
Aggregate Threshold Queries in Sensor Networks

Izchak Sharfman1, Assaf Schuster1, Daniel Keren2

1Technion 2Haifa University
Dept. of Computer Science Dept. of Computer Science

Hafia, Israel Haifa Israel

Abstract

An important class of queries over sensor networks are
network-wide aggregation queries. In this work we study
a class of aggregation queries which we refer to asaggre-
gate threshold queries. The goal of an aggregate threshold
query is to continuously monitor the network and give a no-
tification every time an aggregated value crosses a prede-
termined threshold value. Aggregate threshold queries are
of particular importance in a wireless sensor environment,
since they allow network-wide events to be detected, with a
minimum expenditure of energy. Such network-wide events
might include, for example, the variance in sensor readings
exceeding a certain threshold.

We present an efficient algorithm for implementing ar-
bitrary aggregate threshold queries over sensor networks.
Our algorithm is based on a novel geometric approach by
which an arbitrary aggregate threshold query can be split
into a set of numerical constraints on the readings of the in-
dividual sensors. These constraints are used by the individ-
ual sensors to monitor their readings. The constraints are
constructed so that as long as none of the constraints are
violated, it is guaranteed that the aggregated value has not
crossed the threshold. Experiments we performed on real-
world data indicate that by employing these constraints,
sensors are able to reduce the number of transmissions re-
quired for implementing the query by orders of magnitude,
thus significantly reducing energy consumption.

1 Introduction

Wireless sensor networks are a powerful tool for per-
forming high level monitoring tasks. Sensor networks have
been suggested for a wide variety of applications, includ-
ing military applications (detecting and tracking vehicles
behind enemy lines), ecological applications (monitoring

1-4244-0910-1/07/$20.00c©2007 IEEE.

an ecological system), civil engineering applications, and
disaster control applications (monitoring the advance of a
hazardous gas cloud).

Many deployments of sensor networks are tiered, i.e., the
network consists of two types of units: many inexpensive
wireless sensing devices, referred to as motes, and fewer,
more powerful control units, referred to as macro-nodes
[6, 10, 17]. Motes are simple wireless units, typically based
on simple 8-bit processors, and are very limited in their pro-
cessing, memory, and energy resources. Macro-nodes, on
the other hand, are more resource rich in terms of process-
ing power, memory, and wireless communications. They
are typically based on more advanced 32-bit processors, en-
abling them to run advanced operating systems. Further-
more, macro-nodes are much less energy constrained.

The network is divided into clusters, each cluster con-
sisting of a group of motes and a single macro-node. The
motes in a cluster are referred to as cluster members, while
the macro-node is referred to as the cluster head. The role
of motes is limited to sensing the environment based on in-
structions received from their cluster head, and reporting
readings to their cluster head. In addition, a mote may
be involved in the multi-hop routing of data from another
mote in the cluster to the cluster head. Macro-nodes are
responsible for performing the application level functional-
ity of the monitoring task at hand. Macro-nodes use their
superior communications capabilities to implement a net-
work wide communications backbone. Routing between
macro-nodes is performed solely by the macro-nodes, i.e.,
the motes do not participate in message passing between the
macro-nodes.

This tiered architecture has several advantages. First, re-
cent work indicates that this tiered model has advantages
in terms of performance over single tiered architectures
[3, 8, 16, 18]. In addition, since application logic is run on
stronger devices that support more advanced development
tools and operating systems, the tiered model significantly
shortens development and deployment cycles [3]. Finally,
since most of the units are inexpensive motes (usually the

number of motes is one or two orders of magnitude greater
than the number of macro-nodes), deploying a tiered net-
work remains relatively inexpensive.

Typically, the purpose of a sensor network is to provide
global insights regarding the state of the monitored environ-
ment, as opposed to providing a set of raw data readings. An
important method for obtaining global insights is calculat-
ing global aggregates over the sensors: for example a sensor
network monitoring an ecological system may be queried in
order to determine the average temperature in the monitored
environment. Aggregates also play an important role in the
maintenance of the sensor network itself. For example, the
network may be queried in order to determine the average
residual energy level of a mote in the network.

In recent years several schemes have been proposed for
aggregating data in a sensor network [5, 9]. While these
schemes enable the efficient computation of aggregates,
they are “one-shot” schemes, i.e., the aggregate is calcu-
lated using the data held by the sensors at a specific point
in time. The algorithm proposed in [19] allows continuous
queries over sensor networks, i.e., the algorithm constantly
updates the calculated aggregate to reflect the aggregate of
the current values held by the sensors, while minimizing the
amount of data transmitted by the sensors. While continu-
ously providing an updated global aggregate can be useful
in some cases, in other cases we may require the network
only to report alert conditions, characterized by a global ag-
gregate crossing a threshold value. We refer to this type of
continuous query as anaggregate threshold query.

Consider, for example, a tiered sensor network, deployed
in a large server room or conference room, where each mote
is equipped with a temperature meter. The purpose of the
sensor network is to monitor the temperature in the room
and control the air conditioning system to maintain constant
and uniform temperature. In order to regulate the amount of
cold air produced by the air conditioning system, we would
like the sensor network to alert us when the average tem-
perature in the room exceeds a maximum value or drops be-
low a minimum value. We also would like to eliminate any
“hot spots” that may be caused by a rack of active servers
in a server room or an intensely lit stage in a conference
room. In order to ensure uniform temperature throughout
the room, we would like the sensor network to alert us when
the variance in the temperature readings exceeds a certain
threshold value. Upon receiving a variance alert, the sys-
tem will gather detailed readings from the sensors and re-
distribute the flow of air from the system to eliminate these
“hot spots”.

Note that detecting a high variance in the temperature is
much more difficult than detecting a high average temper-
ature. When the average temperature reading taken by the
motes exceeds a certain threshold, the temperature reading
taken by at least one of the motes in the room is necessarily

above the threshold, therefore a high average temperature
always has a local indication. On the other hand, a high
variance in the temperature may not have a local indication.
Consider, for example, a network comprising of 5 evenly
sized clusters. The cluster head of theith cluster can com-
municate with the cluster head of clustersi−1 andi+1. Say
that all the motes in a given cluster read the same temper-
ature, but the temperature read by motes in the first cluster
is 20 degrees, and the temperature read by motes in the fifth
cluster is 24 degrees. Furthermore, say that the differencein
the readings of two adjacent clusters is 1 degree. Say we are
interested in detecting when the variance in the temperature
readings exceeds 1.8deg2. The variance inside each cluster
is 0 (all the motes read the same temperature). The variance
in the temperature read by motes in three consecutive clus-
ters is 2

3 deg2. But the variance in the temperature in the
entire network is 2deg2. This example demonstrates that
in some cases, a variance in the readings of motes may not
have a local indication, or in other words, detecting that the
variance in the readings of motes exceeds a given threshold
may require collecting data from the entire network.

More formally, a continuous aggregate threshold query
can is defined as follows: we assume that every mote takes
a set of measurements represented as a vector of real values.
Let the aggregation function be an arbitrary function taking
a measurement vector and returning a real value. We are in-
terested in determining at any given time whether the value
of the aggregation function on theaverageof the measure-
ment vectors taken by the individual motes has crossed a
predetermined threshold.

In many cases determining whether an aggregate has
crossed a threshold does not require knowing the exact
value of the aggregate, therefore, providing an alert when an
aggregate (the average or variance in temperature in the ex-
ample given above) crosses a threshold should require less
communication than continuously providing an estimate of
the aggregate. Current solutions for monitoring aggregates
in sensor networks do not exploit this fact in order to reduce
communication for thresholded aggregate queries.

The main contribution of this paper is a communication
efficient algorithm (and therefore it is also a power efficient
algorithm) for performing aggregate threshold queries. The
algorithm is based on a method for decomposing the query
into a set of constraints on the values held by each mote.
As long as none of these constraints has been violated, no
communication is required.

2 Related Work

Aggregation queries over sensor networks have received
considerable attention in recent years [2, 4, 5, 7, 8, 9, 11, 12,
15, 19]. Madden et al. [9] propose a tree based algorithm for
performing aggregation queries. The algorithm consists of

two phases: in the first phase, the query is propagated down
a spanning tree which is constructed over the network. Once
the query has reached the leaves of the spanning tree, they
send their readings to their parents. Once a sensor has re-
ceived readings from all its children, it aggregates its local
reading with the ones sent by its children, and sends the ag-
gregated value to its parent. Greenwald et al. [4] present an
algorithm for calculating quantiles where in a network with
n sensors, each sensor transmits O(log3 n) bits. Shrivastava
et al. [15] present an algorithm for approximating quantiles
over sensor networks where each sensor transmits a fixed
number of bits. Tree-based algorithms are “one-shot”, i.e.
calculate an aggregate on a “snapshot” of the data.

An alternative to the tree approach is the multi-path ap-
proach [2, 12]. In the multi-path approach, the sensors are
partitioned into a set of rings. Theith ring consists of all the
sensors that arei hops from the base station. Aggregation
is performed from the most distant ring, towards the base
station. In contrast to the tree approach where each sensor
sends its intermediate aggregate to a designated parent sen-
sor, in multi-path approach each sensor broadcasts its inter-
mediate aggregate, which is processed by all the sensors in
the subsequent ring that have received the broadcast. Inter-
mediate aggregates are represented by special sketch struc-
tures, that are resilient to double counting of values that may
occur due to an intermediate aggregate being processed by
multiple sensors in the subsequent ring. The advantage of
the multi-path approach is that it is more resilient to packet
loss, but on the other hand, since the aggregation is per-
formed on sketches of the values rather than on the values
themselves, the multi-path approach provides approximated
aggregates, whereas tree-based approaches can provide ac-
curate aggregates in case data delivery is reliable.

Manjhi et al. [11] proposed an algorithm that combines
the advantages of both approaches. The algorithm uses the
tree-based approach for aggregating data from sensors that
are far from the base station, a multi-path approach for ag-
gregating data from sensors that are close to the base station,
and dynamically determines where to switch from the tree-
based approach to the multi-path approach according to net-
work conditions. As tree-based algorithms, multi-path algo-
rithms are “one-shot” algorithms, whereas our algorithm is
specifically designed to handle continuous queries.

Zhao et al. [19] present an algorithm for continuously
evaluating simple aggregated values, such as sums, counts
and averages, over a sensor network. Our work also deals
with continuous queries, but it differs from their work in
two respects. First, the algorithm presented in [19] continu-
ously provides an estimate of the aggregated value, whereas
our algorithm handles thresholded aggregate queries. Sec-
ond, while the work in [19] focuses on simple aggregates,
our algorithm supports aggregates that can be expressed by
arbitrary functions.

Our algorithm is designed for a tiered sensor network.
While most algorithms for sensor network consider a single
tier network (i.e. all the sensors in the network are iden-
tical), in practice most real world deployments of sensor
networks are tiered. Examples include [6, 10, 17]. Previous
studies of tiered sensor networks include [16, 3, 8, 14, 18].

Finally, algorithms for monitoring arbitrary threshold
functions over distributed streams have been presented in
[13]. [13] presents two monitoring algorithms, for two dif-
ferent computational environments. The first algorithm, re-
ferred to as the decentralized algorithm, assumes that all
nodes share a broadcast domain, i.e. any message sent by
one of the nodes is received by all other nodes. The second
algorithm, referred to as the coordinator based algorithm,
designates one of the nodes as a coordinator, and assumes
that all the nodes communicate solely with the coordinator.
Both algorithms are based on a geometric interpretation of
the monitoring problem.

Neither of the algorithms presented in [13] are suitable
for sensor networks, since implementing the primitives they
assume in a sensor network (either a single broadcast do-
main or global communications with a single node) is very
costly in terms of energy expenditure. This work adopts
the geometric interpretation presented in [13], but proposes
an algorithm that is able to resolve conflicts locally, and is
therefore sensitive to energy expenditure constraints.

3 Computational Model

We denote the number of clusters in the network byn.
We denote the number of motes in theith cluster byNi,
and the total number of motes in the network byNtot. We
denote the motes in theith cluster bysi,1, si,2, ..., si,Ni

, and
the cluster head of theith cluster bymi. We assume that all
the motes in a cluster (or at least the majority of them) have
a direct radio link with the cluster head, and that all radio
links are full duplex. The motes in a cluster only interact
with their cluster head.

Apart from interacting with the motes in their cluster,
cluster heads also communicate with the cluster heads of
neighboring clusters. The links between the cluster heads
are modeled by an undirected connectivity graph, where
each cluster is represented by a vertex, and an edge connects
every two vertices that represent neighbouring clusters. We
assume that a spanning tree has been constructed over the
connectivity graph, as in [9, 19]. We assume that a query
is injected into the network from one of the cluster heads,
referred to as thegateway node, and denoted bym1.

A continuous aggregate threshold query is formally de-
fined as follows: each motesi,j holds ad-dimensional vec-
tor of measurements, which is referred to as themeasure-
ment vectorand is denoted by~vi,j = (v

(1)
i,j , v

(2)
i,j , ..., v

(d)
i,j)T .

Let the global measurement vector, denoted by~v =

(v(1), v(2), ..., v(d))T , be the average of the measurement
vectors held by all the motes in the network:

~v =
1

Ntot

n
∑

i=1

Ni
∑

j=1

~vi,j

Let a functionf : R
d → R, called theaggregation

function, be an arbitrary function from the space of thed-
dimensional real vectors to the reals. Letr be a predeter-
mined threshold. A continuous aggregate threshold query
requires that any sensor will be able to determine at any
given time whether or notf(~v) > r.

As an example, the average temperature alert described
in Section 1 can be trivially formulated as an aggregate
threshold query: the measurement vector held by each mote
is a scalar, holding the temperature reading at the mote, and
the aggregation function is the identity function,f(x) = x.
The temperature variance alert can be formulated as an ag-
gregate threshold query, as follows: letX denote a ran-
dom variable representing a set consisting of the temper-
ature reading of the individual motes. Letxi,j denote the
temperature reading at the motesi.,j . Each mote holds the
following measurement vector:

~vi,j =

(

xi,j

(xi,j)
2

)

Note that

~v =
1

Ntot

n
∑

i=1

Ni
∑

j=1

(

xi,j

(xi,j)
2

)

=

(

E[X]
E[X2]

)

Therefore, the variance of the temperature readings can
be calculated using the following aggregation function:

f(~v) = v(2)
− (v(1))2 = E[X2]− E[X]2 = V ar(X)

4 A Network with a Single Cluster

In this section we describe an algorithm implementing
aggregate threshold queries in a network consisting of a sin-
gle cluster. In Section 5 we extend this algorithm to handle
networks consisting of multiple clusters. Recall from Sec-
tion 3 that each motesi holds a measurement vector de-
noted by~vi (since in this section we limit our discussion to
a network consisting of a single cluster, we omit the first
index, i.e., the cluster index, from mote and measurement
references).

From time to time, as dictated by the algorithm, the clus-
ter head collects the current measurements vectors from all
the motes, calculates their average, and reports the average
vector to all the motes. This action is referred to assynchro-
nizingthe motes.

The average vector calculated by the cluster head during
the last synchronization event is called theestimate vector,
and is denoted by~e. Each mote remembers the measure-
ment vector collected from it by the cluster head during the
last synchronization event. The measurement taken from
the motesi during the last synchronization event is referred
to as thereference vector, and is denoted by~vi

′. According
to these definitions:

~e =
1

N

∑N

i=1
~vi

′

Finally, each mote maintains two additional variables.
The first variable is called theslack vector, and is de-
noted by~δi. The algorithm will guarantee that at any given
time the sum of the slack vectors held by the motes is 0

(
n
∑

i=1

~δi = 0). In particular, after a synchronization event,

each mote sets its slack vector to 0. The second variable
maintained by each mote is called thedrift vector, denoted
by ui. The drift vector is calculated as follows:

~ui = ~e + ~vi − ~vi
′ + ~δi (1)

It is easy to show that at any given time, the average of
the drift vectors held by the motes is equal to the global
measurement vector. Furthermore, immediately after the
motes are synchronized, for every mote,si, the reference
vector is equal to the measurement vector (~vi

′ = ~vi) and
the slack vector is 0, therefore the drift vector held by each
mote immediately after a synchronization event is equal to
the estimate vector.

The algorithm is based on the following geometric in-
terpretation of an aggregate threshold query: vectors held
by motes are viewed as points inRd. The combination of
the aggregation function,f, and the threshold value,r, de-
fines the following coloring overRd: any point~x ∈ R

d for
whichf(~x) < r is said to be white, while any point~y ∈ R

d

for which f(~y) ≥ r is said to be gray. Figure 1 depicts
the coloring induced by the VARIANCE aggregate func-
tion,f(~x) = x(2)−(x(1))2 (x(1) is plotted on the horizontal
axis, andx(2) is plotted on the vertical axis), and a threshold
r= 1.8deg2. The goal of the aggregate threshold query un-
der this interpretation is to determine the color of the point
representing the global measurement vector. Figure 1 de-
picts the drift vectors held by three motes (the red circles),
and the global measurement vector they define, i.e., the av-
erage of these vectors (the cross). In both Figure 1(a) and
Figure 1(b), the drift vectors held by the motes are white,
but in 1(a) the global measurement vector is white, while it
is gray in 1(b). This demonstrates that the query cannot be
answered solely by observing the color of the drift vectors
held by the motes.

Every time the measurements taken by a mote change,
the mote checks that the new measurement vector complies

(a) (b)

(c)

Figure 1. Geometric interpretation.

to a local constraint. These constraints are constructs such
that if the constraints on all motes are satisfied, it is guaran-
teed that the convex hull of the drift vectors is monochro-
matic (i.e. all the vectors belonging to the convex hull have
the same color). Since the global measurement vector is the
average of the drift vectors held by the motes, it belongs to
the convex hull of the drift vectors. Therefore, if the convex
hull is monochromatic, the color of the global measurement
vector is the same as the color of the convex hull.

At first glance it may seem difficult to determine if the
convex hull of the drift vectors is monochromatic by set-
ting local constraints on the individual drift vectors, since
as demonstrated in Figure 1(b), only knowing that the drift
vectors are monochromatic is insufficient for determining
that their convex hull is monochromatic. In order to verify
that the convex hull of the drift vectors is monochromatic,
we use Theorem 4.1, taken from [13].

Theorem 4.1. Let ~x, ~y1, ~y2, ..., ~yn ∈ R
d be a set of

vectors in R
d. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the con-

vex hull of~x, ~y1, ~y2, ..., ~yn. Let B(~x, ~yi) be a ball cen-
tered at 1

2 (~x + ~yi) and with a radius of
∥

∥

1
2 (~x− ~yi)

∥

∥

2

i.e.,B(~x, ~yi) =
{

~z
∣

∣

∥

∥~z − 1
2 (~x + ~yi)

∥

∥

2
≤

∥

∥

2 (~x− ~yi)
∥

∥

2

}

.
Then Conv(~x, ~y1, ~y2, ..., ~yn) ⊂

⋃n
i=1 B(~x, ~yi).

Theorem 4.1 is used to bound the convex hull ofn+1
vectors inR

d by the union ofn d-dimensional balls. In our
case it is used to bound the convex hull of the estimate vec-
tor and the drift vectors i.e., Conv(~e, ~u1, ~u2, ..., ~un), by a set
of n balls, where each ball is constructed independently by
one of the motes. Each mote,si, constructs a ballB(~e, ~ui),

which is centered at~e+~ui

2 , and has a radius of
∥

∥

~e−~ui

2

∥

∥. This
ball is called thedrift sphere. Note that at any given time
each mote has all the information required to independently
construct its drift sphere.

Theorem 4.1 states that the convex hull of the drift vec-
tors and the estimate vector is bound by the union of the
drift spheres constructed by the motes. Therefore, if all the
drift spheres are monochromatic, the convex hull is guar-
anteed to be monochromatic, and thus the global measure-
ment vector is the same color as the convex hull. Since the
estimate vector is part of the convex hull as well, if all the
drift spheres are monochromatic, the global measurement
vector and the estimate vector have the same color. To test
whether a ball is monochromatic, we calculate the maxi-
mum and minimum values off over it. Due to lack of space
we cannot elaborate on this any further; suffice to say that
for important functions such as the variance, there is a very
simple closed-form solution.

Figure 1(c) illustrates the use of Theorem 4.1. The setup
depicted in Figure 1(a) is shown, together with the estimate
vector (the blue square), and the drift sphere constructed
by each of the motes. One can notice, that as stated by
Theorem 4.1, the convex hull of the drift vectors is bound
by the union of the drift spheres constructed by the motes.

In order to complete the description of the algorithm we
need to specify how to resolve constraint violations. One
method of resolving constraint violations is by synchro-
nizing the motes. As mentioned earlier, synchronizing the
motes produces a new estimate vector, and sets the drift vec-
tors on all motes to be equal to the estimate vector. The new
drift spheres held by the motes have 0 radius, and are there-
fore monochromatic by definition, and the constraints on
all the motes are upheld. Synchronizing the motes is rela-
tively costly because it requires communicating with all the
motes. Therefore, a more efficient method calledbalancing
is first used to attempt to resolve a constraint violation.

A balancing process attempts to resolve a constraint vi-
olation by constructing a set of motes, referred to as the
balancing group,such that the balancing group includes the
mote whose constraint has been violated, and the average
of the drift vectors held by the motes in the group creates a
monochromatic drift sphere. If a balancing group has been
successfully constructed, all the motes in the group modify
their drift vectors to be equal to the average of the drift vec-
tors held by the motes in the balancing group by modifying
their slack vectors. Note that the sum of the slack vectors
in such a case remains 0, therefore the global measurement
vector is guaranteed to remain in the convex hull of the drift
vectors. The advantage of balancing is that it that as op-
posed to synchronization, it does not require all the nodes
to process, and is therefore more efficient. If a constraint
violation has not been resolved by a balancing process, the
nodes are synchronized.

Balancing is performed as follows: first the mote whose
constraint has been violated reports its drift vector to the
cluster head. This mote is the first mote to be added to
the balancing group, and is referred to as theunbalanced
mote. The cluster head constructs the balancing group by
iteratively adding new motes to the balancing group. In
each iteration the cluster head randomly selects a number
of motes that are not in the group, and requests them to
send their drift vector. In theith iteration, the cluster head
randomly selects2i−1 new motes to be included in the bal-
ancing group. The average of the drift vectors held by the
members of the balancing group is referred to as thebal-
anced vector.

Note that since the cluster head communicates with the
motes using broadcast messages, in each iteration the clus-
ter head uses a single broadcast message to request drift vec-
tors from all the selected motes. By doubling the number of
motes that are added to the balancing group in each itera-
tion, the number of messages the cluster head produces in
order to complete the balancing process is logarithmic in
the size of the cluster.

After each iteration the cluster head checks if the bal-
anced vector create a monochromatic drift sphere. If so,
the balancing process is said to have succeeded. If the bal-
ancing group includes all the motes in the cluster, and the
balanced does not create a monochromatic drift sphere, the
balancing process is said to have failed.

If the balancing process has succeeded, the cluster head
sends the balanced vector to the members of the balancing
group. Upon receipt of the balanced vector, each mote, in-
cluding the unbalanced mote, sets its slack vector so that its
drift vector is equal to the balanced vector, thus resolving
the original constraint violation.

5 Multi-Cluster Networks

In this section we extend the algorithm presented in Sec-
tion 4 to networks that comprise of multiple clusters. As
described in Section 3, the network can be modeled by an
undirected connectivity graph, where each cluster is repre-
sented by a vertex, and an edge connects every two ver-
tices that represent neighbouring clusters. We assume that
a spanning tree has been constructed over the graph.

The multi-cluster algorithm is also based on decompos-
ing the query into a set of constraints, monitored locally by
each mote. All the motes hold a common estimate vector.
Each mote maintains a drift vector, and constructs a drift
sphere according to the estimate vector and its drift vector.
As long as the constraints on all the motes are upheld, no
communication is required. In case a constraint is violated
on a mote, an attempt is made to resolve it by balancing the
violating drift vector. First an attempt is made to balance
the violating drift vector with drift vectors held by mem-

bers of the same cluster. This process is referred to as an
intra cluster balancing. If unsuccessful, an attempt is made
to balance the constraint violation with drift vectors heldby
members of other clusters. This process is referred to asex-
tra cluster balancing. Finally, if the extra cluster balancing
has failed, all the motes in the network are synchronized.

When a local constraint is violated on a mote, it sends
its drift vector to its cluster head. The cluster head tries
to resolve the constraint violation by performing an intra
cluster balancing process, which is similar to the balancing
process described in Section 4. If the cluster head failed to
balance the violating vector, it will initiate an extra cluster
balancing process.

Extra cluster balancing is performed by passing a token
between cluster heads. The token contains two values, the
aggregation vector, denoted by~a, which holds the average
of the drift vectors held by the motes in the clusters the to-
ken has visited so far, and a counter, denoted byc, which
holds the total number of motes in the clusters the token has
visited so far. To initiate extra cluster balancing, the cluster
head creates a token with an aggregation vector consisting
of the average of the drift vectors held by the cluster mem-
bers, and sets the token counter to the number of motes in
the cluster. Note that the average drift vector has already
been calculated by the intra balancing process, therefore no
additional communication is needed in order to create the
token. More formally, the cluster headmi will create the
following token:

< ~a, c >←<

∑Ni

j=1 ~ui,j

Ni

, Ni >

If the drift sphere defined by a token’s aggregation vector
is monochromatic (i.e.B(~e,~a) is monochromatic) the token
is said to be balanced, otherwise it is said to be unbalanced.
The cluster head that created the token is referred to as the
sourceof the token. When a cluster head,mk, receives a
token for the first time, it collects the drift vectors from its
cluster members, and adds them to the average vector held
by the token by modifying the token as follows:

< ~a, c >←<

∑Nk

j=1 ~uk,j + c · ~a

Nk + c
, Nk + c > (2)

The token is passed between the cluster heads until the
token has been balanced, or until it has visited all the clus-
ters. If the token has been balanced, the extra cluster bal-
ancing process is said to have succeeded, and the motes in
each of the clusters that have received the token will set their
slack vector so that their drift vector will be equal to the ag-
gregation vector held by the token. If the token has traversed
all the clusters, and has not been balanced, the extra cluster
balancing process is said to have failed, and all the motes

in the network will adopt the aggregation vector held by the
token as the new estimate vector (thus implementing a syn-
chronization process). At this stage we assume that at any
given time, only a single token traverses the network. Later
we extend the algorithm to handle multiple tokens travers-
ing the cluster heads.

In order to complete the description of the algorithm, we
need to specify exactly how the token is passed among the
cluster heads. Recall that we assumed that a spanning tree
has been constructed over the connectivity graph. The token
is passed over the edges of the spanning tree, according to
a depth first search (DFS), rooted at the source of the token.
This ensures that as long as the token is unbalanced, it will
continue to traverse the clusters. If, during traversal of the
token through the cluster heads, one of them detects that
the token is balanced, the balanced token is flooded to all
the cluster heads that the token traversed. Upon receipt of
the token, each cluster head broadcasts the aggregation vec-
tor specified in the token to all the cluster members, which
in turn set their slack vectors so that its drift vector is equal
to the aggregation vector, thus implementing a successful
balancing process. If the token has traversed all the clus-
ters, and has not been balanced (this can be detected by the
source of the token), the token is flooded to all the cluster
heads in the network. Upon receipt of the token, each clus-
ter head broadcasts the aggregation vector specified in the
token to all the cluster members, which in turn set the es-
timate vector to be equal to the aggregation vector, and set
their reference vector to be equal to the measurement vector
that was collected from it by the cluster head, thus imple-
menting a synchronization process.

5.1 Handling Multiple Tokens

When presenting the multi-cluster algorithm, we as-
sumed that at any given time only a single token traverses
the network. In practice, several constraint violations may
occur simultaneously on motes in several different clusters.
This may lead to several tokens simultaneously traversing
the network. Therefore, the multi-cluster algorithm must
be extended to specify how to handle cases where a token
has reached a cluster head that is currently involved in the
traversal of another token. This condition is referred to asa
token collision.

A cluster head is considered involved in the traversal of a
token from the moment it created or received the token, un-
til it receives the outcome of the balancing/synchronization
process. The involvement of a cluster head in the traversal
of a token consists of two phases: anactive phaseand apas-
sive phase. As long as the token hasn’t completed its traver-
sal through the subtree headed by the cluster head (when
taking the source of the token to be the root of the spanning
tree), the cluster head is said to be in the active phase. Dur-

ing the active phase, the cluster head may be required, as
part of the DFS traversal, to pass the token from one child
to another. Furthermore, during the active stage, if the token
has been balanced by a descendant of the cluster head, the
traversal will result in a successful balancing process. Ifthe
token has traversed the subtree headed by the cluster head
without being balanced, the cluster head has completed its
active phase in the token traversal, and the traversal can re-
sult in either a balancing or a synchronization process. At
this point the cluster head is said to be in the passive phase
of its involvement in the token traversal.

Before describing how the multi-cluster algorithm is ex-
tended to handle token collisions, we would like to point
out the following: a token collision is only possible when a
token is passed to a cluster head that is in the active phase of
its involvement in the traversal of another token. This ob-
servation can be easily explained by the following reason-
ing: assume that two tokens, denoted byTok1 andTok2,
are currently traversing the network. Let the cluster head
mi be the first cluster head that receivedTok2 while being
involved in the traversal ofTok1. We denote bymj the
cluster headmi has receivedTok2 from. Let us assume,
by way of contradiction, thatmi is in the passive phase of
its involvement in the traversal ofTok1, therefore,Tok1

has completed traversing the subtree headed bysi,1, and
specifically,Tok1 has been passed to all ofmi neighbours,
includingmj . In other words,mj has been involved in the
traversal ofTok1 when it receivedTok2. This stands in
contradiction tomi being the first cluster head involved in
the traversal ofTok1 that has receivedTok2.

In order to handle token collisions, tokens hold two ad-
ditional values: a unique identifier, identifying the source
of the token, and the distance of the token from its
source. Tokens will therefore be of the following form,
<~a, c, id, dist>, where~a andc denote the aggregation vec-
tor and token count, as in the original algorithm, andid and
dist denote the identifier of the source of the token and the
distance of the token from its source. Note that the distance
of the token from its source can be easily maintained during
the DFS traversal.

If a token collision has occurred, i.e., a cluster head,
mi, has received a token,Tok2=<~a2, c2, id2, dist2>,
while being involved in the traversal of another token,
Tok1=<~a1, c1, id1, dist1>, Tok2 will be held bymi un-
til one of the following will happen: eithermi is notified
thatTok1 has been successfully balanced, orTok1 will be
returned tomi by one of its children. IfTok1 has been suc-
cessfully balanced, the traversal ofTok1 has been termi-
nated, thus resolving the token collision. IfTok1 has been
returned tomi by one of its children,mi will merge the two
tokens.

Among the two tokens, the token that is closer to its
source will be referred to as theobsolete token, and the

other token will be referred to as thedominating token(to-
ken identifiers are used as tie breakers). The token colli-
sion will be resolved as follows:mi merges the obsolete
token into the dominating token. Assuming, with out loss
of generality, thatdist1 > dist2, the token resulting from
the merge will be< c1·~a1+c2·~a2

c1+c2

, c1 + c2, id1, dist1>. If the
merged token is balanced,mi will flood the merged token
to all the cluster heads that were involved in the traversal of
eitherTok1 or Tok2, thus resolving the original constraint
violations that lead to the creation of these tokens. If the
merged token is not balanced, we would like it to continue
traversing the spanning tree in a DFS search order rooted at
the source of the dominating token. This can be achieved
by sending the merged token to the source of the obsolete
token, and continuing the traversal from there.

6 Relaxing the Precision Requirements

A desired trade-off when executing aggregate threshold
queries is between accuracy and energy expenditure. Con-
sider, for example, the temperature variance query given
in Section 1. Say we are interested in receiving an alert
when the variance in the temperature in a room exceeds 5
deg2. In case the variance in the temperature is close to the
threshold, drift vectors have very little leeway before the
drift spheres they define are not monochromatic, leading to
a high transmission rate. In the temperature variance query,
it is sufficient to know that the variance in the temperature
is closeto the specified threshold. In other words, it is suffi-
cient to require that the query returns a correct answer only
when the variance in the temperature in the room is signif-
icantly far from the threshold value, say when it is smaller
than 4.8deg2 or greater than 5.2deg2, but if the variance
is very close to the threshold value (between 4.8deg2 and
5.2 deg2), the query is not required to provide an accurate
answer. This modified version of an aggregate threshold
query enables efficiently detecting the desired alert condi-
tion, without expending expensive energy on keeping track
of borderline values.

More formally, the modified aggregate threshold query is
defined as follows: let~v be the average measurement vec-
tor, as defined in Section 3, letf be an aggregation function,
and letr be a predetermined threshold. Letε be a prede-
termined error margin. We require that iff(~v) > r + ε,
each mote will be able to determine thatf(~v) > r, and
that if f(~v) ≤ r − ε, each mote will be able to determine
thatf(~v) ≤ r. An aggregate threshold query conforming to
these requirements is said to support an error margin ofε.

Our algorithm can be easily tuned to support an error
margin of ε as follows: instead of working with a single
coloring, induced by the aggregation functionf and the
threshold valuer, two sets of coloring are defined, one in-
duced by the aggregation functionf and the threshold value

r + ε, and a second induced by the aggregation functionf
and the threshold valuer − ε. Whenever the original al-
gorithm checks whether a ball is monochromatic, then, if
f(~v) ≤ r, the modified algorithm will check whether the
ball is monochromatic according to the first coloring (the
one induced byf andr + ε). If f(~v) > r, the modified
algorithm will check whether the ball is monochromatic ac-
cording to the second coloring (the one induced byf and
r−ε). This ensures that if the value of the aggregation func-
tion on the estimate vector is below the threshold, and the
value of the aggregation function on the average measure-
ment vector is abover + ε (or vice verse), the query will
be reevaluated. At the same time, the modified algorithm
ensures that regardless of the value of the estimate vector,
the drift vectors have minimum leeway while maintaining
monochromatic drift spheres, thus reducing the energy ex-
penditure of the algorithm.

7 Experimental Results

We performed several experiments on real-world data in
order to evaluate the performance of our algorithm. We sim-
ulated a network consisting of 5184 motes. The motes were
positioned on a 144x36 grid. The motes were grouped into
81 clusters of 16x4. Each cluster was assigned a cluster
head. In summary, the network consisted of a 9x9 grid of
clusters, each cluster consisting of 64 motes.

We used climate data taken from [1] to simulate data
measurements taken by the motes. The data set consists
of temperature readings taken on a 144x72 grid that spans
the entire globe. Temperature readings are taken at a res-
olution of 6 hours. We used data that corresponds to tem-
perature reading covering the northern hemisphere over a
period of a year, which yields a total of 144x36x1459 data
measurements. According to the data, the average in the
northern hemisphere ranges from -3.52 to 17 degrees Centi-
grade. The rational behind selecting this data set is that al-
though the data set is collected on a global scale, it contains
strong spatial and temporal correlations among data points,
and is therefore similar in nature to what one would expect
of a data set collected from a large scale deployment of a
sensor network. Due to the lack of large scale real-world
data sets taken from real deployments of sensor networks,
we believe that this is the good alternative.

A spanning tree was constructed over the grid of clusters.
We employed our algorithm in order to detect when the av-
erage temperature crosses a predetermined threshold. We
compared the number of messages produced by our algo-
rithm to the number of messages that would be generated by
performing “in-network” aggregation, i.e. aggregating the
drift vectors from the leaves upwards, and employing the
aggregation function at the root. We refer to this algorithm
as thenaive algorithm. We make a distinction between mes-

Mote Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50
Threshold (°C)

M
o
te
 M
e
s
s
a
g
e
s
 (
x
1
0
0
0
)

Decent. Alg.

Naive Alg.

(a) Mote messages vs. Threshold

Cluster Head Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50

Threshold (°C)

C
lu
s
te
r
H
e
a
d
 M
e
s
s
a
g
e
s

Decent. Alg.

Naive Alg.

Cluster Head Messages vs. Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

-30 -20 -10 0 10 20 30 40 50

Threshold (°C)

C
lu
s
te
r
H
e
a
d
 M
e
s
s
a
g
e
s
 (
x
1
0
0
0
)

Decent. Alg.

Naive Alg.

(b) Cluster head messages vs. Threshold

Messages vs. Error Margin

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7

Error Margin (°C)

C
lu

st
er

 H
ea

d
M

sg
s(

x1
00

0)

0

50

100

150

200

250

300

M
ot

es
 M

es
sa

ge
s(

x1
00

0)

Mote Msg

Cluster Head Msg

(c) Messages vs. Error Margin

Messages vs. Cluster Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000
Cluster Size

C
lu

st
er

 H
ea

d
M

es
sa

ge
s

0

50

100

150

200

250

300

350

M
ot

e
M

es
sa

ge
s

Cluster Head Msg

Mote Msg

(d) Messages vs. Cluster Size

Figure 2. Experimental Results.

sages produced by motes, and messages produced by cluster
heads. Clearly, since cluster heads are less resource con-
strained than motes, a message sent by a cluster head in-
curs a lower penalty than a message sent from a mote, but
the exact difference between the cost of sending a message
from a cluster head and the cost of sending a message from
a mote strongly depends on the type of hardware used for
motes and cluster heads. Therefore, for each experiment we
present both the number of messages produced by motes
and the number of messages produced by cluster heads.

In the first experiment, we ran our algorithm using var-
ious threshold values. No error margin was used in this
experiment. Queries were run with threshold values rang-
ing from -30 degrees Centigrade to 50 degrees Centigrade.
Figure 2 shows the total number of mote messages and the
total number of cluster head messages produced by our al-
gorithm, as a function of the threshold value. In addition,
we plotted the total number of mote messages and the to-
tal number of cluster head messages produced by the naive
algorithm. Our algorithm significantly outperformed the
naive algorithm for all threshold values, both in the num-
ber of messages produced by motes, and in the number of
messages produced by cluster heads.

We expect that aggregate threshold queries will typically

be used to detect anomalies, therefore, we were especially
interested in the performance of the algorithm for thresh-
old values that are close to the boundaries of the range of
average temperature values. Since the data we used in our
experiments is periodic in nature, the interesting threshold
queries are the ones that detect when the average tempera-
ture diverges from its typical range of values, as opposed to
queries that use a threshold that is within the typical range
of average temperature values. When using threshold val-
ues that are close to the boundaries of the range of average
temperature values, our algorithm outperforms the naive al-
gorithm by orders of magnitude.

Next we checked the effect using an error margin has
on the performance of our algorithm. We used a threshold
value of -3 degrees Centigrade, and ran queries using error
margins ranging from 0 to 7 degrees. Figure 2(c) shows the
total number of mote and cluster head messages produced
when using different error margins. As evident from the
results, the error margin is very effective in reducing the
number of messages produced both by motes and cluster
heads. An error margin as small as 2 degrees Centigrade
reduces the number of messages by more than half.

Finally, we conducted an experiment designed to exam-
ine the effect the choice of cluster size has on the properties

of our algorithm. We ran a query with a threshold value of
-3 and no error margin on the 144x36 grid of motes. We ran
the query several times. Each run included all 5184 motes,
but we used a different cluster size for each run. We used
cluster sizes ranging from clusters of 4 motes, to a single
cluster, containing all 5184 motes. In each run we recorded
the average number of messages produced by motes, and the
average number of messages produced by a cluster head.

Figure 2(d) shows the average number of mote mes-
sages and cluster head messages as a function of the cluster
size. The results indicate that our algorithm performs bet-
ter with larger cluster sizes. The number of mote messages
decreases as the cluster size increases. We attribute the re-
duced number of mote messages in larger clusters to the fact
that in larger clusters, intra cluster balancing is performed
among motes that are more spatially dispersed, and there-
fore their measurements are more diverse, which enhances
the efficiency of intra cluster balancing. Our results indi-
cate that the number of cluster head messages increases as
the cluster size increases, but one would expect the average
number of cluster head messages to increase linearly in rela-
tion to the size of the cluster, since the number of constraint
violations a cluster head needs to handle increases linearly
in relation to the size of the cluster. Our results indicate that
the number of cluster head messages increases sub-linearly
in relation to the size of the cluster. We attribute the sub-
linear increase in cluster head messages to the fact that as
the the size of the cluster is increased, more constraints vi-
olations are resolved by the more efficient intra cluster bal-
ancing rather than by extra cluster balancing.

Note that while our results indicate that performance in-
creases as the size of the cluster increases, the choice of
cluster size is effected by additional considerations, such as
the transmission range of cluster heads.

8 Conclusion

Continuous aggregate threshold queries are an important
tool in a wireless sensor environment, since they are a natu-
ral candidates for expressing alert conditions. In many cases
the exact value of the aggregate is not required in order to
determine whether or not it has crossed the threshold, en-
abling the construction of algorithms that are far more effi-
cient than algorithms that estimate these aggregates.

In this paper we presented an algorithm for performing
continuous aggregate threshold queries over tiered sensor
networks. The algorithm is based on a novel geometric ap-
proach, enabling the decomposition of the query into local
constraints on the readings of the individual sensors. Exper-
imental results on real-world data show that our algorithm
reduces communications by orders of magnitude in compar-
ison to a naive “in-network” aggregation approach.

References

[1] NOAA-CIRES Climate Diagnos-
tics Center, Boulder, Colorado, USA
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html.

[2] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. InICDE ’04,
page 449. IEEE Computer Society.

[3] R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chintalapudi,
O. Gnawali, S. Rangwala, R. Gummadi, and T. Stathopou-
los. Tenet: An architecture for tiered embedded networks.
in CENS Technical Report 56.

[4] M. B. Greenwald and S. Khanna. Power-conserving com-
putation of order-statistics over sensor networks. InPODS
’04, pages 275–285. ACM Press.

[5] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-
tolerant aggregation in large process groups. InDSN ’01,
pages 433–442. IEEE Computer Society.

[6] W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and V. N.
Tran. A hybrid sensor network for cane-toad monitoring. In
SenSys ’05, pages 305–305. ACM Press.

[7] B. Krishnamachari, D. Estrin, and S. B. Wicker. The impact
of data aggregation in wireless sensor networks. InICDCSW
’02, pages 575–578. IEEE Computer Society.

[8] R. Kumar, V. Tsiatsis, and M. B. Srivastava. Computation
hierarchy for in-network processing. InWSNA ’03, pages
68–77. ACM Press.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks.
In OSDI ’02.

[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat monitor-
ing. In WSNA ’02, pages 88–97. ACM Press.

[11] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: efficient and robust aggregation in sensor network
streams. InSIGMOD ’05, pages 287–298. ACM Press.

[12] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks.In
SenSys ’04, pages 250–262. ACM Press.

[13] I. Sharfman, A. Schuster, and D. Keren. A geometric ap-
proach to monitoring threshold functions over distributed
data streams. InSIGMOD ’06, pages 301–312. ACM Press.

[14] G. Sharma and R. Mazumdar. Hybrid sensor networks: a
small world. InMobiHoc ’05, pages 366–377. ACM Press.

[15] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.Me-
dians and beyond: new aggregation techniques for sensor
networks. InSenSys ’04, pages 239–249. ACM Press.

[16] T. Stathopoulos, L. Girod, J. Heidemann, and D. Estrin.
Mote herding for tiered wireless sensor networks.in CENS
Technical Report 58.

[17] H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered
sensor network for habitat monitoring.EURASIP JASP Spe-
cial Issue on Sensor Networks, pages 392–401.

[18] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu,
and S. Singh. Exploiting heterogeneity in sensor networks.
In INFOCOM ’05, pages 366–377.

[19] Y. J. Zhao, R. Govindan, and D. Estrin. Computing aggre-
gates for monitoring wireless sensor networks. InSNPA ’03.

