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Abstract

This paper focuses on the detection of objects with a Lambertian surface under varying

illumination and pose. We offer to apply a novel detection method that proceeds by modeling

the different illuminations from a small number of images in a training set; this automatically

voids the illumination effects, allowing fast illumination invariant detection, without having to

create a large training set. It is demonstrated that the method ‘‘fits in’’ nicely with previous

work about modeling the set of object appearances under varying illumination. In the exper-

iments, an object was correctly detected under image plane rotations in a 45� range, and a wide

variety of different illuminations, even when significant shadows were present.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Slight changes in pose and illumination produce large changes in object appear-

ance. Recognition of objects under various classes of geometric transformations or

under varying viewpoints was previously studied in [9,16,19,20]. However, these

methods offer no solution for the problem of illumination variability, which has a
qAn earlier version of this work was presented in the ICCV-2001 conference.
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Fig. 1. Variability in appearance due to differences in illumination (the images are from Harvard face

database).
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very strong effect on the appearance of an object. Fig. 1 shows two images of a per-

son with the same facial expression and photographed from the same viewpoint.

There is a significant variability in these two images due to differences in illumina-

tion. In fact, it has been observed [12] that in face recognition, the variability due

to illumination is often greater than that due to a change in the person�s identity.

On the other hand, changes in viewpoint also have a dramatic effect on the object

appearance. Variation in both illumination and pose results in a complex image

set with a very high linear dimension.
In this paper we use the observations from [3] and the anti-face method [9] to de-

tect 3D objects under varying illumination and pose. The anti-face method offers an

attractive solution, which proceeds by modeling the effects of different illumination

conditions in the training set; this automatically voids the illumination effects, allow-

ing fast illumination invariant detection, without having to create a large training set.

The following applications are presented:

1. Detection of an object with a Lambertian surface under varying pose and illumi-

nation, without shadows.
2. Detection of an object with a Lambertian surface under varying pose and illumi-

nation, with attached shadows.

In the first case, the detection was successful for a rather large class of different

poses (360� rotation). In the second case, the existence of shadows results in a con-

siderably more complicated image collection, however the algorithm was still able to

correctly detect objects under a 45� rotation range. These results compare favorably

to previous work, in which detection over a wide range of pose variation was

achieved by individually applying illumination cones to 4� 4 degree patches [5].
Theoretically, the algorithm requires that the object be convex, in order to exclude

cast shadows. However, good results were obtained for a non-convex object, when

significant cast shadows were not present.

1.1. Structure of the paper

Section 1.2 surveys the relatedwork on illumination variability. Section 2 focuses on

applying the anti-face method to the illumination space and illumination cone, and
presents the algorithms mentioned above. In Section 3, a Taylor series approximation
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of rotated images is used to decrease the size of the training set, and Section 4

presents the experimental results.

1.2. Previous work

Appearance-based methods can recognize an object under a particular pose and

lighting, if it has been previously seen under similar circumstances: see for example

[14]. To extend these methods to handle illumination variability, a large set of images

of the object under varying illumination should be used for the learning stage, which

is inefficient [13]. Hence it is very popular to represent the set of images that an object

produces under varying illumination using a low-dimensional linear subspace. In

particular, the image space of a 3D Lambertian surface under changing illumination,

without attached shadows, is spanned by a basis of three images [2,7,11,15,18,21,23].
Koenderink and Van Doorn [10] extended these results to allow an ambient compo-

nent, resulting in a 4D space. The ambient light problem was also considered in [22].

Belhumeur and Kriegman [3] demonstrated that all object appearances produced by

illumination changes including attached shadows (without cast shadows) are de-

scribed by a convex cone which is represented by three images. This representation

was used by Georghiades et al. [6] for object recognition and then extended to var-

iation in pose [5]. In this method each ‘‘cone’’ models a 4� 4 degree patch of the vis-

ibility sphere, hence recognition under a large variability in pose is accomplished by
calculating the distance to each cone, which is more computationally expensive than

our approach. Another attempt to find a low-dimensional representation of the im-

age space that a Lambertian object can produce due to illumination was proposed by

Basri and Jacobs [1] and Ramamoorthi and Hanrahan [17]. They show analytically

that illumination variability for a Lambertian object can be very closely approxi-

mated by a 9D linear subspace. This result has been used in face recognition. Jacobs

et al. [8] proposed a simple local measure of image comparison based on the gradient

of image ratio. This measure performed well for face recognition under varying illu-
mination. It is important to mention that this method does not require a training set;

it uses only a single image. Chen et al. [4] extended this work by using image gradient

distribution for developing illumination insensitive measure of image comparison.

This new measure produced better results on the same face database.
2. Illumination invariant detection

In this section we show that unlike other learning techniques, the anti-face meth-

od [9] requires only a small number of training images in order to recognize an object

under different lighting conditions, and it offers a very fast detection algorithm.

2.1. Anti-faces short overview

Anti-faces [9] is a novel detection method, which works well in case of a rich image

collection—for instance, frontal face under a large class of linear transformations,
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or 3D objects under different viewpoints. Call the collection of images, which should

be detected, a multi-template. The detection problem is solved by sequentially apply-

ing very simple filters (or detectors), which act as inner products with a given image

(viewed as a vector) and satisfy the following conditions:

1. The absolute values of their inner product with multi-template images are small.
2. They are smooth, which results in the absolute values of their inner product with

‘‘random images’’ being large; this is the characteristic which enables the detectors

to separate the multi-template from random images.

3. They act in an independent manner, which implies that their false alarms are not

correlated; hence, the false alarm rate decreases exponentially in the number of

detectors.

The detection process is very simple: the image is classified as a member of the

multi-template iff the absolute value of its inner product with each detector is smaller
than some (detector specific) threshold. Only images which passed the threshold test

imposed by the first detector are examined by the second detector, etc. This, in turn,

leads to a very fast detection algorithm. Typically, ð1þ dÞN operations are required

to classify an N-pixel image, where d < 0:5.
The anti-face method classifies an image as belonging to the sought image collec-

tion (or the multi-template) iff its inner products with certain detectors are small.

Hence, if this collection can be described by linear combinations with small coeffi-

cients of a small number of basis images, the anti-face method can be trained only
on the basis elements, resulting in a very efficient algorithm. This makes it a natural

candidate to use for detection under varying illumination.
2.2. The illumination model

The following observations [3,7,15,21] allow to model object appearance under a

wide range of illuminations, instead of physically creating them. The following dis-

cussion draws from [3].

Consider a convex object with a Lambertian reflectance function, which is illumi-

nated by a single point light source at infinity. Let B 2 Rn�3 be a matrix where each

row is the product of the albedo with the inward pointing unit normal for a point on

the surface corresponding to a particular pixel in the image viewed as a vector of size
n. Let s 2 R3 denote the product of the light source intensity with the unit vector in

the direction of the light source. The resulting image x 2 Rn is then given by
x ¼ maxðB � s; 0Þ: ð1Þ

The pixels set to zero correspond to surface points lying in an attached shadow.

Convexity of the object is assumed to avoid cast shadows. When no part of the object

is shadowed, x lies in a 3D subspace L, called the illumination space, given by the span
of the matrix B:
L ¼ fxjx ¼ B � s 8s 2 R3g: ð2Þ

Hence the illumination subspace can be constructed from just three basis images

[7,15,21]. It was shown in [3] that the set C of all possible images of a convex
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Lambertian surface, created by varying the direction and strength of an arbitrary

number of point light sources at infinity, can be represented as follows:
C ¼ xjx
(

¼
Xk

i¼1

maxðB � si; 0Þ 8si 2 R3; 8k 2 Zþ

)
ð3Þ
and C is a convex cone in Rn. Furthermore, it was shown in [3] that any image in the

cone C can be represented as a convex combination of extreme rays given by
xij ¼ maxðB � sij; 0Þ; ð4Þ

where
sij ¼ bi � bj; i 6¼ j; ð5Þ

where bi and bj range over the rows of B. It was proved in [3] that the number of

shadowing configurations is at most mðm� 1Þ þ 2, where m6 n is the number of

distinct normals, hence there are at most mðm� 1Þ extreme rays. Since there is a

finite number of extreme rays, the cone is polyhedral.

The illumination subspace method [6] offers a way to construct the illumination

cone. Gather three or more images of the object (with a fixed pose) under varying
illumination without shadowing, and use these images to estimate the 3D illumina-

tion subspace L by normalizing the images to unit length, and then using singular

value decomposition (SVD) to estimate the optimal 3D orthogonal basis B� in a least

square sense. It was proved in [3] that B� is sufficient for determining the subspace L.
Then from B�. the extreme rays defining the illumination cone C can be computed

using Eqs. (4) and (5).
2.3. Application of the anti-face method to illumination invariant detection

To extend anti-faces to handle illumination variability we should find a small

number of ‘‘basis images’’ and corresponding smooth detectors [9] such that:

(A) After normalization, the different object appearances can all be represented as

linear combinations of the basis images, with small combination coefficients.

(B) The detectors have small inner products with the basis images. Because of (A),

they will also have small inner products with all the object appearances. This will

be formalized in Proposition 2.1.
The following observations [3] support condition (A). Consider a convex object

with a Lambertian reflectance function.

• When no part of the object is shadowed, its image lies in the 3D subspace

L given by the span of the matrix B; L can be constructed from three basis

images.

• The set of images under an arbitrary number of point light sources at infinity is a

convex polyhedral cone in Rn, which can be expressed as a convex combination of

extreme rays.
In order to satisfy these conditions, let us first analyze the positive set of the anti-

face detector (that is, the set of images accepted by the detector).
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Assume that the training set consists of orthonormal vectors. This assumption is

feasible, because we can replace the original training set with the vectors produced by

the following process:

1. Perform singular value decomposition (SVD) on the original training set.

2. Take the eigenvectors that correspond to the eigenvalues with 99% of the energy.
This process also speeds up the computation of the anti-face detectors, as it

reduces the size of the training set.

Proposition 2.1. Let fvigki¼1 be the orthonormal basis produced by SVD from the
normalized training set. Let d be an anti-face detector, such that jðd; viÞj6 �i

8i ¼ 1; . . . ; k. Then for each v ¼
Pk

i¼1 aivi, which satisfies jjvjj ¼ 1, jðd; vÞj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 �
2
i

q
.

Proof.
1 ¼ jvj2 ¼
Xk

i¼1

Xk

j¼1

aiajvtivj ¼
Xk

i¼1

a2i
and
jðd; vÞj ¼
Xk

i¼1

aiðd; viÞ
�����

�����6
Xk

i¼1

jaiðd; viÞj ¼
Xk

i¼1

jaijjðd; viÞj6
Xk

i¼1

jaij�i:
From the Cauchy–Schwarz inequality it follows that
Xk

i¼1

jaij�i 6

ffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

a2i

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

�2i

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

�2i

vuut
�

From Proposition 2.1 it follows that if the three basis images for the illumination

subspace are used as a training set for the detector, it will detect the entire illumina-

tion subspace if the threshold is properly chosen.

As was previously mentioned, the illumination cone can be represented by linear

combinations of the vectors xij (Eq. (4)) with non-negative coefficients. In practice

the extreme rays of the illumination cone lie near a low-dimensional linear subspace.

This observation was theoretically justified by Basri and Jacobs [1] and Ramamoor-

thi and Hanrahan [17] for convex objects. Thus from the last observation and
Proposition 2.1, it follow that if the detector is trained on the basis vectors of the

low-dimensional subspace that approximates the illumination cone, it will detect

the illumination cone, if the threshold is correctly chosen.

2.4. Detection under varying pose and illumination (without shadows)

We showed in the previous section that if we want to detect an object under fixed

pose using anti-faces, we should train the detector on the three basis images for
the illumination subspace, and this will allow to detect all images that lie in this
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subspace. This method can be easily extended to different poses, by training the de-

tector on a linear subspace that contains the basis images for illumination subspaces

that correspond to all training poses. The following pseudo code describes the algo-

rithm for detection of a convex object under varying illumination and pose, when no

part of the object is shadowed.
1. Find the three basis images for illumination subspace for every sample of object

positions:

(i) Gather three or more images of the object under varying illumination without

shadowing.

(ii) Normalize the images to unit length, apply SVD, and take the three eigenvec-

tors that correspond to the largest eigenvalues.

(Steps 1 will produce 3M images where M is a number of training poses).

2. Replace the training set. containing 3M images produced in the previous step by
the eigenvectors fvigki¼1 that correspond to the eigenvalues which capture 99% of

the energy. (Obviously k depends on the dimension of this linear subspace.)

3. Find anti-face detectors using the new training set.

4. For each detector d, choose the threshold as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 �

2
i

q
, where jðd; viÞj ¼ �i;

i ¼ 1; . . . ; k.
From Proposition 2.1, it follows that the positive set of such a detector includes

the entire illumination space for all object positions on which the detector was

trained.

2.5. Detection under varying pose and illumination (allowing shadows)

A similar idea can be used for detection of illumination cones for various poses.

Here we find the extreme rays that form the illumination cone at every pose and then

train the detector on the linear subspace that contains the union of the illumination

cones for all training poses. The following pseudo-code describes an algorithm for

detection of a convex object under varying pose and an arbitrary number of point
light sources at infinity. Attached shadows are allowed.

1. Find the illumination cone for every sample of object positions:

(i) Gather three or more images of the object under varying illumination without

shadowing.

(ii) Normalize the images to unit length, and use SVD to estimate the best 3D

orthogonal basis B� in the least square sense.

(iii) From B� compute the vectors xij using Eqs. (4) and (5).

2. Apply SVD to the collection of vectors xij for all object positions in order to find
the eigenvectors fvigki¼1 that correspond to the eigenvalues which capture 99% of

the energy. (fvigki¼1 is the basis of the linear subspace that contains the union of

illumination cones for all poses).

3. Find anti-face detectors using fvigki¼1 as training set.

4. For each detector d choose the threshold as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 �

2
i

q
, where jðd; vÞj ¼

�i; i ¼ 1; . . . ; k.
From Proposition 2.1, it follows that the positive set of the detectors approxi-

mates the illumination cones for all object positions. As mentioned in Section
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2.1, the number of extreme rays is mðm� 1Þ where m6 n is the number of distinct

normals, which is usually large, hence the number of extreme rays needed for con-

struction of the illumination cone can be very large. Therefore, we use the sam-

pling method from [6], that approximates the cone by directly sampling the

space of light source directions rather than generating the samples through Eqs.
(4) and (5).
3. Incremental pose approximation

The anti-face method, like most other detection and recognition techniques, re-

quires that the multi-template be closely sampled. We showed that for illumination

variability this limitation can be overcome by representing the image set using a
small number of basis images. For pose variation there is no such representation,

however for a small range of image plane rotations (about five degrees) object

appearances can be estimated using the Taylor expansion. Let Iðx; yÞ be an image;

then the rotated image is a function of x; y, and h:
~Iðx; y; hÞ ¼ Iðx cosðhÞ � y sinðhÞ; y cosðhÞ þ x sinðhÞÞ

and for a small h
~Iðx; y; hÞ ffi ~Iðx; y; 0Þ þ o~I
oh

�����
x;y;0

� h;
where
o~I
oh

¼ Ixð�x sinðhÞ � y cosðhÞÞjx;y;0 þ Iyð�y sinðhÞ þ x cosðhÞÞjx;y;0
¼ Ixjx;y � x� Iy jx;y � y:
In summary, an image I rotated by a small angle h can be approximated by
Iðx; y; hÞ ¼ Iðx; yÞ þ ðIy jx;y � x� Ixjx;y � yÞ � h: ð6Þ
Hence the anti-face detectors should be trained on I and IT � Iyx� Ixy. This

ensures that the detectors will yield small results on I rotated in the image plane

by small angles.

The proposed method can be incorporated into the algorithms described in Sec-

tions 2.3 and 2.4 in the case of image plane rotations. Instead of creating the extreme

rays for each angle, the five-degree range can be covered by Eq. (6).
4. Experimental results

We have experimented with the algorithms presented above. We have chosen im-

age plane rotations for training and testing the algorithms described in Sections 2.3

and 2.4.
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4.1. Experiments

Ten images of a toy tiger were captured under varying illuminations without shad-

owing (Fig. 2A). The object was illuminated by a single light source, but due to dif-

fusion from the surrounding, ambient light is present in all images. To exclude the
ambient component we photographed the object under ambient light only

(Fig. 2B) and subtracted this image from the 10 images depicted in Fig. 2A. Using

the algorithm from Section 2, we found the three basis images that span the illumi-

nation subspace L (Fig. 3).

Fig. 4 presents the results of the detection algorithm, under arbitrary rotations

and various illuminations without shadowing (Section 2.3). The detectors were

trained on 49 basis images that span the linear subspace of rotations and illumina-

tions without shadowing. Ten detectors were sufficient to recover the toy without
false alarms. The anti-face method that was trained on the image of the toy subject

to arbitrary rotations and illuminated by ambient light alone failed to detect the ob-

ject in the scenes depicted in Fig. 4.

The following experiment was designed to test the algorithm for detecting an ob-

ject under fixed pose, illuminated by an arbitrary number of point light sources at

infinity. Attached shadows were allowed. We took the same basis images (Fig. 3)

as before, and used the sample method [6] to approximate the cone. It was empiri-

cally shown in [3] that the cone is flat (i.e., its elements lie near a low-dimensional
linear subspace), and that the subsampled cone provides an approximation that re-

sults in good recognition performance. In our experiment we created about 60 im-

ages, such that the corresponding light source directions were more or less

uniformly distributed on the illumination sphere. Fig. 5 demonstrates the results
Fig. 2. Initial images for estimation of illumination space. (A) Images illuminated by a single light source

and ambient light; (B) image illuminated by ambient light only.



Fig. 3. Basis images (columns of the matrix) that span the illumination subspace L for the toy tiger.

Fig. 4. Results of detection of the toy tiger, subject to image plane rotations and various illuminations

without shadowing. The scene was illuminated by point light source and ambient light.
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of the detection of the toy tiger in real images under various illuminations. Eight to

ten anti-face detectors were used to detect all the instances of the tiger with no false

alarms. The detectors were trained on a 16D linear subspace that approximates the

cone for the tiger toy.

Since it is very difficult to simulate the light conditions that result in images with

significant attached shadows, we tested the algorithm on 200 random samples from

the illumination cone of the tiger with one and two light sources. The images were
artificially created using the method described in [3]. All 200 samples were recognized

as the tiger. Fig. 6 shows some of the images from this test set.

The last experiment was designed to test the algorithm for detecting an object un-

der varying illumination with attached shadows and subject to image plane rotations

at a 45� range (Section 2.4). We created the extreme rays that approximate the cone

for each rotation angle in the manner described in the previous experiment. Eight

sets of anti-face detectors were created, each for a 45� range, thus covering 360�.
The images in Fig. 7 depicts the tiger rotated by 180� with different light source di-
rections. Fig. 8 depicts the images rotated by 60� and 100� correspondingly. In these

tests, 10 anti-face detectors sufficed to detect the tiger without false alarms. The de-

tectors were trained on 26 basis images that span the linear subspace that approxi-

mates the object appearance under both illumination changes (with attached

shadows) and plane rotations in a 45� range.



Fig. 5. Detection results in real images; (A) and (B), one light source and ambient light; (C), two light

sources and ambient light.
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4.2. Detection performance as function of multi-template’s structure

During the experiments we observed that the detection performance of the algo-

rithm described in Section 2.4 drops when the range of rotations increases. For in-

stance, using 10 detectors trained on 360� range produced 449 false alarms in a

253� 253 pixel image (same image as Fig. 7A). The result can be interpreted as fol-
lows. Define the effective dimension, as the number of eigenvalues required for 90%

of the energy; it is a measure of the image set complexity (by ‘‘complexity,’’ we mean

the detection complexity, i.e., an empirical measure of how difficult it is to detect the

multi-template�s images). The effective dimension of the multi-template formed by

the illumination cones for various rotations nearly equals the product of the effective
dimensions of the rotation set and the effective dimension of the illumination cone.

This observation is demonstrated by comparing the effective dimensions of all these



Fig. 6. Random samples from the illumination cone of the tiger: (A) with one and (B) with two light

sources. All were correctly detected.

Fig. 7. Detection results for toy tiger rotated by 180� and illuminated by a single point light source and

ambient light.
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Fig. 8. Detection results for toy tiger under rotation and illumination by a single point light source and

ambient light. (A) Image rotated by about 100� degrees; (B) image rotated by about 60�.

Table 1

Approximate linear dimension of different sets with various rotation ranges

Rotation range Effective dimension for combination

of rotation and varying illumination

Effective dimension for rotation only

(fixed illumination)

45� 26 3

90� 44 5

180� 65 8
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sets. From Table 1 it is clear that for all rotation ranges the ratio between the multi-

template for rotations plus illumination and for rotations only is between eight and

nine, which is approximately the effective dimension of the illumination cone. Intu-

itively speaking, ‘‘rotations and illuminations don�t mix well,’’ and combining them

results in a very complex image set—far more complicated than the cases in which

only rotations or only illumination changes are allowed. The multiplicative relation

between the sets does not change if we vary the effective dimension measure from
90% of energy to 98% with 2% step. Table 2 shows the results for 45� rotation range.

Another interesting observation about the structure of a multi-template is that its

complexity depends on the combination of two characteristics: (1) its effective dimen-

sion and (2) the smoothness of the principal component (i.e., the vector with the larg-

est eigenvalue in the SVD) of the multi-template in Rn. If the principal direction of
Table 2

Multiplicative relationship of effective dimensions of the sets for different energy thresholds

Effective dimension for combination of

rotations and varying illumination

26 36 46 62 93

Varying illumination, fixed pose 8 9 10 12 16

Varying rotations, fixed illumination 3 4 4 5 6

The thresholds start at 90% and increase by 2% between consecutive columns.



Table 3

Estimation of the complexity of various multi-templates vs. number of anti-face detectors required for

accurate detection

Illumination

cone for tiger

image under

fixed pose

Illumination

cones for tiger

image rotated

in 45� range

Illumination

cones for tiger

image rotated

in 360� range

Tiger image

rotated in 360�
range (fixed

illumination)

Roughness of

the principal

eigenvector

744 581 4 855

Number of

detectors

8 10 Impossible to

detect

4

Effective

dimension

8 26 131 16
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the set is smooth (i.e., smooth when viewed as an image), then the anti-face detector

that should be orthogonal to the multi-template, is also orthogonal to many other

natural smooth images. Thus, both the linear dimension and the principal direction

of the multi-template allow to predict the difficulty of the detection problem. This

observation can be verified by studying the roughness of the principal eigenvector

of the training set for various multi-templates. Table 3 summarizes the results.

The roughness is defined as
P

ijði2 þ j2Þd2
ij, where dij are the coefficients of the

DCT of the principal eigenvector, as in [9].

5. Conclusions

In this paper, we have presented a novel algorithm for detection of objects under

variable illumination and plane rotations, which accounts for attached shadows. The

key element of our approach was to include the effects of different illumination
conditions that can be modeled from a small set of images in the training set of

the anti-face detectors; this automatically cancels the illumination effects, allowing

fast illumination invariant detection. The method was successfully applied to detect

an object under variable illumination and rotations in real images with complicated

background and simulated images with significant attached shadows.

We have shown empirically that the linear dimension of the multi-template

formed by illumination cones for arbitrary rotations, is roughly equal to the product

of the linear dimension of the rotation set and the linear dimension of the illumina-
tion cone for a fixed pose. We have also shown that the complexity of any multi-tem-

plate depends on a combination of its linear dimension and the principal direction of

the set in Rn. In further research, we plan to test the algorithms on images containing

a 3D object under various illuminations and other rotations.
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