far, we have discussed detection in which the training set
contained sequences which approximate the sought sequence.

Fig. 13. Two basis views for the curve in Fig. 12.

Fig. 14. Three of the curve views that were detected by the algorithm.

In some cases, this assumption does not hold. Consider, for
example, the problem of recognizing a sketched symbol which
is 3-D (i.e., unlike the infinity symbol in Section IV-C, the
sketch is not confined to a plane). This problem may arise, for
example, in gesture detection; a certain feature, such as the tip
of a finger, may outline a nonplanar curve. Suppose also that we
do not know the angle from which the sketch was photographed.
In principle, this problem could be alleviated by preparing a
very large training set, which includes a dense sampling of the
viewing sphere. However, this is very time consuming. The
method presented here allows to detect different views using
only a very small number of samples, by using the fact that a
small number of views (basis views) span the entire view space.
If a detector has a small inner product with these basis views,
it will also have a small inner product with sequences that are
spanned by them. Hence these sequences will also be detected.

The basic result we rely on appears in [26], where it is proved
that for a transparent object in three dimensions, the and co-
ordinates of all views can be expressed as a linear combination
of two basis views. If a detector is suitable for these views, it will
also detect other views (unless they are taken at angles in which
the projection of the object is highly singular). In order to apply
the method, corresponding points have to be chosen between the
candidate view and the basis views. This was achieved by nor-
malizing the curves to the same length, and using 200 evenly
distributed points in both curves as the pairs of corresponding
points. Since Euclidean length is not preserved between two
projections of the same curve, we have used a measure of length
which is invariant to affine transformations [23]. This was suf-
ficient for a rather wide range of viewing angles.

We have tested these assumptions on the 3-D curve which is
depicted in Fig. 12. The curve was sketched with a laser pointer
on a curved piece of cardboard. The process was filmed by a
video camera, and the curve’s points were extracted from the
individual frames (note that, as before, the curve has an order
and rate of traversing associated with it). The two basis views are
depicted in Fig. 13. The process was repeated with the camera
positioned at other angles, and some of the resulting sketches
which were detected are depicted in Fig. 14. In Fig. 15, some
curves from the negative test set are shown.

Three detectors were required to successfully detect all the
views of the curve in Fig. 12 that were tested, against ten other
curves (negative examples), three of which are depicted in
Fig. 15. To demonstrate the nature of the detection process,
we have included in Fig. 16 the results of applying the first
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Fig. 15. Three curves from the negative test set.

(a) (b)

Fig. 16. Results of applying the (a) first and (b) second detectors to ten views of the sought activity curve (results depicted in gray) and the negative example
in Fig. 15, center (results depicted in black). The hrizontal axis stands for view number, and the vertical axis for detector’s output, scaled by 1000. While each
detector admits one false alarm, the intersection of the sets of curves admitted by each of them successfully separates all of the views of the sought curve from all
of the negative example’s views.

two detectors to ten views of the sought curve, compared
with the results for ten views of one of the negative examples
(center curve in Fig. 15). Note that there is one false alarm
for each detector (views 6, left, and 5, right), for which the
corresponding detector yielded a small result, but no negative
example passed the combined test of the two detectors. The
threshold (scaled to the proportions in Fig. 16) was 8.0.

V. CONCLUSION

The “anti-face” method was extended to the time domain and
used to detect events in video sequences. The algorithm was
tested on sequences of rotating objects, and it was demonstrated
that detection is more successful than separate detection in each
frame and that it can detect rotations over a wide range of ve-
locities. Another example was the detection of spoken words in
a video sequence; the algorithm performed well, although the
resolution was very low. The set of negative examples was not
restricted, and contained words similar to the sought word. The
algorithm was also applied to detect “activity curves”, which
correspond to sketched symbols in two and three dimensions.
Using two “basis views,” it was possible to successfully detect
sketches in views that substantially differ from the training set
views.

Future research will concentrate on expanding the method to
detect “generic” activity (e.g., walking people).
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