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Fitting Curves and Surfaces
With Constrained Implicit Polynomials

Daniel Keren and Craig Gotsman

Abstract—A problem which often arises while fitting implicit polynomials to 2D and 3D data sets is the following: Although the data
set is simple, the fit exhibits undesired phenomena, such as loops, holes, extraneous components, etc. Previous work tackled these
problems by optimizing heuristic cost functions, which penalize some of these topological problems in the fit. This paper suggests a
different approach—to design parameterized families of polynomials whose zero-sets are guaranteed to satisfy certain topological
properties. Namely, we construct families of polynomials with star-shaped zero-sets, as well as polynomials whose zero-sets are
guaranteed not to intersect an ellipse circumscribing the data or to be entirely contained in such an ellipse. This is more rigorous
than using heuristics which may fail and result in pathological zero-sets. The ability to parameterize these families depends heavily
on the ability to parameterize positive polynomials. To achieve this, we use some powerful recent results from real algebraic
geometry.

Index Terms—Implicit polynomials, fitting, free-form shapes, toplogical integrity, starshaped curves and surfaces, positive
polynomials.
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1 INTRODUCTION

ITTING analytic functions to sampled data is a common
problem arising in many data modeling applications. In

its most general form, the fitting problem is: Given a set of
n data points

S x x x i ni i
d
i d= = ∈ =1 1, , : , ,K K4 9J L5 ,

find an analytic surface that passes “close” to S. Common
representations of such a surface are parametric surfaces
defined on 5d−1 or zero-sets of a function F : 5d → 5. The
latter is the locus of all points x  such that F x( ) = 0 . Candi-
dates for F are any interpolant over 5d, e.g., radial basis
functions, super-quadrics, thin-plate splines, or polynomi-
als. In the latter, the number of degrees of freedom, i.e.,
polynomial coefficients, is

m d k
k= �� ��+ ,

where k is the degree of the polynomial.
The advantages of using an implicit polynomial are its

simplicity, the possibility to compute algebraic invariants
[5], [4], [9], [7], [13], and the ease of containment computa-
tions (by computing the sign of the polynomial). The sim-
plest way of fitting an implicit polynomial to the data set S
is to solve the following least-squares problem for the coef-
ficient vector a  of the polynomial Pa :
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This cost function minimized in (1) is simple; therefore, the
problem may be solved easily by an eigenvector computa-
tion. However, the cost function does not necessarily ex-
press the Euclidean distances of the data points to the zero-
surface; therefore, the fit might be somewhat unintuitive,
especially in regions of high surface curvature, as has been
shown in previous works [16], [8], [15]. A cost function that
approximates the sum of the squares of the Euclidean dis-
tances is:
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where ∇ = ∂ ∂ ∂ ∂P x P x P xd( ) , ,1 K2 7 is the vector gradient
function. Unfortunately, this cost function induces a nonlin-
ear least-squares problem, whose numerical solution suffers
from the usual non-linear optimization algorithmic pitfalls,
namely, slow iterative solution, and local minima. If com-
putation time is not a factor, as is the case in some applica-
tions, a solution to (2) is usually superior to that of (1). Be-
cause of its rational form, (2) may be solved iteratively as a
sequence of weighted linear least squares problems [8], [15],
[12], [2], which is a numerical procedure more efficient than
general purpose optimization.

The disadvantages of using implicit polynomials as a
modeling tool are the quality of the results commonly ob-
tained when applying the above procedures, especially for
high degrees. The zero-sets may consist of multiple compo-
nents, be unbounded, or fit the data in very unnatural ways
[8], [16], [15]. It is very difficult to predict the outcome of
the fitting procedure, a problem compounded by the fact
that the polynomial coefficients are geometrically mean-
ingless. A typical data-fitting session consists of running the
optimization procedure (2) again and again, obtaining local
minima, and choosing that yielding the best solution. Many
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trials may be required until a pleasing fit is found. In some
cases, the procedure seems to never end, in the sense that
the pleasing local minima are so sparse, that it is virtually
impossible to stumble on them at random. An open ques-
tion is how to restrict the search space to a subset of “well-
behaved” polynomials, thus reducing the number of trials
until success.

The main question is how to compactly represent, i.e., pa-
rameterize, this family of well behaved polynomials by im-
posing some restrictions on the polynomial coefficients. In
[8], [16], it is shown how to guarantee that the zero-set is
bounded. These works also suggested heuristics to force the
zero-set to be small and “tight” around the data set. The ef-
fort to achieve pleasing fits was carried further in [14], where
it was suggested to use the geometric distance (as opposed to
algebraic distance) in order to fit implicit polynomials. This
resulted in better fits without holes. Also, a method to elimi-
nate extraneous components was suggested. In [11], poly-
nomials with a convex zero set are fitted to convex polygons
so that their zero set contains the polygon; the degree of the
polynomial is equal to the number of vertices in the polygon.
In [1], polynomials whose zero set is guaranteed not to have
folds within a certain region are constructed and many such
“A-patches” are used to describe shapes. In work reported
recently in [10], an attempt is made to force the zero-set to
“stick” to the data, thus hopefully minimizing the number of
branches, etc., in the zero-set.

However, the algorithms presented in [8], [16], [14] are
heuristic in nature. They try to force the resulting fits to
have certain “good” geometric properties (such as being
“tight” around the data set) by minimizing a cost function
that penalizes fits which are “not good.” In this work, we
suggest a different approach—find a parameterization of a
(large as possible) subfamily of polynomials whose zero-
sets always have these “good” properties and restrict the
search for a pleasing fit to this subfamily. This guarantees
that the fit will be “good” and eliminates the necessity of
using a penalizing function.

Some problems which arise quite often in the fitting pro-
cess cannot be eliminated using previous methods, as dem-
onstrated in Fig. 1, where an “area-minimizing” fit [8] was
used. The cusps in the data result in loops in the zero-set—a
rather common phenomena; note that this happens even
though the data sets are not complicated. Previous meth-
ods, which penalized “holes” in the zero-set, as well as ex-
traneous components, cannot eliminate these loops, as they
pose a different type of problem. When the method for fit-
ting star-shaped sets suggested in this paper was used,
there were no such topological pathologies in the fits.

The purpose of this paper is to present novel algebraic
techniques through which the coefficients of polynomials
contained in well-behaved subsets may be parameterized.
Specifically, we apply our techniques to generate star-
shaped objects, and objects bounded within simpler objects,
e.g., the unit sphere, or an ellipse.

We note that it is easy to modify the methods presented
here to generate fits to convex objects, such that these fits
will be guaranteed to be convex; however, we did not pur-
sue this direction, since the assumption that the object is
convex is a strong limitation.

2 THE GENERAL METHOD

We are interested in restricting our search to a subset of the
polynomials with given characteristics. The question be-
comes how to easily parameterize that subset. In general,
we will not be able to parameterize precisely the subset we
are interested in, but a smaller subset of it, since we are able

  

                                            (a)                      (b)

  

                                               (c)                      (d)

  

                                      (e)                             (f)

Fig. 1. (a), (b) Data sets and (c), (d) “area minimizing” fits to them; note
spurious loops which the fitting process cannot eliminate. (e) and (f)
are fits obtained using the “focus of expansion” method suggested in
this paper (see Section 3.3).
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to formulate only sufficient (but not necessary) conditions
for a polynomial to have the given characteristics. These
conditions lead to an unconstrained search on a parameter
space, whose dimension might be larger than the dimen-
sion of the original polynomial space. This is because our
techniques lead to an over-representation of the subset. This
imposes some extra numerical overhead.

3 STAR-SHAPED OBJECTS

In this section, methods to enforce the zero-set to be star-
shaped will be described. Recall that a closed curve is star-
shaped if there is an interior point S from which the whole
curve is visible; that is, every ray emanating from S intersects
the curve exactly once. Such a point is called a kernel point.
For simplicity, we shall assume that this point is the origin;
however, it is trivial to incorporate into the algorithm a step
which will attempt to look for a different kernel point, by
simply allowing the fitted polynomial to translate.

As demonstrated in Figs. 1c and 1d and in [8], some fits
to star-shaped data sets may have pathologies in them—
holes, loops, “folds,” extraneous components. Such patholo-
gies are avoided by forcing the “line convexity” and “focus
of expansion” conditions we now introduce; these condi-
tions, together with the fact that the data set is star-shaped,
ensure that the fit will also be star-shaped and, therefore,
devoid of such pathologies.

3.1 First Method: Line Convexity
This method forces the zero-set to be star-shaped by al-
lowing every line through a given point to intersect it only
twice. For instance, let us see how the extraneous loop in
Fig. 1c would be eliminated; note, in Fig. 2, how the line
through the origin intersects the zero-set four times. Simi-
larly, extraneous components will also be eliminated.

We can force this condition in the following way, dem-
onstrated for a quartic polynomial in two variables x and y:

P(x, y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy3 + a04y

4 + a30x
3 +

a21x
2y + a12xy2 + a03y

3 + a20x
2 + a11xy + a02y

2 + a10x + a01y + a00.

The value of P(x, y) on a line y = αx through the origin is

Pα(x) = (a40 + a31α + a22α
2 + a13α

3 + a04α
4)x4

+ (a30 + a21α + a12α
2 + a03α

3)x3 + (a20 + a11α + a02α
2)x2

+ (a10 + a01α)x + a00.
If a line through the origin intersects the zero-set in more

than two points, then Pα(x) will have more than two roots.

By applying Roll’s theorem twice, it follows that d
dx

P x
2

2 α ( )

should have at least one root. To prevent this, we require

that d
dx

P x
2

2 α ( )  be positive for every x and α. This actually

forces the restriction of P(x, y) to every straight line through
the origin to be convex (as a function of one variable), hence
the term “line convexity”.

d

dx
P x a a a a a x

a a a a x a a a

2

2 40 31 22
2

13
3

04
4 2

30 21 12
2

03
3

20 11 02
2

12

6 2

α α α α α

α α α α α

0 5 4 9
4 9 4 9

= + + + + +

+ + + + + + ,

which, for brevity, we will denote by

P4(α)x2 + P3(α)x + P2(α).

Now, suppose that that there exist polynomial functions
K(α), L(α), and M(α) such that

P4(α) = K2(α) + L2(α)

P3(α) = 2L(α)(K(α) + M(α))           (3)

P2(α) = L2(α) + M2(α).

Then, for every α, d
dx

P x
2

2 α ( )  is a polynomial in x with a

discriminant equal to

P3(α)2 − 4P4(α)P2(α) = −4(L2(α) − K(α)M(α))2,

which is negative for every α. This means that, when
viewed as a polynomial in x, the second derivative is eve-
rywhere positive, from which it follows that Pα(x) is indeed
convex along every line that passes through the origin.

Since P2(α) is a quadratic in α, it follows that K(α) and
M(α) cannot be more than linear in α. Similarly, since P4(α)

Fig. 2. An illustration of how the line convexity condition eliminates extraneous loops in the zero-set.
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is a quartic in α, K(α) cannot be more than quadratic in α.
Denoting L(α) = l1α + l0, M(α) = m1α + l0, and K(α) = k2α

2

+ k1α + k0, results in the following parameterization for P(x, y):
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and a10, a01, a00 are free.
This is a parameterization for a subset of the family of

quartics in two variables which have star-shaped zero-
sets.

However, the dimension of the space of quartics in two
variables is 15, while the above parameterization has only
10 degrees of freedom. So, while we have obtained a very
simple and compact parameterization of a subset of
“good” polynomials, we have lost 5 degrees of freedom.
This is, of course, highly undesirable. Such a degenerate
parameterization may succeed in describing simple ob-
jects; however, Fig. 3a shows a fit to data corresponding to
the contour of a human eye, obtained using this param-
eterization; it’s clearly inferior to the quartic fit obtained
using the more sophisticated methods described in the
sequel (see Fig. 3b).

The challenge is, therefore, to find a parameterization
which will cover as many polynomials as possible; in par-
ticular, we want it to have 15 degrees of freedom.

When written in general form (without the scalars re-

sulting from taking derivatives by x), all possible d
dx

P x
2

2 α ( )

are a subset of the set of sextic polynomials in x and α of the
following type:

(a40 + a31α + a22α
2 + a13α

3 + a04α
4)x2 +

(a30 + a21α + a12α
2 + a03α

3)x + (a20 + a11α + a02α
2).

We seek a parameterization of polynomials of this type
which are everywhere positive. Denote this class of poly-
nomials by 3262

4 .
The question, therefore, is: how to parameterize some

subset of 3262
4 ? Obviously, we want this subset to be as

large as possible to allow us as much flexibility as possible
in the fitting process. The larger the subset, the larger num-
ber of shapes which can be described by zero-sets of poly-
nomials in it.

We can generate polynomials that are everywhere posi-
tive by summing the squares of other polynomials. Thus, a
sum of squares of polynomials of the type

L21α
2x + L11αx + L10α + L01x + L00

is certainly an element of 3262
4 .

The sum

L x L x L L x Li i i i i

i
21

2
11 10 01 00

20 5 0 5 0 5 0 5 0 5α α α+ + + +∑
results in the following parameterization for a subset of
3262

4 :
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and, as before, a10, a01, a00 are free.
Denote the polynomials of the type L21α

2x + L11αx + L10α
+ L01x + L00 as 5227 2

4 . Some elements of 3262
4  are sums of

squares of elements of 5227 2
4 . Note that 3262

4  is a subset

of the quintic polynomials in α and x, and 5227 2
4  is a sub-

set of the cubic polynomials in α and x.
Finally, let us denote by 680642

4  the subset of the

polynomials in 3262
4  which are sums of squares of poly-

nomials in 5227 2
4 .

Some questions immediately arise:

Fig. 3. Fitting an eye with (a) a quartic having 10 degrees of freedom and (b) with a quartic which also satisfies the “line convexity” condition, but
has the full 15 degrees of freedom, described by (4).
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•� Is every element of 3262
4  a sum of squares of ele-

ments of 5227 2
4? Namely, are the sets 680642

4

and 3262
4  identical?

•� If not, does 680642
4  have a “full dimension”? That

is, what is its dimension (or, equivalently, how many
degrees of freedom does it have)? Naturally, we hope
that its dimension is 15, as this will guarantee that we
are not losing any degrees of freedom, as with the
simple parameterization with 10 degrees of freedom.

•� What is the minimal number (if it exists at all) of
elements of 5227 2

4  which must be squared and
summed in order to obtain all elements of
680642

4 ? This is important when implementing
the fitting procedure, for we have to know how
680642

4  is to be parameterized. The optimal
choice would be to sum as many squares of elements
of 5227 2

4  which will guarantee that we have cov-

ered all elements of 680642
4 . If we sum too many,

we are complicating the fitting procedure without
gaining anything. If we sum too few, we are losing
part of 680642

4 , and the results of the fitting proc-
ess will not be optimal.

Next, the answers to these questions—for 680642
4  as

well as for more general families of polynomials—will be
presented, together with some recent results about positive
polynomials.

3.2 Polynomials Represented as Sums of Squares
Most of the material in this subsection is a short summary
of some notions and a few recent powerful results in real
algebraic geometry, summarized from [3]. We restrict our-
selves to definitions and results which are necessary for the
sequel.

First, some terminology:

•� Given a ring R, its Pythagoras number, P(R), is de-
fined to be the lower bound on the number of
squares which must be summed in order to obtain
every element of R which is a sum of squares. That
is, if any element of R is a sum of squares of ele-
ments of R, it can be expressed as a sum of no more
than P(R) squares, and P(R) is the minimal number
with this property. There is no general bound on
P(R) and, for some rings, it equals infinity; fortu-
nately, that is not the case for the rings of polynomi-
als which are relevant to the fitting paradigm de-
scribed here.

The Pythagoras number P(R) is very important for
parameterizing the elements of 680642

4  (as well as
polynomials which are sums of squares of higher de-
gree polynomials). This is because the parameteriza-
tion given in the previous section requires summing
exactly P(R) squares and no more. Naturally, the
smaller P(R) is, the better; and, fortunately, some
powerful lower bounds for P(R) have been recently
obtained for some polynomials rings.

•� A form is a homogeneous polynomial. The ring of

forms of degree m in n variables is denoted Fn,m, and
its Pythagoras number is denoted P(n, m).

•� Suppose we are given a subset A of Fn,m. The cage as-
sociated with it is the set of n-tuples of coefficients
which are non-zero for some element of A. For ex-
ample, look at the polynomials we have discussed
before

(a40 + a31α + a22α
2 + a13α

3 + a04α
4)x2 +

(a30 + a21α + a12α
2 + a03α

3)x + (a20 + a11α + a02α
2).

When homogenized, these polynomials assume the
shape

a40x
2w4 + a31αx2w + a22α

2x2w2 + a13α
3x2w +

a04α
4x2 + a30xw5 + a21αxw4 + a12α

2xw3 +

a03α
3xw2 + a20w

6 + a11αw5 + a02α
2w4,

and their cage, when viewed as a subset of F3,6, is equal
to {(4, 2, 0), (3, 2, 1), (2, 2, 2), (1, 2, 3), (0, 2, 4), (3, 1, 2),
(2, 1, 3), (1, 1, 4), (0, 1, 5), (2, 0, 4), (1, 0, 5), (0, 0, 6)}.

•� For a cage C, let us denote by l = l(C) the number of
monomials in C, by e = e(C) the number of even mo-
nomials in C (that is, the n-tuples all of whose ele-
ments are even), and by a = a(C) the number of dis-
tinct means of even monomials.

For example, for the cage described above, l = 12,
e = 5, and a = 12. This is because every monomial in the
cage can be expressed as an average of two even mo-
nomials; for instance, (1, 2, 3) is the average of (4, 2, 0)
and (0, 0, 6), both of which are even monomials in the
cage.

Let us also denote by F+(C) the set of everywhere
positive polynomials with coefficients in C, and by
F(C) those polynomials in F+(C) which are sums of
squares.

Last, let us define the Pythagoras number of a cage
C, P(C), in exactly the same fashion as the Pythagoras
number of a ring R, that is, as the maximal number of
squares that we need to sum in order to obtain all the
elements of F(C).

Now, we are ready to present some results from [3]:

LEMMA 1. The dimension of F+(C) is l, and the dimension of F(C)
is a.

THEOREM 1. For any cage C, the following inequality holds:

a
e P C e≤ ≤ ≤ ≤λ 0 5 Λ ,

where Λ = + −1 8 1
2

a  and λ = + − + −2 1 2 1 8
2

2e e a0 5
.

LEMMA 2. For any m, P m m( , )3 22≤ +  (this result was obtained
by David Leep).

LEMMA 3. P(3, 4) = 3 (this is a famous theorem of David Hilbert
[6]).

LEMMA 4. For every n, P(2, n) = 2.

LEMMA 5. In general, F+(C) ≠ F(C), that is, there are polynomials
which are everywhere positive but are not sums of squares.
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Let us see how these results apply to the simplest case
we have studied, quartics in two variables:

•� The dimension of 680642
4  is 12. To this, we

should add 3 degrees of freedom (because the lin-
ear coefficients a10, a01, and the constant coefficient

a00 are not constrained). Since this gives, altogether,
15 degrees of freedom, we lose no degrees of free-
dom by using the parameterization of (4) for quar-
tics in two variables, because they also have 15 de-
grees of freedom.

•� 326 680642
4

2
4≠ . Hence, although we lose no de-

grees of freedom, there are everywhere positive poly-
nomials which cannot be represented as sums of
squares.

•� Since P m m( , )3 22≤ +  and, in our case, m = 6, we need

a sum of five squares of elements of 5227 2
4  to guar-

antee that we have indeed covered all of 680642
4 .

The first and second observations carry over to higher-
degree polynomials and polynomials in three variables, the
only change being the upper bound on the Pythagoras
number. Note that, because we have to homogenize the
polynomials, polynomials in two variables transform into
forms in three variables, and polynomials in three variables
transform into forms in four variables. For the first, the
bound P m m( , )3 22≤ +  is sharper than the one given by
Theorem 1. For the latter, we use Theorem 1 to obtain a
lower bound; for instance, the lower bound for quartics in
three variables turns out to be 11. This means that we have
to sum 11 squares of polynomials of the appropriate type to
guarantee that we obtain all the polynomials which are
sums of squares.

3.3 Second Method: Focus of Expansion
Another method of forcing the zero-set to be star-shaped
is to force the fitted polynomial to have a focus of expan-
sion. By that, we mean a point O which has the following
property: the fitted polynomial has to increase on every
ray emanating from O. In a typical scenario, O will belong
to the interior of the set of points to be fitted and the value
of the polynomial in O will be negative. Obviously, the
zero-set has to be star-shaped in that case; if not, some ray
emanating from O will intersect it twice, but this is impos-
sible, as the polynomial is increasing on every such ray. In
[14], a method of using rays to prevent extraneous com-
ponents proceeds as follows: A finite number of rays are
created during the iterative process, emanating outside
from a sphere bounding the data set. The rays are tested
for intersection with the zero-set; if such an intersection
takes place, the current polynomial is penalized. This
method, however, may fail to detect and penalize loops,
holes, or components inside the data. For instance, the in-
ternal loop in Fig. 1d cannot be detected and removed by
using rays which emanate from a sphere bounding the
data. Also, it is impossible to cover the entire space with a
finite number of rays and extraneous components may
exist between them. What would be desirable is to ensure
that such conditions on the intersection of rays with the

zero-set will be guaranteed to hold for every ray and that
no checking will be required.

Next, we show how to enforce such a condition. Assume
for the moment that the focus of expansion O is the origin
(0, 0). Denote once again the restriction of the polynomial

P(x, y) to the line y = αx by Pα(x). Now, assume that
dP x

dx xQ xα
α

( ) ( )=  for every α and x, where Qα(x) is positive

for every α and x. Then, for every fixed α, it is easy to see
that, as we move away from the origin on the rays y = αx,

x > 0, and y = αx, x < 0, Pα(x) is increasing (because, as a
function of x, its derivative is positive). Therefore, the origin
is a focus of expansion for P(x, y), and its zero-set will be
star-shaped.

Let us demonstrate these notions for the simplest case, a
quartic in x and y:
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a x a x a x a x a x

a x a x a x a

dP x
dx

a x a x a x a x a x

a x a x a x a x a x

a x a x

,1 6

0 5

= + + + +

+ + + + +

+ + + +

= + + + +

+ + + + +

+ + +

40
4

31
4

22
4 2

13
4 3

04
4 4

30
3

21
3

12
3 2

03
3 3

20
2

11
2

02
2 2

10 00

40
3

31
3

22
3 2

13
3 3

04
4 3

30
2

21
2

12
2 2

03
3 2

20

11 02
2

4 4 4 4 4

3 3 3 3 2

2 2

α α α α

α α α

α α

α α α α

α α α

α α

α

a a10 01+ α.

For the equality dP x
dx xQ xα

α
( ) ( )=  to hold, assume for the

moment that a10 = a01 = 0 and, then,

dP x
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from which it follows that
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a x a x a x a x

a x a a a

α α α α

α α α

α α α

0 5 = + + +

+ + + +

+ + + +

4 4 4 4

4 3 3 3

3 2 2 2

40
2

31
2

22
2 2

13
2 3

04
4 2

30 21 12
2

03
3

20 11 02
2.

To force Qα(x) to be positive, we parameterize the aijs as

before, as coefficients of elements of 680642
4 . In order

not to lose the two degrees of freedom because of the con-
straint a10 = a01 = 0, we add to the optimization program a
step which allows to translate the polynomial; this is
equivalent to allowing any point, not just the origin, to be
the focus of expansion.

In Fig. 4, an example of fitting a polynomial of degree 8
with the focus of expansion method is presented. The curve
is an outline of a violin (the data points are white, and the
zero-set of the fit is gray). Although the data contains cusps,
the fit is reasonable and does not suffer from loops and
other pathologies.

For this shape, the focus of expansion method resulted in
a much better fit than the line convexity method (Fig. 5).

We do not include the parameterizations for higher de-
gree polynomials here, as the expressions are somewhat
long. They are, however, obtained simply by summing
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squares of appropriate polynomials, the number of which is
given by the appropriate Pythagoras number.

4 BOUNDED OBJECTS

Forcing zero-sets of polynomials to be star-shaped has
been shown to be possible, but is not appropriate for all
real-world objects. Assume the data set S x i= { }  is con-

tained in a bounded region of 5�d, e.g., the unit sphere. It
would be natural to require that the polynomial zero-set
also be confined to the unit sphere. For many practical
purposes, though, it suffices to require that the surface of
the unit sphere separates the different components of the
zero-set. Hopefully there will be only one component
inside the sphere, and any other superfluous compo-
nents outside the sphere may be “clipped” away cleanly.
In terms of the polynomial P, this translates to the con-
straint P x( ) > 0  for x ∈& , where & is the surface of the
unit sphere.

At first glance, it seems that this “continuous” constraint
may be approximated by a large set of discrete constraints
by densely sampling the unit sphere surface at the points

y y y y j sj
j

d
j

j
i

i

d
= = =%&'

()*=∑1

2

1
1 1, , : , , ,K K4 9 4 9 . These con-

straints imply the following linearly constrained version of
the least squares problem (2)

a
P x

P xm

a
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a
i

i

=
∇

�

�
��

�

�
��∈

∑arg min
a 5

4 9
4 9

2

subject to P y i sa
i4 9 > =0 1, ,K .   (5)

This problem may be solved numerically by standard op-
timization techniques, with the hope that the resulting zero-
set will indeed be contained in the unit sphere. However,
the complexity of the numerical procedure increases with
the number of constraints s, which must be very large in
order to ensure, with high probability, that the zero-set not
“escape” between the discrete samples of the sphere. For-
tunately, this naive method may be significantly improved
by analytic methods.

4.1 The 2D Case
The 2D case permits the following solution: Parameterize

the unit circle by: & 5= = ∈−
+ +

x t y t tt
t

t
t

0 5 0 52 7 4 9J L, , :
2

2 2
1
1

2
1

. We

are interested only in the polynomials P(x, y) such that
P(x(t), y(t)) > 0 for all t∈5. Assume P is quartic.

P x y a x yd d
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, ,1 6 =
+ ≤
∑ 1 2
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P reduced to &, parameterized by t, is
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Requiring that Q(t) > 0 for all t ∈ 5 is equivalent to requir-
ing that

a t t t td d

d d d d

d d
1 2

1 2 1 2

1 2

2 2 4

4

1 2 1 0, − + > ∈
− −

+ ≤
∑ 4 9 0 5 4 9 5 .   (6)

Since P(2, 8) = 2 (Lemma 4, Section 3.2), a sufficient condi-
tion for (6) to hold is the identity

a t t R t R td d

d d

d d
1 2

1 2

1 2

2

4
1

2
2

21 2, − ≡ +
+ ≤
∑ 4 9 0 5 0 5 0 5 .           (7)

where R1 and R2 are one-dimensional quartic polynomials,
determined by 10 free parameters, which we denote by
L1, ..., L10. Expanding the left side of (7) and equating the
coefficients of the nine monomials on both sides yields nine

linear equations for the 14 ad d1 2,  in terms of the ten Li,

which may be solved easily (see Appendix). Since the sys-
tem is degenerate, five of the ad d1 2,  are left free, or equiva-

lently, equal to L11, ..., L15, five extra degrees of freedom.

Note that the solutions are not linear in Li. Substituting any

real values for the Li yield coefficients ad d1 2,  of a two-

dimensional quartic polynomial which is positive on the
unit circle. This means that the optimization procedure
searches 515, the L  space, unconstrained, instead of the

equivalent (but unknown) a  subset of 515.

Fig. 4. Fitting a violin with the zero-set of an eight-degree polynomial,
using the focus of expansion method.

Fig. 5. Fitting a violin with the zero-set of an eight-degree polynomial,
using the line convexity method.
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Fig. 6 shows some results of our method applied to fit-
ting quartic polynomials to some 2D data sets, compared to
the results obtained by an unconstrained fitting procedure.
The results of our procedure are obviously superior.

4.2 The 3D Case
The obvious extension of the 2D solution to the 3D case is
to parameterize the unit sphere using two parameters (u, v),
and follow a procedure similar to the above to parameterize
the 35 coefficients of a quartic 3D polynomial by a (possibly
larger) number of Ls. However, this turns out to be impos-
sible, as the procedure generates 66 linear equations for the
34 coefficients in terms of the Ls. Theoretically, this diffi-
culty may be alleviated by increasing the degree of the
polynomial, so a solution exists for d ≥ 10. These degrees
are, however, impractical.

A slightly different approach enables a solution, even for
lower degree polynomials. Assume that P can be written as

P(x, y, z) = Q1(x
2 + y2 + z2 − 1, y, z) + Q2(x, x2 + y2 + z2 − 1, z)

+ Q3(x, y, x2 + y2 + z2 − 1).

A sufficient condition for the positivity on the unit sphere
constraint to hold is

Q1(0, v, w) > 0  Q2(u, 0, w) > 0  Q3(u, v, 0) > 0

for all (u, v, w) ∈ 53    (8)

Naively, in order that P be quartic, Qi cannot be more than

quadratic. However, this means that the resulting P will
have at most 3 × 6 = 18 degrees of freedom, which is much
less than the 35 it should have. A more promising way of
generating P is allowing Qi to be quartic, but with vanish-
ing coefficients for the monomials, which would cause P to
have a degree higher than four, i.e., retain only the follow-
ing 22 coefficients:

Q u v w a v a v w a v w a vw

a w a uv a uvw a uw
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a u a v a w a uw

a uw a vw a u a v a w a

1 040
4

031
3

022
2 2

013
3

004
4

120
2

111 102
2

003
3

021
2

012
2

003
3

200
2

020
2

002
2

110

101 011 100 010 001 000

, ,

.

0 5 = + + +

+ + + +

+ + + +

+ + + +
+ + + + + +

For instance, a400u
4 has been removed, as the term

a400(x
2 + y2 + z2 − 1)4 would cause the degree of P to be 8. Q2

and Q3 have analogous type. The resulting P is quartic with
the full 35 degrees of freedom. The constraints of (8) may be
translated into the identities

Q v w R v w R v w R v w

Q u w R u w R u w R u w

Q u v R u v R u v R u v
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= + +

= + +

= + +

where the Ri are quadratic 2D polynomials, having 9 × 6 =
54 coefficients Li in total. (It suffices to sum three squares

Fig. 6. (a), (c) Unconstrained and (b), (d) constrained fits to the “moon” and “eye” data sets, where the constraint is positivity on the marked unit circle.
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since P(3, 4) = 3—Lemma 3, Section 3.2).
As opposed to the solution in the 2D case, there is no

need to solve equations in order to express the ad d d1 2 3, ,  in

terms of the Li. This reduces the optimization procedure to

an unconstrained search over 554.
Fig. 7 shows some results of our method applied to

fitting quartic polynomials to some 3D data sets, com-
pared to the results obtained by an unconstrained fit-
ting procedure. The results of our procedure are obvi-
ously superior.

Another example follows in Fig. 8. The 3D data was
sampled from the handle of a screwdriver.

4.3 Forcing the Zero-Set to Lie Entirely Within a
Circle

Methods similar to those described in Sections 4.1 and
4.2 can be used to force a stronger condition on a poly-
nomial’s zero-set—namely, that it is positive everywhere
on and outside a given ellipse, not just on the ellipse. As
before, it will be demonstrated how to force the zero-set
to be positive everywhere on and outside the unit circle;
the generalization to any ellipse, and to polynomials in
three variables, is straightforward. The method can also
be extended to other algebraic curves, in exactly the
same way; however, the resulting parametrization will
be more complicated.

Let us look at the case of a quartic in two variables. We
start with the following degenerate quartic P(x, u):

P(x, u) = a40x4 + a30x3 + a21x2u + a20x2 + a11xu

+ a02u2 + a10x + a01u + a00.

As in Section 4.2, u will eventually be replaced by x2 + y2

− 1; this is why monomials which would increase the de-
gree beyond 4 were removed. If P(x, u) is to be positive out-
side of the unit circle, it is necessary that P(x, u) be positive
for u > 0.

The corresponding cage has nine elements. It is easy to
verify, using the notation of Theorem 1, that a = 9 and,
therefore, the corresponding Pythagoras number is bounded
by 1 72 1

2 3 77+ − = . ; since it has to be an integer, 3 is an upper
bound on the Pythagoras number. We can, therefore, pa-
rameterize an everywhere positive P(x, u) by

(L1x
2 + L2u + L3x + L4)

2 + (L5x
2 + L6u + L7x + L8)

2

+ (L9x
2 + L10u + L11x + L12)

2

In order to allow the polynomial to be negative for
negative values of u (that is, inside the unit circle), we sim-
ply add to P(x, u) the term L u13

2 . Note that P(x, u) will still
be positive on and outside the unit circle, as desired. All in
all, we obtain

L L L x L L L L L L x
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Finally, after substituting u = x2 + y2 − 1, we obtain the
following parameterization for quartics which are positive
everywhere on and outside of the unit circle:

Fig. 7. (a), (c) Unconstrained and (b), (d) constrained quartic fits to the
“torus” and “bulb” data sets.

Fig. 8. Quartic 3D: (a) screwdriver data, (b) fit to data.
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Note that this family is degenerate (for instance, the coef-
ficient of y is always 0). By adding another quartic of this
type—with x replaced by y during the construction—we
obtained a family of quartics which have the full 15 degrees
of freedom and satisfy the condition of being positive eve-
rywhere outside the unit circle. However, more parameters
are required to describe this family than to describe the
quartics which are only guaranteed to be positive on the
unit circle (Section 4.1).

In Fig. 9, a fit to the “vase” data set using this param-
eterization is shown. Unconstrained fits to this data set,
even those with a globally bounded zero set, had extrane-
ous components [8]. These had to be removed using heu-
ristic methods. The method presented here guarantees that
no such extraneous components can possibly occur outside
of a bounding ellipse.

5 CONCLUSIONS AND FUTURE WORK

We have presented novel parameterizations for families of
polynomials, which have certain desirable topological
properties. This eliminates the need to use failure-prone
heuristics to achieve these properties when fitting implicit
polynomials to discrete data. In this regard, this work can
be viewed as a continuation of [8], [16], [14]. The fitting al-
gorithms presented here were implemented and tested on
real data sets, with satisfactory results.

In the future, we hope to discover additional param-
eterized families of polynomials, which will satisfy other
topological properties (such as connectedness).

APPENDIX

The parameterization obtained by solving the equations
resulting from (7) is:
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Fig. 9. Bounded fit to “vase” data.
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The solution was obtained using the Maple symbolic com-
putation package.

REFERENCES

[1]� C. Bajaj, J. Chen, and G. Xu, “Modeling with Cubic A-Patches,”
ACM Trans. Graphics, vol. 14, no. 2, pp. 103-133, 1995.

[2]� C. Bajaj, I. Ihm, and J. Warren, “Higher-Order Interpolation and
Least-Squares Approximation Using Implicit Algebraic Surfaces,”
ACM Trans. Graphics, vol. 12, no. 4, pp. 327-347, 1993.

[3]� M.D. Choi, T.Y. Lam, and B. Reznick, “Sums of Squares of Real
Polynomials,” Proc. Symposia Pure Mathematics, vol. 58.2, pp. 103-
126, 1995.

[4]� D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C.
Rothwell, “Invariant Descriptors for 3D Object Recognition and
Pose,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13,
no. 10, pp. 971-992, Oct. 1991.

[5]� D.A. Forsyth, “Recognizing Algebraic Surfaces from Their Out-
lines,” Proc. Int’l Conf. Computer Vision, pp. 476-480, Berlin, May
1993.

[6]� D. Hilbert, “Uber die darstellung definiter formen als summe von
formen-quadsraten,” Math. Ann., vol. 32, pp. 342-350, 1888.

[7]� D. Keren, “Using Symbolic Computation to Find Algebraic Invari-
ants,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16,
pp. 1,143-1,149, 1994.

[8]� D. Keren, D. Cooper, and J. Subrahmonia, “Describing Compli-
cated Objects by Implicit Polynomials,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 16, no. 1, pp. 38-53, Jan. 1994.

[9]� D.J. Kriegman and J. Ponce, “On Recognizing and Positioning
Curved 3D Objects from Image Contours,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 12, no. 12, pp. 1,127-1,138,
Dec. 1990.

[10]� Z. Lei and D.B. Cooper, “Linear Programming Fitting of Implicit
Polynomials,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 2, pp. 212-217, Feb. 1998.

[11]� D. Levin and E. Nadler, “Convexity Preserving Interpolation by Al-
gebraic Curves and Surfaces,” Numerical Algorithms, vol. 9, pp. 113-
139, 1995.

[12]� P.D Sampson, “Fitting Conic Sections to Very Scattered Data: An
Iterative Improvement of the Bookstein Algorithm,” Computer Vi-
sion, Graphics, and Image Processing, vol. 18, pp. 97-108, 1982.

[13]� J. Subrahmonia, D. Cooper, and D.Keren, “Practical Reliable Bay-
esian Recognition of 2D and 3D Objects Using Implicit Polynomi-
als and Algebraic Invariants,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 18, pp. 505-519, 1996.

[14]� S. Sullivan, L. Sandford, and J. Ponce, “Using Geometric Distance
Fits for 3D Object Modeling and Recognition,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, pp. 1,183-1,196, 1994.

[15]� G. Taubin, “Estimation of Planar Curves, Surfaces and Nonplanar
Space Curves Defined by Implicit Equations, with Applications to
Edge and Range Image Segmentation,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 13, no. 11, pp. 1,115-1,138, Nov.
1991.

[16]� G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D.J. Kriegman,
“Parameterized Families of Polynomials for Bounded Algebraic
Curve and Surface Fitting,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 16, pp. 287-303, 1994.


