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Abstract an ecological system), civil engineering applications] an

disaster control applications (monitoring the advance of a
An important class of queries over sensor networks are hazardous gas cloud).
network-wide aggregation queries. In this work we study  Many deployments of sensor networks are tiered, i.e., the
a class of aggregation queries which we refer toa@gire-  network consists of two types of units: many inexpensive
gate threshold querieShe goal of an aggregate threshold wireless sensing devices, referred to as motes, and fewer,
query is to continuously monitor the network and give a no- more powerful control units, referred to as macro-nodes
tification every time an aggregated value crosses a prede-[6, 10, 17]. Motes are simple wireless units, typically lthse
termined threshold value. Aggregate threshold queries are on simple 8-bit processors, and are very limited in their pro
of particular importance in a wireless sensor environment, cessing, memory, and energy resources. Macro-nodes, on
since they allow network-wide events to be detected, with athe other hand, are more resource rich in terms of process-
minimum expenditure of energy. Such network-wide eventsng power, memory, and wireless communications. They
might include, for example, the variance in sensor readings are typically based on more advanced 32-bit processors, en-
exceeding a certain threshold. abling them to run advanced operating systems. Further-
We present an efficient algorithm for implementing ar- more, macro-nodes are much less energy constrained.
bitrary aggregate threshold queries over sensor networks.  The network is divided into clusters, each cluster con-
Our algorithm is based on a novel geometric approach by sisting of a group of motes and a single macro-node. The
which an arbitrary aggregate threshold query can be split motes in a cluster are referred to as cluster members, while
into a set of numerical constraints on the readings of the in- the macro-node is referred to as the cluster head. The role
dividual sensors. These constraints are used by the individ of motes is limited to sensing the environment based on in-
ual sensors to monitor their readings. The constraints are structions received from their cluster head, and reporting
constructed so that as long as none of the constraints arereadings to their cluster head. In addition, a mote may
violated, it is guaranteed that the aggregated value has notpe involved in the multi-hop routing of data from another
crossed the threshold. Experiments we performed on real-mote in the cluster to the cluster head. Macro-nodes are
world data indicate that by employing these constraints, responsible for performing the application level functibn
sensors are able to reduce the number of transmissions redty of the monitoring task at hand. Macro-nodes use their
quired for implementing the query by orders of magnitude, superior communications capabilities to implement a net-
thus significantly reducing energy consumption. work wide communications backbone. Routing between
macro-nodes is performed solely by the macro-nodes, i.e.,
the motes do not participate in message passing between the
1 Introduction macro-nodes.
This tiered architecture has several advantages. First, re
Wireless sensor networks are a powerful tool for per- cent work indicates that this tiered model has advantages

forming high level monitoring tasks. Sensor networks have in terms of performance over single tiered architectures

been suggested for a wide variety of applications, includ- [3. 8, 16';8]2 In a(rJI]dition, since applicgtion Iogig Is r:m on
ing military applications (detecting and tracking vehgle stronger devices that support more advanced development

behind enemy lines), ecological applications (monitoring tools and operating systems, the tiered model signifipantly
shortens development and deployment cycles [3]. Finally,
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number of motes is one or two orders of magnitude greaterabove the threshold, therefore a high average temperature
than the number of macro-nodes), deploying a tiered net-always has a local indication. On the other hand, a high
work remains relatively inexpensive. variance in the temperature may not have a local indication.

Typically, the purpose of a sensor network is to provide Consider, for example, a network comprising of 5 evenly
global insights regarding the state of the monitored emviro ~ Sized clusters. The cluster head of tHecluster can com-
ment, as opposed to providing a set of raw data readings. Anmunicate with the cluster head of clustérsl andi+1. Say
important method for obtaining global insights is calculat that all the motes in a given cluster read the same temper-
ing g|0ba| aggregates over the sensors: for examp|e a Sens(ﬂture, but the temperature read by motes in the first cluster
network monitoring an ecological system may be queried in is 20 degrees, and the temperature read by motes in the fifth
order to determine the average temperature in the monitorectluster is 24 degrees. Furthermore, say that the diffenence
environment. Aggregates also play an important role in the the readings of two adjacent clusters is 1 degree. Say we are
maintenance of the sensor network itself. For example, theinterested in detecting when the variance in the tempezatur

network may be queried in order to determine the averagereadings exceeds 1ddg>. The variance inside each cluster
residual energy level of a mote in the network. is O (all the motes read the same temperature). The variance

In recent years several schemes have been proposed fdP the t2emperature read by motes in three consecutive clus-
aggregating data in a sensor network [5, 9]. While these!€'S 1S3 deg?. I_But the variance in the temperature in the
schemes enable the efficient computation of aggregates€Ntire network is 2ieg®. This example demonstrates that
they are “one-shot” schemes, i.e., the aggregate is calcull SOMe cases, a variance in the readings of motes may not
lated using the data held by the sensors at a specific poinf'@ve @ local indication, or in other words, detecting that th
in time. The algorithm proposed in [19] allows continuous Varance in the reaqllngs of motes excee_ds a given threshold
queries over sensor networks, i.e., the algorithm corigtant May require collecting data from the entire network.
updates the calculated aggregate to reflect the aggregate of More formally, a continuous aggregate threshold query
the current values held by the sensors, while minimizing the ¢@n is defined as follows: we assume that every mote takes
amount of data transmitted by the sensors. While continu-2 S€t of measurements represented as a vector of real values.
ously providing an updated global aggregate can be useful-€t the aggregation function be an arbitrary function tgkln_
in some cases, in other cases we may require the networl@ measurementvector and returning a real value. We are in-
only to report alert conditions, characterized by a gloial a terested in determining at any given time whether the value

gregate crossing a threshold value. We refer to this type of0f the aggregation function on ti@verageof the measure-
continuous query as aggregate threshold query ment vectors taken by the individual motes has crossed a

Consider, for example, a tiered sensor network, deponedperetermmed threshold.

. In many cases determining whether an aggregate has
in a large server room or conference room, where each mote y 9 ggreg

is equipped with a temperature meter. The purpose of the‘crossed a threshold does not requir_e_knowing the exact
sensor network is to monitor the temperature in the room value of the aggregate, therefore, providing an alertwien a

and control the air conditioning system to maintain cortstan aggrega_te (the average or variance in temperature in _the ex-
and uniform temperature. In order to regulate the amount Ofample gl\_/en.above) crosses a threshol_d.should require less
cold air produced by the air conditioning system, we would communication than continuously providing an estimate of

like the sensor network to alert us when the average tem-the aggregate. Current solutions for monitoring aggregate

perature in the room exceeds a maximum value or drops be N SENSOr networks do not exploit this fact in order to reduce

low a minimum value. We also would like to eliminate any communication for thresholded aggregate queries.

“hot spots” that may be caused by a rack of active servers _T_he main c_ontribution of this paper Is a communic_af[ion
in a server room or an intensely lit stage in a conferenceemc'em algorithm (and therefore it is also a power effitien

room. In order to ensure uniform temperature throughoutalgorithm) for performing aggregate threshold queries Th

the room, we would like the sensor network to alert us when glgonthm is based ona method for decomposing the query
to a set of constraints on the values held by each mote.

the variance in the temperature readings exceeds a certai i )
threshold value. Upon receiving a variance alert, the sys- s long as nhone of the_se constraints has been violated, no
tem will gather detailed readings from the sensors and re-COMmunicationis required.
distribute the flow of air from the system to eliminate these
“hot spots”. 2 Related Work

Note that detecting a high variance in the temperature is
much more difficult than detecting a high average temper-  Aggregation queries over sensor networks have received
ature. When the average temperature reading taken by theonsiderable attentionin recentyears [2,4,5,7,8,9,21,1
motes exceeds a certain threshold, the temperature reading5, 19]. Madden et al. [9] propose a tree based algorithm for
taken by at least one of the motes in the room is necessarilyperforming aggregation queries. The algorithm consists of



two phases: in the first phase, the query is propagated down Our algorithm is designed for a tiered sensor network.
a spanning tree which is constructed over the network. OnceWhile most algorithms for sensor network consider a single
the query has reached the leaves of the spanning tree, thetier network (i.e. all the sensors in the network are iden-
send their readings to their parents. Once a sensor has retical), in practice most real world deployments of sensor
ceived readings from all its children, it aggregates italoc networks are tiered. Examples include [6, 10, 17]. Previous
reading with the ones sent by its children, and sends the agstudies of tiered sensor networks include [16, 3, 8, 14, 18].
gregated value to its parent. Greenwald et al. [4] presentan Finally, algorithms for monitoring arbitrary threshold
algorithm for calculating quantiles where in a network with functions over distributed streams have been presented in
n sensors, each sensor transmitso@’ n) bits. Shrivastava  [13]. [13] presents two monitoring algorithms, for two dif-
et al. [15] present an algorithm for approximating quastile ferent computational environments. The first algorithm, re
over sensor networks where each sensor transmits a fixederred to as the decentralized algorithm, assumes that all
number of bits. Tree-based algorithms are “one-shot”, i.e. nodes share a broadcast domain, i.e. any message sent by
calculate an aggregate on a “snapshot” of the data. one of the nodes is received by all other nodes. The second
An alternative to the tree approach is the multi-path ap- algorithm, referred to as the coordinator based algorithm,
proach [2, 12]. In the multi-path approach, the sensors aredesignates one of the nodes as a coordinator, and assumes
partitioned into a set of ringsl Th& ring consists of all the that all the nodes communicate SO|6|y with the coordinator.
sensors that arehops from the base station. Aggregation Both algorithms are based on a geometric interpretation of
is performed from the most distant ring, towards the basethe monitoring problem.
station. In contrast to the tree approach where each sensor Neither of the algorithms presented in [13] are suitable
sends its intermediate aggregate to a designated parent seffor sensor networks, since implementing the primitiveythe
sor, in multi-path approach each sensor broadcasts its inte @ssume in a sensor network (either a single broadcast do-
mediate aggregate, which is processed by all the sensors ifnain or global communications with a single node) is very
the subsequent ring that have received the broadcast: Intercostly in terms of energy expenditure. This work adopts
mediate aggregates are represented by special sketch strughe geometric interpretation presented in [13], but pregos
tures, that are resilient to double counting of values tr@tm  an algorithm that is able to resolve conflicts locally, and is
occur due to an intermediate aggregate being processed b{herefore sensitive to energy expenditure constraints.
multiple sensors in the subsequent ring. The advantage of
the multi-path approach is that it is more resilient to packe 3 Computational M odel
loss, but on the other hand, since the aggregation is per-
formed on sketches of the values rather than on the values ., jenote the number of clusters in the networknby

themselves, the multi-path approach provides approxitnate We denote the number of motes in tHé cluster byN;,

aggregates, where_as tree-based ap proa_lcheg can provide afid the total number of motes in the networkBy,;. We
curate aggregates in case data delivery is reliable. denote the motes in thé" cluster DYSi 1, 0.2, . Si.n,» and
Manijhi et al. [11] proposed an algorithm that combines the cluster head of thé" cluster bym;. We assume that all
the advantages of both approaches. The algorithm uses thghe motes in a cluster (or at least the majority of them) have
tree-based approach for aggregating data from sensors thg direct radio link with the cluster head, and that all radio
are far from the base station, a multi-path approach for ag-jinks are full duplex. The motes in a cluster only interact
gregating data from sensors that are close to the basestatio yith their cluster head.
and dynamically determines where to switch from the tree- Apart from interacting with the motes in their cluster,
based approach to the multi-path approach according to nete|yster heads also communicate with the cluster heads of
work conditions. As tree-based algorithms, multi-patlalg  neighboring clusters. The links between the cluster heads
rithms are “one-shot” algorithms, whereas our algorithm is are modeled by an undirected Connectivity graph' where
specifically designed to handle continuous queries. each cluster is represented by a vertex, and an edge connects
Zhao et al. [19] present an algorithm for continuously every two vertices that represent neighbouring clustees. W
evaluating simple aggregated values, such as sums, countassume that a spanning tree has been constructed over the
and averages, over a sensor network. Our work also dealsonnectivity graph, as in [9, 19]. We assume that a query
with continuous queries, but it differs from their work in is injected into the network from one of the cluster heads,
two respects. First, the algorithm presented in [19] cantin referred to as thgateway nodgand denoted byn; .
ously provides an estimate of the aggregated value, whereas A continuous aggregate threshold query is formally de-
our algorithm handles thresholded aggregate queries. Secfined as follows: each motg ; holds ad-dimensional vec-
ond, while the work in [19] focuses on simple aggregates, tor of measurements, which is referred to as easure-
our algorithm supports aggregates that can be expressed bgnent vectoand is denoted by, ; = (v(l) v v(d))T.

2,9 7 74,3 700 Te,g

arbitrary functions. Let the global measurement vectodenoted byv =



(v @ w@)T | be the average of the measurement  The average vector calculated by the cluster head during
vectors held by all the motes in the network: the last synchronization event is called #stimate vectqr
and is denoted by. Each mote remembers the measure-

R 1 LY . ment vector collected from it by the cluster head during the
U= Nyot Z Z”ivj last synchronization event. The measurement taken from
=ti=t the motes; during the last synchronization event is referred

to as theeference vectgrand is denoted by;’. According

.  od .
Let a functionf : R* — R, called theaggregation o these definitions:

function be an arbitrary function from the space of the
dimensional real vectors to the reals. ldbe a predeter- 1 N
mined threshold. A continuous aggregate threshold query Zl_l

requires that any sensor will be able to determine at any _ o - )
given time whether or not(v) > 7. Finally, each mote maintains two additional variables.

As an example, the average temperature alert described e first variable is called thelack vector and is de-
in Section 1 can be trivially formulated as an aggregate Noted byd;. The algorithm will guarantee that at any given
threshold query: the measurement vector held by each moté”‘{l‘e the sum of the slack vectors held by the motes is 0
is a scalar, holding the temperature reading at the mote, anqy" §;, = 0). In particular, after a synchronization event,

the aggregation function is the identity functi = . i=1 . .
ggreg y 9fz) each mote sets its slack vector to 0. The second variable

The temperature variance alert can be formulated as an ag="", tained b h mote i lled et vector denoted
gregate threshold query, as follows: &t denote a ran- maintained by each mote 1S cafle vector, denote

dom variable representing a set consisting of the temper-by u;- The drift vector is calculated as follows:
ature reading of the individual motes. Lef; denote the

temperature reading at the mete ;. Each mote holds the @ = €4 U — T + 0 @
following measurement vector: It is easy to show that at any given time, the average of
the drift vectors held by the motes is equal to the global
vij = ( xivJ'Q > measurement vector. Furthermore, immediately after the

(i) motes are synchronized, for every mote, the reference

Note that vector is equal to the measurement vec®f & v;) and
the slack vector is 0, therefore the drift vector held by each
B 1 R w1 E[X] mote immediately after a synchronization event is equal to

U= N ZZ ( (%,})2 ) = ( E[X?] ) the estimate vector.

i=1 j=1 The algorithm is based on the following geometric in-
terpretation of an aggregate threshold query: vectors held
r\oy motes are viewed as pointsRf. The combination of
the aggregation functior, and the threshold value, de-
fines the following coloring oveR?: any pointz € R? for
which f(¥) < r is said to be white, while any poigte R¢
) ] for which f (%) > r is said to be gray. Figure 1 depicts
4 A Network with a Single Cluster the coloring induced by the VARIANCE aggregate func-
tion, f(Z) = 2(® — (z(1))2 (1) is plotted on the horizontal
In this section we describe an algorithm implementing axis, and:(? is plotted on the vertical axis), and a threshold
aggregate threshold queries in a network consisting of-a sin r=1.8 deg?. The goal of the aggregate threshold query un-
gle cluster. In Section 5 we extend this algorithm to handle der this interpretation is to determine the color of the poin
networks consisting of multiple clusters. Recall from Sec- representing the global measurement vector. Figure 1 de-
tion 3 that each mote; holds a measurement vector de- picts the drift vectors held by three motes (the red cirgles)
noted byw; (since in this section we limit our discussion to and the global measurement vector they define, i.e., the av-
a network consisting of a single cluster, we omit the first erage of these vectors (the cross). In both Figure 1(a) and
index, i.e., the cluster index, from mote and measurementFigure 1(b), the drift vectors held by the motes are white,
references). but in 1(a) the global measurement vector is white, while it
From time to time, as dictated by the algorithm, the clus- is gray in 1(b). This demonstrates that the query cannot be
ter head collects the current measurements vectors from alanswered solely by observing the color of the drift vectors
the motes, calculates their average, and reports the averagheld by the motes.
vector to all the motes. This action is referred teaschro- Every time the measurements taken by a mote change,
nizingthe motes. the mote checks that the new measurement vector complies

Therefore, the variance of the temperature readings ca
be calculated using the following aggregation function:

F@) =0 — (vV)? = E[X?] - B[X]* = Var(X)



which is centered s, and has a radius €% . This

ball is called thedrift sphere Note that at any given time
each mote has all the information required to independently
construct its drift sphere.

Theorem 4.1 states that the convex hull of the drift vec-
e tors and the estimate vector is bound by the union of the
._L drift spheres constructed by the motes. Therefore, if all th
o drift spheres are monochromatic, the convex hull is guar-
@ ) anteed to be. monochromatic, and thus the global measure-
ment vector is the same color as the convex hull. Since the
estimate vector is part of the convex hull as well, if all the
drift spheres are monochromatic, the global measurement
vector and the estimate vector have the same color. To test
whether a ball is monochromatic, we calculate the maxi-
mum and minimum values dfover it. Due to lack of space
we cannot elaborate on this any further; suffice to say that
for important functions such as the variance, there is a very
simple closed-form solution.

Figure 1(c) illustrates the use of Theorem 4.1. The setup
depicted in Figure 1(a) is shown, together with the estimate
Figure 1. Geometric interpretation. vector (the blue square), and the drift sphere constructed
by each of the motes. One can notice, that as stated by
Theorem 4.1, the convex hull of the drift vectors is bound
to a local constraint. These constraints are constructs suc py the union of the drift spheres constructed by the motes.
that if the constraints on all motes are satisfied, it is guara In order to complete the description of the algorithm we
teed that the convex hull of the drift vectors is monochro- Laqq to specify how to resolve constraint violations. One
matic (i.e. all the vectors belonging to the convex hull have ethod of resolving constraint violations is by synchro-
the same color). Since the global measurement vector is th(’nizing the motes. As mentioned earlier, synchronizing the
average of the drift vectors held by the motes, it belongs t0 165 produces a new estimate vector, and sets the drift vec-
the convex hull of the drift vectors. Therefore, if the coxave  15:s on all motes to be equal to the estimate vector. The new
hullis monochromatic, the color of the global measurement i spheres held by the motes have 0 radius, and are there-
vector is the same as the color of the convex hull. fore monochromatic by definition, and the constraints on
At first glance it may seem difficult to determine if the 5| the motes are upheld. Synchronizing the motes is rela-
convex hull of the drift vectors is monochromatic by set- tively costly because it requires communicating with adf th

ting local constraints on the individual drift vectors,@n  ,otes. Therefore. a more efficient method cabathncing
as demonstrated in Figure 1(b), only knowing that the drift i5 first ysed to attempt to resolve a constraint violation.

vectors are monochromatic is insufficient for determining balancing process attempts to resolve a constraint vi-

that their convex hull is monochromatic. In order to verify . ;
. ) .7 olation by constructing a set of motes, referred to as the

that the convex hull of the drift vectors is monochromatic, . . .

balancing groupsuch that the balancing group includes the
we use Theorem 4.1, taken from [13]. . :

mote whose constraint has been violated, and the average
Theorem 4.1. Let Z, 1,9, ....5, € R% be a set of of the drift vectors held by the motes in the group creates a
vectors inR%.  Let CornNZ, 1,4, ..., 7,) be the con- monochromatic drift sphere. If a balancing group has been
vex hull of Z, 41, 7o, ..., 7. Let B(Z,7;) be a ball cen- successfully constructed, all the motes in the group modify

tered at %(f + 7;) and with a radius ofH%(j’_ 37%’)"2 their drift vectors to be _equal to the average of the drif_t-v_ec
.00 = ElI- Ja il <o -all).  pareE e ot s ey o,
Then Con(/:payhyQa ayn) C Ui:l B(‘r7yl) :

in such a case remains 0, therefore the global measurement
Theorem 4.1 is used to bound the convex hulnefl vector is guaranteed to remain in the convex hull of the drift
vectors inR? by the union o d-dimensional balls. Inour  vectors. The advantage of balancing is that it that as op-
case it is used to bound the convex hull of the estimate vec-posed to synchronization, it does not require all the nodes
tor and the drift vectors i.e., Co(W, i1, ds, ..., @, ), by a set to process, and is therefore more efficient. If a constraint
of n balls, where each ball is constructed independently by violation has not been resolved by a balancing process, the
one of the motes. Each motg, constructs a balB(é, «;), nodes are synchronized.



Balancing is performed as follows: first the mote whose bers of the same cluster. This process is referred to as an
constraint has been violated reports its drift vector to the intra cluster balancinglf unsuccessful, an attempt is made
cluster head. This mote is the first mote to be added toto balance the constraint violation with drift vectors hieyd
the balancing group, and is referred to as timbalanced = members of other clusters. This process is referred &xas
mote The cluster head constructs the balancing group bytra cluster balancing Finally, if the extra cluster balancing
iteratively adding new motes to the balancing group. In has failed, all the motes in the network are synchronized.
each iteration the cluster head randomly selects a number When a local constraint is violated on a mote, it sends
of motes that are not in the group, and requests them toits drift vector to its cluster head. The cluster head tries
send their drift vector. In thé" iteration, the cluster head to resolve the constraint violation by performing an intra
randomly select&~! new motes to be included in the bal- cluster balancing process, which is similar to the balagcin
ancing group. The average of the drift vectors held by the process described in Section 4. If the cluster head failed to
members of the balancing group is referred to ashthle balance the violating vector, it will initiate an extra deis
anced vectar balancing process.

Note that since the cluster head communicates with the  Extra cluster balancing is performed by passing a token
motes using broadcast messages, in each iteration the cludetween cluster heads. The token contains two values, the
ter head uses a single broadcast message to request drift veaggregation vectgrdenoted byi, which holds the average
tors from all the selected motes. By doubling the number of of the drift vectors held by the motes in the clusters the to-
motes that are added to the balancing group in each iteraken has visited so far, and a counter, denoted,byhich
tion, the number of messages the cluster head produces imolds the total number of motes in the clusters the token has
order to complete the balancing process is logarithmic in visited so far. To initiate extra cluster balancing, thestbu
the size of the cluster. head creates a token with an aggregation vector consisting

After each iteration the cluster head checks if the bal- of the average of the drift vectors held by the cluster mem-
anced vector create a monochromatic drift sphere. If so,bers, and sets the token counter to the number of motes in
the balancing process is said to have succeeded. If the balthe cluster. Note that the average drift vector has already
ancing group includes all the motes in the cluster, and thebeen calculated by the intra balancing process, therefore n
balanced does not create a monochromatic drift sphere, thadditional communication is needed in order to create the
balancing process is said to have failed. token. More formally, the cluster head; will create the

If the balancing process has succeeded, the cluster heatbllowing token:
sends the balanced vector to the members of the balancing
group. Upon receipt of the balanced vector, each mote, in- ~ Z;V;'l U, j
cluding the unbalanced mote, sets its slack vector so at it <@ e>eo< = Ni>
drift vector is equal to the balanced vector, thus resolving
the original constraint violation. If the drift sphere defined by a token’s aggregation vector

is monochromatic (i.eB(¢€, @) is monochromatic) the token
: is said to be balanced, otherwise it is said to be unbalanced.
5 Multi-Cluster Networks The cluster head that created the token is referred to as the
) ) ) ) sourceof the token. When a cluster head,, receives a
In this section we extend the algorithm presented in Sec-yqen for the first time, it collects the drift vectors froms it

tion 4 to networks that comprise of multiple clusters. As ¢ ster members, and adds them to the average vector held
described in Section 3, the network can be modeled by aNpy the token by modifying the token as follows:

undirected connectivity graph, where each cluster is repre
sented by a vertex, and an edge connects every two ver-
tices that represent neighbouring clusters. We assume that J_V:kl Uk, +c-d
a spanning tree has been constructed over the graph. <d,c>e< N, e Ni+e> (2)

The multi-cluster algorithm is also based on decompos-
ing the query into a set of constraints, monitored locally by ~ The token is passed between the cluster heads until the
each mote. All the motes hold a common estimate vector.token has been balanced, or until it has visited all the clus-
Each mote maintains a drift vector, and constructs a drift ters. If the token has been balanced, the extra cluster bal-
sphere according to the estimate vector and its drift vector ancing process is said to have succeeded, and the motes in
As long as the constraints on all the motes are upheld, noeach of the clusters that have received the token will sét the
communication is required. In case a constraint is violated slack vector so that their drift vector will be equal to the ag
on a mote, an attempt is made to resolve it by balancing thegregation vector held by the token. If the token has trawkrse
violating drift vector. First an attempt is made to balance all the clusters, and has not been balanced, the extrarcluste
the violating drift vector with drift vectors held by mem- balancing process is said to have failed, and all the motes




in the network will adopt the aggregation vector held by the ing the active phase, the cluster head may be required, as
token as the new estimate vector (thus implementing a syn-part of the DFS traversal, to pass the token from one child
chronization process). At this stage we assume that at anyto another. Furthermore, during the active stage, if thertiok
given time, only a single token traverses the network. Later has been balanced by a descendant of the cluster head, the
we extend the algorithm to handle multiple tokens travers- traversal will result in a successful balancing procesthdf
ing the cluster heads. token has traversed the subtree headed by the cluster head
In order to complete the description of the algorithm, we without being balanced, the cluster head has completed its
need to specify exactly how the token is passed among theactive phase in the token traversal, and the traversal ean re
cluster heads. Recall that we assumed that a spanning tresult in either a balancing or a synchronization process. At
has been constructed over the connectivity graph. The tokerthis point the cluster head is said to be in the passive phase
is passed over the edges of the spanning tree, according tof its involvement in the token traversal.
a depth first search (DFS), rooted at the source of the token. Before describing how the multi-cluster algorithm is ex-
This ensures that as long as the token is unbalanced, it willtended to handle token collisions, we would like to point
continue to traverse the clusters. If, during traversaheft out the following: a token collision is only possible when a
token through the cluster heads, one of them detects thatoken is passed to a cluster head that is in the active phase of
the token is balanced, the balanced token is flooded to allits involvement in the traversal of another token. This ob-
the cluster heads that the token traversed. Upon receipt okervation can be easily explained by the following reason-
the token, each cluster head broadcasts the aggregation vegng: assume that two tokens, denoted®yk,; and Toks,
tor specified in the token to all the cluster members, which are currently traversing the network. Let the cluster head
in turn set their slack vectors so that its drift vector is@qu  m, be the first cluster head that receivEdk, while being
to the aggregation vector, thus implementing a successfulinvolved in the traversal of'ok;. We denote bym; the
balancing process. If the token has traversed all the clus-cluster headn; has received ok, from. Let us assume,
ters, and has not been balanced (this can be detected by thgy way of contradiction, thain; is in the passive phase of
source of the token), the token is flooded to all the cluster its involvement in the traversal dFok;, therefore,Tok;
heads in the network. Upon receipt of the token, each clus-has completed traversing the subtree headed;hy and
ter head broadcasts the aggregation vector specified in thepecifically, 7ok, has been passed to all of; neighbours,
token to all the cluster members, which in turn set the es-includingm;. In other wordsyn; has been involved in the
timate vector to be equal to the aggregation vector, and setraversal ofT'ok; when it receivedl’'ok,. This stands in
their reference vector to be equal to the measurement vectoeontradiction tom,; being the first cluster head involved in
that was collected from it by the cluster head, thus imple- the traversal of ok, that has receive@ok.

menting a synchronization process. In order to handle token collisions, tokens hold two ad-
ditional values: a unique identifier, identifying the saairc
5.1 Handling Multiple Tokens of the token, and the distance of the token from its

source. Tokens will therefore be of the following form,

sumed that at any given time only a single token traversestor and token count, as in the original algorithm, achdnd

This may lead to several tokens simultaneously traversingOf the token from its source can be easily maintained during
the network. Therefore, the multi-cluster algorithm must the DFS traversal.
be extended to specify how to handle cases where a token If a token collision has occurred, i.e., a cluster head,
has reached a cluster head that is currently involved in them;, has received a token7'oky=<ds, cz,idz, dists>,
traversal of another token. This condition is referred taas Wwhile being involved in the traversal of another token,
token collision Toki=<ay, c1,1dy, disty>, Toko will be held bym; un-

A cluster head is considered involved in the traversal of a til one of the following will happen: eithem; is notified
token from the moment it created or received the token, un-thatT'ok; has been successfully balanced7@i; will be
til it receives the outcome of the balancing/synchronarati ~ returned tan; by one of its children. Iff'ok; has been suc-
process. The involvement of a cluster head in the traversalcessfully balanced, the traversal Bbk; has been termi-
of atoken consists of two phases:awstive phasand apas- nated, thus resolving the token collision.7lbk; has been
sive phaseAs long as the token hasn’t completed its traver- returned tan; by one of its childrenin; will merge the two
sal through the subtree headed by the cluster head (whefokens.
taking the source of the token to be the root of the spanning Among the two tokens, the token that is closer to its
tree), the cluster head is said to be in the active phase. Dursource will be referred to as thabsolete tokenand the



other token will be referred to as tld®minating tokergto-
ken identifiers are used as tie breakershe token colli-
sion will be resolved as followsm,; merges the obsolete

r + ¢, and a second induced by the aggregation fundtion
and the threshold value — . Whenever the original al-
gorithm checks whether a ball is monochromatic, then, if

token into the dominating token. Assuming, with out loss f(¥) < r, the modified algorithm will check whether the

of generality, thatlist; > dists, the token resulting from
the merge will b&w c1 + ¢a,idy, dist;>. If the
merged token is balanceﬁh,z will flood the merged token

ball is monochromatic according to the first coloring (the
one induced by andr + ¢). If f(¥) > r, the modified
algorithm will check whether the ball is monochromatic ac-

to all the cluster heads that were involved in the traverkal o cording to the second coloring (the one inducedf tkand

eitherTok; or T'oks, thus resolving the original constraint
violations that lead to the creation of these tokens.

r—e). This ensures that if the value of the aggregation func-

If the tion on the estimate vector is below the threshold, and the

merged token is not balanced, we would like it to continue value of the aggregation function on the average measure-
traversing the spanning tree in a DFS search order rooted ament vector is above + ¢ (or vice verse), the query will

the source of the dominating token. This can be achievedbe reevaluated. At the same time, the modified algorithm
by sending the merged token to the source of the obsoleteensures that regardless of the value of the estimate vector,

token, and continuing the traversal from there.

6 Reaxingthe Precision Requirements

the drift vectors have minimum leeway while maintaining
monochromatic drift spheres, thus reducing the energy ex-
penditure of the algorithm.

A desired trade-off when executing aggregate threshold /  EXperimental Results

queries is between accuracy and energy expenditure. Con-

sider, for example, the temperature variance query given We performed several experiments on real-world data in
in Section 1. Say we are interested in receiving an alert order to evaluate the performance of our algorithm. We sim-
when the variance in the temperature in a room exceeds Sulated a network consisting of 5184 motes. The motes were
deg?. In case the variance in the temperature is close to thepositioned on a 144x36 grid. The motes were grouped into
threshold, drift vectors have very little leeway before the 81 clusters of 16x4. Each cluster was assigned a cluster
drift spheres they define are not monochromatic, leading tohead. In summary, the network consisted of a 9x9 grid of
a high transmission rate. In the temperature variance queryclusters, each cluster consisting of 64 motes.

it is sufficient to know that the variance in the temperature ~ We used climate data taken from [1] to simulate data
is closeto the specified threshold. In other words, it is suffi- measurements taken by the motes. The data set consists
cient to require that the query returns a correct answer onlyof temperature readings taken on a 144x72 grid that spans
when the variance in the temperature in the room is signif- the entire globe. Temperature readings are taken at a res-

icantly far from the threshold value, say when it is smaller olution of 6 hours. We used data that corresponds to tem-

than 4.8deg? or greater than 5.2eg?, but if the variance
is very close to the threshold value (betweende8? and

perature reading covering the northern hemisphere over a
period of a year, which yields a total of 144x36x1459 data

5.2 deg?), the query is not required to provide an accurate measurements. According to the data, the average in the

answer.

This modified version of an aggregate thresholdnorthern hemisphere ranges from -3.52 to 17 degrees Centi-

guery enables efficiently detecting the desired alert condi grade. The rational behind selecting this data set is that al
tion, without expending expensive energy on keeping track though the data set is collected on a global scale, it camtain

of borderline values.

strong spatial and temporal correlations among data points

More formally, the modified aggregate threshold query is and is therefore similar in nature to what one would expect
defined as follows: let be the average measurement vec- of a data set collected from a large scale deployment of a

tor, as defined in Section 3, lebe an aggregation function,
and letr be a predetermined threshold. Lebe a prede-
termined error margin. We require thatfifo) > r + ¢,
each mote will be able to determine th&tv) > r, and
that if f(¥) < r — ¢, each mote will be able to determine

sensor network. Due to the lack of large scale real-world
data sets taken from real deployments of sensor networks,
we believe that this is the good alternative.

A spanning tree was constructed over the grid of clusters.
We employed our algorithm in order to detect when the av-

that f (¢) < r. An aggregate threshold query conformingto erage temperature crosses a predetermined threshold. We

these requirements is said to support an error margin of

compared the number of messages produced by our algo-

Our algorithm can be easily tuned to support an error rithm to the number of messages that would be generated by

margin ofe as follows: instead of working with a single
coloring, induced by the aggregation functibrand the

threshold value, two sets of coloring are defined, one in-
duced by the aggregation functibmand the threshold value

performing “in-network” aggregation, i.e. aggregating th
drift vectors from the leaves upwards, and employing the
aggregation function at the root. We refer to this algorithm
as thenaive algorithm We make a distinction between mes-
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Figure 2. Experimental Results.

sages produced by motes, and messages produced by clustbe used to detect anomalies, therefore, we were especially
heads. Clearly, since cluster heads are less resource connterested in the performance of the algorithm for thresh-
strained than motes, a message sent by a cluster head ireld values that are close to the boundaries of the range of
curs a lower penalty than a message sent from a mote, butiverage temperature values. Since the data we used in our
the exact difference between the cost of sending a messagexperiments is periodic in nature, the interesting thriesho
from a cluster head and the cost of sending a message frongueries are the ones that detect when the average tempera-
a mote strongly depends on the type of hardware used forture diverges from its typical range of values, as opposed to
motes and cluster heads. Therefore, for each experiment wejueries that use a threshold that is within the typical range
present both the number of messages produced by motesf average temperature values. When using threshold val-
and the number of messages produced by cluster heads. ues that are close to the boundaries of the range of average
In the first experiment, we ran our algorithm using var- temperature values, our algorithm outperforms the naive al
ious threshold values. No error margin was used in this gorithm by orders of magnitude.
experiment. Queries were run with threshold values rang- Next we checked the effect using an error margin has
ing from -30 degrees Centigrade to 50 degrees Centigradeon the performance of our algorithm. We used a threshold
Figure 2 shows the total number of mote messages and thealue of -3 degrees Centigrade, and ran queries using error
total number of cluster head messages produced by our almargins ranging from 0 to 7 degrees. Figure 2(c) shows the
gorithm, as a function of the threshold value. In addition, total number of mote and cluster head messages produced
we plotted the total number of mote messages and the towhen using different error margins. As evident from the
tal number of cluster head messages produced by the naiveesults, the error margin is very effective in reducing the
algorithm. Our algorithm significantly outperformed the number of messages produced both by motes and cluster
naive algorithm for all threshold values, both in the num- heads. An error margin as small as 2 degrees Centigrade
ber of messages produced by motes, and in the number ofeduces the number of messages by more than half.
messages produced by cluster heads. Finally, we conducted an experiment designed to exam-
We expect that aggregate threshold queries will typically ine the effect the choice of cluster size has on the progertie
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