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Abstract

This paper focuses on the detection of objects with
Lambertian surface under both varying dlumination and
pose We offer to apply a novel detection method that
proceeds by modeling the d@erent illuminations from a
small number of images in the training set, this
automatically voids the illumination effects, allowing fast
dlumination invariant detection, without having to create
a large training set It is demonstrated that the method
‘~ts in” nicely with previous work about the modeling oj
the set of object appearances under varying illumination
In the experiments, an object was correctly detected under
image plane rotations in a 45-degrees range, and a wide
variety of dl~erent illuminations

1. Introduction

Slight changes in pose and illumination produce large
changes in object appearance. Recognition of objects
under various classes of geometric transformations or
under various viewpoints was previously studied in [6,
12,14,1 6]. However, these methods offer no solution for
the problem of illumination variability in natural images.
In [1,2,4,13] the problem of varying illumination and
fixed pose was addressed. Recognition under Iarge
variation in pose and illumination has recently been
introduced in [3]. In this method each “cone” [2] models
only 4x4 degrees patch of the visibility sphere, hence
large variability in pose is accomplished by calculation of
the distance to each cone, which is much more
computationally expensive than our approach.

Appearance-based methods [6,7,8,10,1 1,12,14,15,16,
18,19,20] can recognize the object under a particular pose
and lighting, if the object has been previously seen under
similar circumstances. To extend these methods to handle
illumination variability, a large set of images of the object
under varying illumination should be used for the learning
stage, which is highly inefficient. The following
obserwdtions [2,5,9,17] allow to alleviate this problem, by

modeling the object appearance under a wide range of
illuminations, instead of physically creating them.

Consider a convex object with Lambertian reflectance
function, which is illuminated by a single point light

source at infinity. Let B e Yi””3 be a matrix where each
row is the product of the albedo with the inward pointing
unit normal for a point on the surface corresponding to a

particular pixel in the image. Let s G 913 denote the
product of the light source intensity with the unit vector in
the direction of the light source. The resulting image

x e R“ is then given by

x = max(Bs,O) (1)

The pixels set to zero correspond to the surface points
lying in an attached shadow. Convexity of the object is
assumed to avoid cast shadows. When no part of the
object is shadowed, .x lies in the 3-D subspace L, called
the illumination space, given by the span of the matrix B,
where

L=+= Bs,VseYi} (2)

Hence the illumination subspace can be constructed from
just three basis images [9].

It was shown in [2] that the set C of all possible images
of a convex Lambertian surface, created by varying the
direction and strength of an arbitrary number of point
light sources at infinity, is defined as follows:

{1C= x x=$max(Bs,,O), Vs, e!R’, b’ke Z 1(3)
,=,

and C is a convex cone in Yin. Furthermore, it was shown
in [2] that any image in the cone C can be represented as a
convex combination of extreme rays given by

xv = max(BsV,0) (4)

where
s,, =b, xb,, itij (5)

where b, and b, are the rows of B It was proved in [2]

that the number of shadowing configurations is at most
m(m – 1) + 2, where m s n is a number of distinct
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normals. Hence there are at most m(m – 1) extreme rays.

Since there is a finite number of extreme rays, the convex
cone is polyhedral.

The illumination subspace method [2] offers a way to
construct the illumination cone. Gather three or more
images of the object (with a fixed pose) under varying
illumination without shadowing, and use these images to
estimate the three-dimensional illumination subspace L by
normalizing the images to unit length, and then using
singular value decomposition (SVD) to estimate the

optimal three-dimensional orthogonal basis B“ in least

square sense. It was proved in [2] that B’ is sufficient for

determining the subspace 1. Then from B“ , the extreme
rays defining the illumination cone C can be computed
using Eq.4 and 5.

In this paper we use the observations from [2] and the
newly introduced an@ce method [6] to detect 3-D
objects under variable illumination and various classes of
geometric transformations. The anti-face method offers an
attractive solution, which proceeds by modeling the
effects of different illumination conditions in the training
set; this automatically voids the illumination effects,
allowing fast illumination invariant detection, without
having to create a large training set.

Section 2 focuses on applying the anti-face method [6]
to the illumination space and illumination cone, and
presents novel applications for detection of objects with
Lambertian surface under both varying illumination and
pose Section 3 introduces an extension of the presented
algorithms for ambient light. Section 4 presents the
experimental results.

2, Application of Anti-Face Method to
Illumination Invariant Detection

Anti-faces [6] is a novel detection method, which
works well in case of a rich image collection – for
instance, frontal face under a large class of linear
transformations, or 3-D objects under different
viewpoints. Call the collection of images, which should
be detected, a multi-template The detection problem is
solved by sequentially applying very simple filters (or
detectors), which act as inner products with a given image
(viewed as vector) and satisfy the following conditions:
l The absolute values of their inner product with multi-

template images are small.
l They are smooth, which results in the absolute values

of their inner product with “random images” being
large; this is the characteristic which enables the
detectors to separate the multi-tempIate from random
images.

l They act in an independent manner, which implies
that their false alarms are not correlated; hence, the

false alarm rate decreases exponentially in the
numberof detectors.

The detection process is very simple: the image is
classified as a member of the multi-template iff the
absolute value of its inner product with each detector is
smaller then some (detector specific) threshold. Only
images which passed the threshold test imposed by the
first detector, are examined by the second detector, etc.
This, in turn, leads to a very fast detection algorithm.
Typically, (1+ c5)N operations are required to classify an

N-pixel image, where d <0.5. To achieve invariance to

the illumination intensity, the images are normalized to
zero mean and unit length.

2,1. Extension of Anti-Faces to Varying
Illumination

To extend anti-faces to handle illumination variability
we could sample the entire illumination space of the
object, and use it as a training set. Obviously this is
practically impossible because of the size of the training
set. Hence we should find a small number of “basis
images” and corresponding detectors such that:

A) After normalization, the different object appearances
can all be represented as linear combinations of the
basis images, with small combination coeffients.

B) The detectors have small inner products with the
basis images. Because of (A), they will also have
small inner products with all the object appearances.
This will be formalized in Proposition 1.

The following observations [2] support condition (A).
Consider a convex object with a Lambertian reflectance
function.
l When no part of the object is shadowed, its image

lies in the 3-D subspace L given by the span of the
matrix B; L can be constructed from three basis
images.

l The set of images under an arbitrary number of point
light sources at infinity is a convex polyhedral cone

in X“, which can be expressed as convex
combination of extreme rays.

In order to satisfy these conditions, let us first analyze the
positive set of the anti-face detector (that is, the set of
images accepted by the detector).

Assume that the training set consists of orthonormal
vectors. This assumption is feasible, because using SVD
we can replace the original training set with the
eigenvectors that correspond to the eigenvalues which
capture 99°A of the energy

Proposition 1. ~ef {v,~=, be the orthonormal basis

produced by SVD from the normalized training set Let d
be an anti-face detector, such that
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I(d,v,]<:, ,Vi = I,...jk Then for each v = ~a,v, ,
,=1

Iwhich satisfies Ilvll= 1, I(d,v] S, ~ E,z

Proofi omitted for brevity.
From Proposition 1 it follows that if the three basis
images for illumination subspace are used as training set
for the detector, it will detect the entire illumination
subspace if the threshold is properly chosen.

As was previously mentioned, the illumination cone
can be represented by linear combination of the vectors
x,, (Eq.4) with non-negative coefficients. For the

normalized image, the illumination cone is the
intersection between the illumination cone for the non-

normalized image and the unit sphere in 9?” Thus from
the last observation and Proposition 1 it follow that if the

detector is trained on x,, it will detect the entire

illumination cone, if the threshold is correctly chosen.

2.2. Illumination Spaces for Various Classes of
Geometric Transformations

The following algorithm is designed to detect a
convex object with a Lambertian reflectance function
under various classes of geometric transformations,
when no part of the object is shadowed.

1. Create the training set as follows. For a sample of
object positions:

a. Gather three or more images of the object under
varying illumination without shadowing.

b. Normalize the images to unit length, apply SVD,
and take the three eigenvectors that correspond to
the largest eigenvahses. Call these the basis images.

2. Replace the training set (containing images captured

in all the positions), by the eigenvectors {v,~=1 that

correspond to the eigenvahres capturing o!)~o of the
energy.

3. Find anti-face detectors using the new training set.
4. For each detector ~ choose the threshold as

i
$’z’, where I(d,v,] = s,, i = 1,..,k .
!=1

From Proposition 1, it follows that the positive set of
such a detector inchrdes the entire ilhrmination space for
all object positions on which the detector was trained.

2.3. Illumination Cone for Fixed Pose

The following algorithm is designed to detect a
convex object with a Lambertian reflectance function
under fixed pose and arbitrary number of point light
sources at infinity. Attached shadows are allowed.

1. Gather three or more images of the object (with a
fixed pose) under varying illumination without
shadowing.

2. Normalize the images to unit length, and use SVD to
estimate the best three-dimensional orthogonal basis

B’ in least square sense.

3. From B’ compute the vectors x, using Eq.4 and. 5

4. Apply SVD on the collection of vectors XV in order

to find the eigenvectors {v,y_, that correspond to the

eigenvaiues capturing 99”/o of the energy.

5. Find anti-faces using {v,~=, as training set and

calculated the threshold in the same way as in 2.2.
From Proposition 1, it follows that the positive set of
such a detector includes the entire illumination cone.

As mentioned in Section 1, the number of extreme
rays is tn(rn – 1) where m < n is the number of distinct

normals, which is usually large, hence the number of
extreme rays needed for construction of the ilhrmination
cone can run in the millions. Therefore, we use the
sampling method from [2], that approximates the cone
by directly sampling the space of light source directions
rather than generating the samples through Eq.4 and 5.

2.4. Illumination Cones for various classes of
geometric transformations

The algorithm from 2.3 can be extended to detect an
object under various classes of geometric transformations
and arbitrary number of point light sources at infinity.
Create the training set by computing the extreme rays for
each sample of object positions (Section 2.3) and replace
it by the eigenvectors that correspond to the eigenvahres,
which capture a 9!)0/. of the energy. Find the anti-face
detectors and their thresholds in the same way as in 2.3.
The positive set of the detectors includes the illumination
cone for each object pose.

3, Extension to Ambient Light

The illumination space and illumination cone models
assume one or more point light sources at infinity. Such
models are unrealistic. When an object is illuminated by a
single point light source, the light is diftirsed by
surrounding walls, dust particles, etc., causing the
presence of ambient light in the image. Incorporation of
ambient light into the previously presented light models
extends the 3-D illumination subspace L (Eq. 2) to a 4-D
subspace, La :

La={xlx =B~s~=Bs +la, VsG!R3, M+} (6)

where a is an image of object ilhrminated by ambient light
and A is an ambient light intensity.
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In matrix form we have

HBa=[B a]and.sfl= s
A

(7)

In order to estimate the illumination subspace L we use
SVD to find the best three-dimensional orthogonal basis

B“ in least square sense. From (7) follows that L. can be

estimated bv.
Ba$= [B’ a] (8)

The following method offers a way to construct the
illumination cone for a convex object with Lambertian
reflectance function, illuminated by an arbitrary number
of point light sources at infinity and ambient light.

1. Gather three or more images 1,,...,1P of the object

under varying illumination without shadowing but
including ambient light. Take one image A of an object
illuminated only by ambient light. For each i = 1,..., p

I,=~+A (9)

where ~ is the image of the object without the ambient

component. In order to subtract the ambient component
from the image, we project the image on A and subtract
the projection:

2. Use ~ in order to find B’

3. From B’ compute the vectors x, using Eq.4 and Eq.5

4. Use {xU} u A for constructing the illumination cone

extended for ambient light.
The proposed method can be incorporated into all

algorithms described in Section 2.

4. Experimental Results

In all experiments, we used the multi-template created
from 30x30 gray-level images. For nearly all light
directions, there were no cast shadows present, and the
object was correctly detected. It is also possible to follow
[4], and direcdy remedy the cast shadows. We have
chosen image plane rotations for training and testing the
algorithms described in Section 2.2 and 2.4.

Ten images of the tiger doll were captured under
varying illuminations without shadowing (Figure 1a).
The object was illuminated by a single light source, but
because of diffusion from the surroundings the ambient
light component is present in all images. We also captured
one image under ambient light only (Figure lb). Using the
algorithm from Section 2 we found the three basis images
that span the illumination subspace L (Figure 1c). Figure
2 presents the results of the detection algorithm, under

arbitrary rotations and various illuminations without
shadowing (Section 2.2). Ten detectors were sufficient to
recover the doll without false alarms. The anti-face
method [6] that was trained on the image of the doll
subject to arbitrary rotations and illuminated by ambient
light alone failed to detect the object in the scenes
depicted in Figure 2.

The following experiment was designed to test the
algorithm for detecting an object under fixed pose,
illuminated by an arbitrary number of point light sources
at infinity. Attached shadows were allowed. We took the
same basis images (Figure 1c) as before, and used the
sample method [2] to approximate a cone. It was
empirically shown in [2] that the cone is flat (i.e., its
elements lie near a low dimensional linear subspace), and
that the subsampled cone provides an approximation that
results in good recognition performance. In our
experiment we created about 60 images, such that the

corresponding light source directions sti were more or

less uniformly distributed on the illumination sphere [4].

Figure 3 demonstrates the results of the detection of the
tiger doll in real images under various illuminations. Eight
to ten anti-face detectors were used to detect all the
instances of tiger with no false aIarms.

Since it is very difficult to simulate the light conditions
that result in the images with significant attached
shadows, we tested the algorithm on 200 random samples
from the illumination cone of the tiger with one and two
light sources. The images where artificially created using
the method described in [2]. All 200 samples were
recognized as the tiger. Figure 4 shows some of the
images from this test set.

The last experiment was designed to test the algorithm
for detecting illumination cones for image plane rotations
with a range of 45 degrees (Section 2.4). We created the
extreme rays for each rotation angle in the manner
described in the previous experiment. Eight sets of anti-
face detectors were created, each one for a 45 degree
range, thus covering 360 degrees. Figure 5a contains the
image of the tiger rotated by 180 degrees. Figure 5b
presents the image rotated by 60 degrees. In these tests,
ten anti-face detectors sufficed to detect the tiger without
false alarms.

5. Conclusions

We have presented a novel algorithm for detection of
convex objects with Lambertian surface under various
classes of geometric transformations and variable
illumination, which accounts for attached shadows. The
key element of our approach was to model the effects of
different illumination conditions that can be learned from
a small set of images [2] in the training set of the anti-face
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Figure 1: Initial images for estimation of illumination space. (a) images illuminated by a single light source and ambient
light; (b) image illuminated by ambient light only. (c) basis images that span the illumination subspace for the tiger doll.

Figure 2: Results of detection of the tiger doll, subject to image plane rotations and various illuminations without
shadowing. The scene was illuminated by point light source and ambient light.

(a)

Figure 3: Detection results in real images; (a) one light source and ambient light; (b) two light sources and amt

qmmmmmnnmm
(a)

mmm
(b)

)ient light.

Figure 4: Random samples from illumination cone of tiger: (rtj~with one and (b) – with two light sources.
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Figure 5: Detection
(a) (b)

results for tiger under 45-degree range of rotations and illumination by a single poini light sources and.-.
ambient light. (a) tiger doll is rot&ed by 180 deg~ees; no~e very strong shadowing effect; (b) image rotated by 60 degrees.

detectors; this automatically voids the illumination
effects, allowing fast illumination invariant detection.
Furthermore we have extended this method to incorporate
ambient light, The method was successfully applied to
detect an object under variable illumination and rotations
in real images with complicated background and
simulated images with significant attached shadows.

The experiments described above were limited to plane
rotation of an object. In further research we plan to test
the presented approach on the images containing a 3-D
object under various illuminations and pose.
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