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Abstract. Recovery of epipolar geometry is a fundamental problem in computer vision. The introduction of the
“joint image manifold” (JIM) allows to treat the recovery of camera motion and epipolar geometry as the problem
of fitting a manifold to the data measured in a stereo pair. The manifold has a singularity and boundary, therefore
special care must be taken when fitting it.

Four fitting methods are discussed—direct, algebraic, geometric, and the integrated maximum likelihood (IML)
based method. The first three methods are the exact analogues of three common methods for recovering epipolar
geometry. The more recently introduced IML method seeks the manifold which has the highest “support,” in the
sense that the largest measure of its points are close to the data. While computationally more intensive than the other
methods, its results are better in some scenarios. Both simulations and experiments suggest that the advantages of
IML manifold fitting carry over to the task of recovering epipolar geometry, especially when the extent of the data
and/or the motion are small.
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1. Introduction and Previous Work

Given a stereo pair with point correspondences, one
seeks to recover the epipolar geometry, which is de-
pendent on the camera motion and internal calibra-
tion. This is a fundamental problem in computer vi-
sion, and there exists a huge body of research tackling
it; see Hartley and Zisserman (2000) for a thorough
treatment.

In the pioneering work Longuet-Higgins (1981),
a simple algebraic relation between the correspond-
ing points and the epipolar geometry was derived,
which allows to recover the essential matrix given eight
matching points in a stereo pair. We refer to this as the
direct solution. In Weng et al. (1989), it was assumed
that more matching pairs are given, and that there are
errors in the coordinates. In this scenario, the prob-
lem cannot be solved exactly as in Longuet-Higgins
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(1981), therefore one seeks an approximate solution
by minimizing the sum of squares of the aforemen-
tioned algebraic relation. We will henceforth refer to
this method by the commonly used name algebraic
method.

More recent work has roughly followed two other
directions:

• The geometric method. The idea here is to find a
“legal” geometric configuration (i.e., one satisfying
the epipolar geometry constraints), such that the
sum of squared distances of the matching pairs from
it is minimal. This problem is numerically more
challenging, but it yields better results (Hartley and
Zisserman (2000).

• The IML (Integrated Maximum Likelihood) method,
sometimes referred to as the Bayesian approach.
Here, the idea is to recover the epipolar geome-
try G which maximizes the probability Pr(G | D),
where D is the measured data (in this case the
matching pairs). Some work in this direction is pre-
sented in Torr (2002) Kanatani (1993) Kanatani
(1994) Torr and Zisserman (1998) Forsyth et al.
(1999) Werman and Keren (2001) Keren et al.
(2003) Goshen et al. (2003) Ohta (2003) Nestares
et al. (2000) Okatani and Deguchi (2002). The pa-
per falls in this category, but is different in the
method used to compute the probability (see next
section).

1.1. The Joint Image Manifold

The joint image space (JIS) Anandan and Avidan
(2000) Triggs (1995) is the cartesian product of point
pairs in two images. The joint image manifold (JIM)
for a given epipolar configuration consists of the set
of matching pairs which adhere to the epipolar ge-
ometry. The notion of the JIM allows to interpret the
epipolar geometry problem as the problem of fitting an
algebraic manifold. One may work in projective or Eu-
clidean space; we will use the latter, in which the JIM
is a three dimensional manifold in R4 which happens
to be an algebraic manifold of degree two Anandan
and Avidan (2000).

The key observation in this paper is that since the
JIM is an algebraic manifold, the JIM (and epipolar
geometry) recovery problem can be represented as a
problem of fitting an algebraic manifold, i.e., an im-
plicit polynomial, to the data. While this idea is not
new Anandan and Avidan (2000) Triggs (1995), this

work suggests to use a fitting method which obtains
the IML estimate by integrating out the entire space of
nuisance parameters.

1.2. Fitting Algebraic Manifolds

Given a set of points pi, 1≤ i ≤ n in Euclidean space,
one may seek a polynomial P such that its zero set
(i.e., the points in which it obtains a value of zero),
approximates pi, 1≤ i ≤ n (Keren et al. 1994; Taubin
et al., 1994). The zero set is commonly called an al-
gebraic manifold. Obviously, this is useful when one
seeks a polynomial relation which has to be satisfied by
some measured data—but this is exactly the situation
we face when trying to recover the epipolar geometry.
An explanation follows, as well as an interpretation of
the four aforementioned methods as fitting techniques.

In Faugeras (1992) Faugeras (1992) Hartley (1992)
Hartley et al. (1992), the following equation was de-
rived: (x1, y1, 1)F(x2, y2, 1)T = 0, where F is the fun-
damental matrix and {(x1, y1), (x2, y2)} a pair of match-
ing points. This is a linear constraint on F’s elements,
and if we look at the JIM in R4 space, which is defined
by (x1, y1, 1)F(x2, y2, 1)T = 0, the problem reduces
to fitting such a manifold (defined by F) to the data.
How should this be done? Let us proceed to review
some methods for recovering epipolar geometry, and
compare them to work done in the realm of manifold
fitting:

• Direct solution. If it is assumed that no er-
ror is present in the data, it is possible to
recover F by directly solving the equations
(x1, y1, 1)F(x2, y2, 1)T = 0. Clearly, if eight pairs
are available, there results a system of eight lin-
ear equations in eight variables (Longuet-Higgins,
1981). Alas, usually the data is susceptible to mea-
surement errors.

• Algebraic method. This method minimizes the sum
of squares of the residuals (Weng et al., 1989;
Bruckstein et al., 2001). It is a common method
for treating noisy data and the case in which there
are more degrees of freedom in the data than in the
model. In the context of algebraic manifold fitting,
this is equivalent to finding a polynomial such that
the values of the polynomial at the data points should
be closest to zero. The method finds the polynomial
P which minimizes

∑n
i=1 P2(pi ); but this is a no-

toriously weak method for fitting manifolds (Keren
et al., 1994; Taubin et al., 1994; Ahn et al., 2001).
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• Geometric method. This is equivalent to fitting a
manifold by minimizing the sum of squared dis-
tances of each data point from the point on the man-
ifold which is closest to it. Statistically this method
recovers the joint maximum likelihood of both the
manifold and the noiseless sources of the measured
data points. While computationally more challeng-
ing, it yields better results (Taubin et al., 1994; Ahn
et al., 2001; Hartley and Zisserman, 2000). This
method is also known as the profile maximum like-
lihood method Berger et al. (1999) Severini (2001),
but we will stick with the terminology common in
the computer vision community. This method re-
quires non-linear optimization with its known prob-
lems. To overcome these problems and to correct
the statistical bias associated with various approx-
imations, several iterative methods have been pro-
posed (Sampson, 1982; Kanatani, 1996; Leedan and
Meer, 2000; Sullivan et al., 1994; Nestares and Fleet,
2003).

• Integrated Maximum Likelihood (IML) method
[Newsam and Redding (1997) Berger et al. (1999)
Werman and Keren (2001) Severini (2001)]. The
idea is to recover the manifold V, given the data
D = p1, . . . , pn , by maximizing the probability
Pr(V | D). Here, pi will be a point in R4 obtained by
concatenating two matching points in a stereo pair,
and V a manifold defining the epipolar geometry, as
will be explained shortly. Contrary to the geometric
approach, the method suggested here allows each
manifold point (and not only the closest one) to be
the source of each data point. Bayes’ formula states
that

Pr (V | D) = Pr (D | V )Pr (V )

Pr (D)
.

We can ignore Pr(D) since it is fixed. Next we as-
sume a uniform prior on the space of all manifolds V.
The justification for using such is prior is twofold:
firstly, we do not have any prior knowledge on V
(and if such knowledge exists we can incorporate
it into our framework). Secondly, if there are many
data points, then the effect of such priors is mi-
nor. Under these assumptions the V obtained is the
maximum likelihood estimate of the data given the
manifold. Assuming that the data points are inde-
pendent Pr (D | V ) = ∏n

i=1 Pr (pi | V ). But, as op-
posed to the geometric method—which assumes that
Pr (pi | V ) is proportional to exp(− d2(pi ,V )

2σ 2 ), where
σ 2 is the noise variance and d(pi , V ) the distance

from pi to V—the IML method seeks an estimate
which uses the full probability distribution over V,
which under the Gaussian noise model and up to a
normalizing factor equals

Pr (pi | V ) =
∫

V

exp

(

−d2(pi , v)

2σ 2

)

µ(dv) (1)

where the integration is with respect to the usual
Lebesgue measure µ(dv), which assigns identical mea-
sures to regions with identical area. For brevity’s sake
hereafter we will simply write dv. Here we further
assume that all points on the manifold have equal
probability and therefore their prior probability can
be dropped. We make this assumption because a-priori
we have no information on the probability that a pair
of points in the two images are in correspondence.
This choice of prior makes the estimator shift invari-
ant. Even though V is infinite, the integral is finite
because the integrand decreases exponentially when
moving away from pi. This is also true for the rest
of the integrals appearing in this paper. In Werman
and Keren (2001) it was empirically demonstrated that
while IML fitting is time consuming, it yields good
results especially when

• The manifold is small with respect to the noise.
• The manifold is strongly curved.
• The manifold has a boundary.
• The manifold has a singular point.

In all these cases, exp(− d2(pi ,V )
2σ 2 ) is a poor approxi-

mation to Eq. (1), especially if there’s data close to the
singularity or the boundary. This possible pitfall was
noted in Torr (2002), however there it was assumed
that the JIM is “locally linear,” and it was proved
(as in Werman and Keren (2001)) that in this case
Pr (pi | V ) ≈ exp(− d2(pi ,V )

2σ 2 ). However, as we shall
demonstrate, the JIM is not locally linear, and there-
fore the IML method is expected to perform better,
especially in scenarios in which there is data close to
the singularity or the boundary of the JIM.

It should be noted that the geometric method can
also be viewed as a maximum likelihood estimate—
not of the manifold alone, but of the manifold and the
“true” (denoised) sources of the measurement points
simultaneously. The IML method used here integrates
out the “true” points, yielding the probability of the
manifold only.
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The paper is laid out as follows: in Section 2
we demonstrate the importance of the IML method
for a simple example. In Section 3 we describe the
Focus of Expansion (FOE) estimation problem and
its solution, and Section 4 deals with the fundamental
matrix estimation problem and compares the IML
method with the geometric method. Section 5 shortly
studies the non-linearity of the JIM. Section 6 presents
simulations and experimental results, and Section 7
concludes the paper.

2. IML Estimation—Simple Example

In order to demonstrate the performance of the sug-
gested IML method in the presence of measurement
data near a singularity, we study a very simple case
— a cone in R2, which consists of two straight lines:
y = ax, y = −ax for some a. This example was
chosen since the JIM is also a cone (albeit higher-
dimensional—see Section 4).

Denote the lines y = ax and y = −ax by L1

and L2 respectively. Then clearly the cone is the
union of L1 and L2. Its implicit equation is (y −
ax)(y + ax) = 0. Following the previous study of
the three methods, and noting that Werman and Keren
(2001)

∫

Li

(
1√

2πσ 2

)2

exp

(

−d2(p, l)

2σ 2

)

dl

= 1√
2πσ 2

exp

(

−d2(p, Li )

2σ 2

)

(2)

it follows that the below cost functions have to be
optimized for the various methods, in order to recover
the optimal slope a when given measured data pi =
(xi , yi ), 1 ≤ i ≤ n (assuming that the noise variance
satisfies 2σ 2 = 1):

• Algebraic method: minimize

n∑

i=1

((yi − axi )(yi + axi ))
2

• Geometric method: minimize

n∑

i=1

min{d2(pi L1), d2(pi , L2)}

Figure 1. Simulation results of fitting a 1D cone. The horizontal
axis represents the data’s extent and the vertical axis the average
estimate of the slope—upper graph shows the IML results, middle
graph the geometric method results, and lower graph the algebraic
method results. The correct slope is 2.

• IML method: maximize

n∑

i=1

log(exp(−d2(pi , L1)) + exp(−d2(pi , L2)))

(note that the integration is carried over the entire man-
ifold – i.e., the cone’s two branches – hence the expo-
nentials are added).

For points far away from the origin (which is the
cone’s apex) the geometric method and IML crite-
ria are nearly equivalent, since such points, will be
much closer to L1 than to L2 or vice-versa (unless the
slope is very large); in that case, one of the expressions
exp(−d2(pi , L1)), exp(−d2(pi , L2)) is much smaller
than the other, hence the cost function will be well
represented by min {d2(pi , L1), d2(pi , L2)}. However,
this is not the case for points near the apex. The strength
of the IML method is that it does not force us to decide
from what branch of the cone—L1 or L2—the point
came from; both options are considered. Even in this
simple case, the IML method yields better results than
the geometric method, and both are far superior to the
algebraic method. In Fig. 1 simulation results of fitting
a cone to 200 data points generated by adding Gaussian
noise of unit variance to a cone of slope 2 are presented.
The horizontal axis represents the data’s extent (mean-
ing that it ranged uniformly between −x and x), and the
vertical axis is the average estimate of the slope—upper
graph shows the IML results, middle graph the geo-
metric method results, and lower graph the algebraic
method results. When the extent of the data reaches
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3.4 (which means that there are more data points away
from the apex), both the IML and geometric methods
converge to the correct slope, but for smaller extents of
the data IML consistently performs better than the ge-
ometric method. The algebraic method performs very
poorly. In all experiments, the same number of data
points were used and the distribution was the same for
the y = 2x and y = −2x branches. Note that there is
no analog for the manifold’s boundary in this simple
case.

3. FOE Estimation

Consider next a relatively simple problem—FOE esti-
mation. Given are two images I1 and I2 whose centers
of projection are O and O′. In this case the camera un-
dergoes pure translation, �T = O ′ − O , and every pair
of corresponding points is collinear with an epipole
point, v. So, estimation of the epipolar geometry re-
duces to estimation of the epipole point. We will now
describe the different solutions that can be given to this
problem. In the sequel we will represent points in the
image using homogeneous coordinates (i.e., the third
coordinate is always 1). In this formulation the compu-
tation of distance between points as in Eq. (3) is correct
as the 1’s cancel out.

3.1. The Algebraic Method

The algebraic approach to determine the epipole has
a geometric interpretation which is to find the point
closest to all lines passing through the pairs of corre-
sponding points. Let li be the normalized line through
two corresponding points pi and p′

i such that |li · v|
is the distance from the line to v. We wish to find the
point which satisfies

v̂ = arg min
v

n∑

i=1

(li · v)2,

where v̂ is an estimate of v·v̂ can be easily computed us-
ing linear least squares. The problem with this method
is that instead of assuming that there are measurement
errors in the corresponding points, it is assumed that
the estimated epipole is inaccurate and we are trying
to minimize this inaccuracy. This problem is rectified
by the geometric method.

3.2. The Geometric Method

Given measured corresponding pairs {pi ↔ p′
i }, and

assuming that image measurement errors occur in both
images, one asks how to “correct” the measurements
in each of the two images in order to obtain a per-
fectly matched set of image points. Formally, we seek
an epipole, v, and a set of correspondences { p̂i ↔ p̂′

i },
which satisfy the epipolar geometry constraint and
minimize the total error function

v̂, { p̂i ↔ p̂′
i } = arg min

v,{ p̂i ↔ p̂′
i }

∑

i

(‖pi − p̂i‖2

+‖p′
i − p̂′

i‖2) (3)

subject to p̂′
i · (v × p̂i ) = 0 ∀i

Minimizing this cost function involves determining
both v and a set of subsidiary correspondences { p̂i ↔
p̂′

i }. In general, the minimization of this cost function
involves non-linear optimization.

3.3. Interpretation of the Geometric Method as
Manifold Fitting

The estimation of the epipole point can be thought of as
fitting a manifold to points inR4. Each correspondence
of image points pi ↔ p′

i defines a single point in the
JIS, formed by concatenating the coordinates of pi

and p′
i . For every candidate epipole point v, the image

correspondences pi ↔ p′
i that satisfy pi ·(v× p′

i ) = 0
define a quadratic manifold in R4, which consists of
all the points satisfying

p′
xi pyi − p′

yi pxi − p′
xivy = p′

yivx + pxivy − pyivx = 0.

Given measured point matches {Pi } = {(pxi , pyi ,

p′
xi , p′

yi )} the task of estimating an epipole point be-
comes the task of finding a 3D manifold V (defined
by v) that approximates the points {Pi }. In general,
of course, it will not be possible to find a manifold
which precisely goes through the points; so, the geo-
metric method proceeds as follows: let V be the man-
ifold corresponding to a candidate epipole v, and for
each point Pi , let P̂i be the closest point to Pi ly-
ing on the manifold V. One immediately sees that
|Pi − P̂i‖2 = ‖pi − p̂i‖2 + ‖p′

i − p̂′
i‖2.

So, the geometric distance in R4 is equivalent to the
geometric distance in the images; and since the IML
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method improves over the geometric method for the
problem of manifold fitting, it is reasonable to assume
that it will also improve over the geometric method for
the problem of motion recovery. We now explore this
venue.

3.4. The IML Method

The IML method proceeds as follows. Let

v̂ = arg max
v

f (pi ↔ p′
i | v)

where f is the probability density function (pdf). It re-
mains now to calculate f. First, we take into considera-
tion the “ordering constraint”, i.e., either the points in
the first image are closer to the epipole than the points
of the second image or vice-versa. The direction of the
motion T, with a forward or a backward component
Tz, determines this ordering. Since we have no prior
information about the motion of the camera, we have
to compute

f ({pi ↔ p′
i } | v) = f ({pi ↔ p′

i } | v, Tz > 0)

Pr (Tz > 0) + f ({pi ↔ p′
i } | v, Tz < 0)PrTz < 0)

Because we have no prior information, we assume that
Pr (Tz > 0) = Pr (Tz < 0) = 1

2 . Assuming indepen-
dency over the measurement points we get

f ({pi ↔ p′
i } | v, Tz > 0)

=
n∏

i=1

f (pi ↔ p′
i | v, Tz > 0)

and the opposite translation term can be computed
similarly.

In order to write down the pdf for a candidate v, in-
tegrate out the “nuisance” parameters (Severini, 2001;
Berger et al., 1999) to obtain

f (pi ↔ p′
i | v, Tz > 0) =

∫ ∫

v

∫

f ({pi ↔ p′
i } | p̄i

↔ p̄′
i , v, Tz > 0) f ( p̄i ↔ p̄′

i | v, Tz > 0)dv

where { p̄i ↔ p̄′
i } are the “real” (i.e., “nuisance”)

points which have been corrupted by noise, yield-
ing {pi ↔ p′

i }. The integration is over the mani-
fold of “legal” pairs ( p̄xi , p̄yi , p̄′

xi , p̄′
yi ), which sat-

isfy p̄′
i · (v × p̄i ) = 0 and which also correspond

to Tz > 0. The geometric interpretation of the con-
dition that Tz > 0 is that the point p̄i is constrained
to lie on the line segment between v and p̄′

i . It will
be shown in the sequel that V is a three-dimensional
manifold in R4 with a boundary and a singular point.
The integration uses the following parametrization
of V

p̄i = λq̄ ′
i + (1 − λ)v, p̄′

i = q̄ ′
i

where λ ∈ [0, 1] parameterizes p̄i to lie on the segment
[v, p̄′

i ]. In this transformation we replace the variables:
p̄i x , p̄iy , p̄′

i x and p̄′
iy by the variables λ, q̄ ′

i x and q̄ ′
iy . Let

M be the matrix of partial derivatives:

M =
















∂ p̄i x

∂ q̄ ′
i x

∂ p̄i x

∂q̄ ′
iy

∂ p̄i x

∂λ
∂ p̄iy

∂ q̄ ′
i x

∂ p̄iy

∂ q̄ ′
iy

∂ p̄iy

∂λ

∂ p̄′
i x

∂ q̄ ′
i x

∂ p̄′
i x

∂q̄ ′
iy

∂ p̄′
i x

∂λ

∂ p̄′
iy

∂ q̄ ′
i x

∂ p̄′
iy

∂ q̄ ′
iy

∂ p̄′
iy

∂λ
















=








λ 0 q̄ ′
i x − vx

0 λ q̄ ′
iy − vy

1 0 0

0 1 0








The Jacobian for a non-square matrix is J =√
det(MT M) = √

1 + λ2‖v − q̄ ′
i‖, and

f (pi ↔ p′
i | v, Tz > 0) =

1∫

0

[ ∫ ∫

f (pi ↔ p′
i | p̄i

= λq̄ ′
i + (1 − λ)v, p̄′

i = q̄ ′
i , v, Tz > 0)Jdq̄ ′

i

]

dλ (4)

assuming Gaussian noise

f (pi ↔ p′
i | p̄i ↔ p̄′

i , v, Tz > 0)

=
(

1

2πσ 2

)2

exp

(

−‖pi − p̄i‖2 + ‖p′
i − p̄′

i‖2

2σ 2

)

.

The integral in Eq. (4) was computed numerically.
The two infinite integrals over q̄ ′ can be evaluated
efficiently by the Gauss-Hermite integration method
[Press et al. (1986), Chap. 4.5]. We are then left with
an integral over λ whose integrand is effectively non-
zero only for a small interval of λ values (an example
of such a function is shown in Fig. 2). For functions
of this type, some numerical integration procedures do
not work well. We therefore find the interval on which
the function does not vanish and apply to it the Gauss-
Legendre integration method. This interval is located
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Figure 2. An example of a typical function which is a function of λ

for values of p = (149.5, 150.5), p′ = (147.5, 148.5), σ = 1, v =
(50, 50).

as follows: first, find an initial value for λ, for which
the function does not vanish. This is done by first using
the geometric method, which yields an estimate of p̂i

and p̂′
i . The corresponding value of λ, i.e., λ = ‖ p̂i −v‖

‖ p̂′
i −v‖ ,

is then taken to be the center of the λ interval over
which integration is carried out; the interval’s limits
are estimated by two binary searches in the segments
[0, λ] and [λ, 1].

The integral measures the pdf of a particular v. The
optimal v was recovered by applying the Nelder-Mead
optimization method (Press et al., 1986).

3.5. Geometric Interpretation of the IML Method

The IML method proposed here seeks to find a man-
ifold which has the largest “support”, in a sense that
there is a large measure of corresponding points on the
manifold – i.e., p̄i ↔ p̄′

i which satisfy p̄i ·(v× p̄′
i ) – that

are close to the measured corresponding pairs pi ↔ p′
i .

The IML method takes into consideration a large vol-
ume of information; it considers the entire manifold
and its exact structure instead of only the point on the
manifold closest to the measured point pair. Therefore
it is expected to provide higher accuracy, and it does
so, as will be demonstrated in Section 6.

Figure 3 demonstrates the difference between the
geometric and IML methods, in the simplest scenario
possible—two matching point pairs, p1 ↔ p′

1 and
p2 ↔ p′

2. The geometric method will prefer v1 over
v2 as the FOE, since the distance of the manifold
corresponding to v1 from the measured data is zero.
However, if the measurement noise is not too small

Figure 3. A simple scenario demonstrating the difference between
the geometric and IML methods. The geometric method prefers v1,
the IML prefers v2 which has a larger support (see text preceding
figure).

with respect to the size of the point configuration, the
IML method will prefer v2, since the manifold defined
by it carries a larger support for the data. This may
appear odd – after all, v1 seems like a perfect epipole.
However, the v1 manifold carries very little support
for the data, as only a very narrow range of line angles
through v1 are close to the data, as opposed to v2.
v1 is therefore an unstable choice and it overfits the
measurement noise.

4. The Fundamental Matrix Case

In this section the general case—the fundamental ma-
trix estimation problem—is addressed. The fundamen-
tal matrix F depends on the internal calibration matrix
K, the rotation matrix between two views R, and the
translation vector e (the epipole). When optimizing
over all possible fundamental matrices, we have to op-
timize over these components. As before, assume that
a set of correspondences {pi ↔ p′

i } is given.
Next, we integrate over the nuisance parameters and

then maximize over the manifold’s parameters. The
manifold F̂ is sought (where f is the probability density
function):

F̂ = arg max
F

f ({pi ↔ p′
i } | F).

In order to calculate f, it is necessary to integrate over
the manifold that corresponds to a candidate F. We start
with some simple observations about the manifold’s
shape. As noted in Anandan and Avidan (2000), this
manifold is a cone.

4.1. The Cone

We now take a closer look at the cone which con-
stitutes the JIM. Using the well-known notion of the
fundamental matrix F, the epipolar constraint can be
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written as (x1, y1, 1)F(x2, y2, 1)T = 0 for matching
points (x1, y1), (x2, y2). It is also well-known that F
is of rank 2 (see Hartley and Zisserman (2000) for
discussion and references). Now follow a few lemmas:

Lemma 1. Under the transformation

(x1, y1, x2, y2) → (x1 − a1, y1 − b1, x2 − a2, y2 − b2)

where (a1, b1, 1)F = 0, F(a2, b2, 1)T = 0T , the fun-
damental matrix assumes the form

F =






F11 F12 0

F21 F22 0

0 0 0






Note that this transformation is achieved simply by
moving the origin of the left and right images to the
epipole points. The proof is immediate.

Lemma 2. In the notation of Lemma 1, the constraint
(x1, y1, 1)F(x2, y2, 1)T can be expressed as

(x1, y1, x2, y2)F4(x1, y1, x2, y2)T = 0

where (Anandan and Avidan, 2000)

F4 =








0 0 F11 F12

0 0 F21 F22

F11 F21 0 0

F12 F22 0 0








The proof is immediate.

Lemma 3. There is a rotation of coordinates
such that if F4 is in the form of Lemma 2,
(x1, y1, x2, y2)F4(x1, y1, x2, y2)T = 0 is equal to up
to a scale factor

(
x2

1 − y2
1

) + γ 2(x2
2 − y2

2

) = 0

xi , yi , i = 1 . . . 2 are the new coordinates.

The proof follows simply by diagonalizing the 4 × 4
matrix of Lemma 2. It turns out that it has two pairs
of eigenvalues with opposite signs, ±γ1,±γ2 given by
the following expressions:

e1 = 2F2
11 + 2F2

12 + 2F2
21 + 2F2

22

e2 = F4
11 + F4

12 + F4
21 + F4

22 + 2F2
22 F2

21 + 2F2
22 F2

12

−2F2
22 F2

11 − 2F2
12 F2

21 + 2F2
11 F2

21

+2F2
11 F2

12 + 8F11 F12 F21 F22

γ1 = 1

2

√
e1 + 2

√
e2 γ2 = 1

2

√
e1 − 2

√
e2 γ = γ1

γ2

We note, however, that the rotation required for diago-
nalizing F is not separable in the images—i.e., it cannot
be represented as a combination of separate rotations
in (x1, y1) and (x2, y2), but it “mixes” all the four co-
ordinates {x1, y1, x2, y2}. However, as far as the fitting
is concerned, this makes no difference, as long as we
apply the same transformations to the cone and to the
data points. After the transformations of Lemmas 1
and 3, Eq. (5), evidently describes a cone in R4 whose
apex is at the origin.

4.2. The Cone Boundaries and Singularity

As will be described shortly, the IML method is more
computationally expensive than other methods, due to
the numerical integration. When is it important to suffer
this overhead? As noted in Werman and Keren (2001)
Torr (2002), if the data is near a locally linear region of
the cone, not much is gained byintegrating. However, in
the following two cases, the local linearity assumption
is strongly violated:

• The (transformed) data points are close to the cone’s
apex (0, 0, 0, 0). Clearly, local linearity is violated.
This can happen, for example, when the object is
small, and the camera is moving towards it (as in
tracking).

• For the sake of simplicity, assume for now that there
is only camera translation present, and that it is for-
ward or backward relative to the center of the scene,
which we assume to be at the origin of the coordinate
system. It is clear that if the matching point pairs are
denoted (p(i)

1 , p(i)
2 ), then either all the “true” p(i)

1 ’s
are closer to the origin than all the corresponding
p(i)

2 ’s, or vice-versa—the “order constraint.”

What does this mean, in terms of the manifold? If we
disregard the order constraint, then the only restriction
on the matching pairs (in the very simple scenario de-
scribed above), is that each p(i)

2 is the product of p(i)
1 by

a certain scalar. So, the corresponding cone is equal to

C = {(x1, y1, δx1, δy1) | x1, y1 ∈ R, δ ∈ R+}
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However, the order constraint implies that the legal
configurations of the “true” points (that is, the
denoised measurement points) are in the union of the
“half-cones” C1, C2, where

C1 = {(x1, y1, δx1, δy1) | x1, y1 ∈ R, 0 ≤ δ ≤ 1}

and

C2 = {(x1, y1, δx1, δy1) | x1, y1 ∈ R, 1 ≤ δ ≤ ∞}

note that C1, C2 are manifolds with boundary; the
boundary of both is {(x1, y1, x1, y1) | x1, y1 ∈ R}.
When can there be data points close to the boundary?
If the disparity between the matching points is large
relative to the noise, then the noised “true points” will
be close to each other (and hence to the boundary)
only with low probability. However, if the motion is
small (as can be the case in a video sequence), data
will lie by the boundary.

What does this mean, intuitively? Suppose that the
camera motion is forward, hence p2

(i) is farther from the
origin than p1

(i). If we simply integrate over the entire
cone, we are allowing illegal configurations in which
p1

(i) is farther from the origin than p2
(i). If the dispar-

ity is small, these illegal configurations are assigned
relatively high probabilities, as even a small noise can
switch the order of the corresponding points.

In light of this, we have to integrate over C1 and C2,
and multiply the resulting probabilities. It should be
clear that the problem of violating the order constraint
for small motions occurs in all scenarios, not only the
simple one discussed here.

We next address the problem of fitting such a cone
in the IML approach based on integrating over it.

4.3. Integration Over the Cone

In order to deal with the boundary we used the fol-
lowing parametrization of the fundamental matrix:
F = [e]× H∞, where H∞ = KRK−1 is the infinite ho-
mography (Hartley and Zisserman, 2000), the epipole
is e = (e1, e2, e3)T and

[e]× =






0 −e3 e2

e3 0 −e1

−e2 e1 0




 .

When we use this parametrization we can apply the
ordering constraint. The correspondences satisfy the

relation p′T
i Fpi = 0. Note that the transformed points

q̄i = H−1
∞ pi satisfy p′T

i [e]×q̄i = 0 which is similar to
the FOE case and we can enforce the constraint in a
similar manner.

Let

F̂ = arg max
F=[e]× H∞

f ({pi ↔ p′
i } | F = [e]× H∞)

If there is no prior information about the motion of
the camera, the following should be computed:

f ({pi↔p′
i } | F) = f ({pi↔p′

i } | F, Tz > 0)Pr (Tz > 0)

+ f ({pi ↔ p′
i } | F, Tz < 0)Pr (Tz < 0)

Assuming Pr (Tz > 0) = Pr (Tz < 0) = 1
2 and inde-

pendency over the measurement points

f ({pi ↔ p′
i } | F, Tz > 0) =

n∏

i=1

f (pi ↔ p′
i | F, Tz > 0)

The opposite translation term can be computed in a
similar manner. We again integrate over the “nuisance”
parameters, yielding

f (pi ↔ p′
i | v, Tz > 0) =

∫ ∫

V

∫

f ({pi ↔ p′
i } | p̄i

↔ p̄′
i , F, Tz > 0) f ( p̄i ↔ p̄′

i | F, Tz > 0)dv

where p̄i and p̄′
i are the ‘real’ points. We use the fol-

lowing change of variables:

H∞ p̄i

H∞3 p̄i
= λq̄ ′

i + (1 − λ)e p̄′
i = q̄ ′

i

where H∞3 is the last row of H∞ and λ ∈[0, 1] pa-
rameterizes H∞ p̄i

H∞3 p̄i
to lie on the segment [e, p̄′

i ] which
constrains the proper order of the correspondence. The
rest of the derivation is very similar to the FOE case—
insert the proper Jacobian and then deal with the re-
sulting triple integral.

Note that the above derivation is general. In the case
of FOE estimation or calibrated translation and rotation
estimation, all we need is to change the H∞ transfor-
mation to the identity transformation or the rotation
matrix R respectively.

5. Non-Linearity of the Manifold

In Kanatani (1994) Kanatani (1996), the problems
which arise when fitting a curved manifold are
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Figure 4. An illustration of the non-linearity measure for a surface
in 3D. The average distance from points on a circle on the tangent
plane to the surface is computed. In 4D the circle is replaced by a
sphere.

addressed. In Torr (2002) it is demonstrated that the
geometric method can be viewed as an approximation
to the IML method when the manifold portions close to
the data are linear. The IML method is not restricted to
locally linear manifolds. We now take a closer look at
the relation between the non-linearity of the manifold
and the computer vision problem at hand.

Due to the fact that there is no single measure for
curvature of surfaces of dimension more than one we
use the following method to estimate the non-linearity
of the surface at a point. Let V be a three dimensional
manifold in R4 and let P be a point on V. We esti-
mate the non-linearity of the manifold using the fol-

Figure 5. Manifold’s non-linearity in the pure translation case.
The epipole is at the origin, p varies, and p′ is in a distance of 10
pixels from p′. The point P at which the non-linearity was calculated
is the concatenation of p, p′.

lowing method illustrated in Fig. 4 for a surface in
3D. Compute the normal �N at P. �N is perpendicular
to the tangent hyper-plane of V at P, which we denote
�(V, P). Then, construct an orthogonal basis of the
4D space in which one of the vectors is �N , and the
other three span �(V, P). In �(V, P) construct a unit
dodecahedron over the three basis vectors. From each
point of the dodecahedron project a line l to V, where
l is perpendicular to �(V, P). The non-linearity of V
at P is defined as the mean length of these l’s. In the
pure translation case, the parameter which carries the
largest influence on the non-linearity is the distance
of the correspondences from the epipole. In Fig. 5 the
non-linearity is depicted as a function of that distance.
The non-linearity is much larger when the correspon-
dences are close to the epipole. This indicates that as
suggested before, the strength of the IML method is
more noticeable in this case.

In the general case we could not find any simple re-
lation between the parameters of the fundamental ma-
trix and the non-linearity of the manifold; the relation
seems to be quite complex.

6. Experimental Results

In this section we present results obtained on simulated
and real images.

6.1. Simulations

Several simulations were performed to compare the
IML method to the geometric method. Pure translation
as well as translation and rotation (with known camera
calibration) were studied.

In each simulation, 3D points were chosen at random
in the common field of view. We have added Gaussian
noise with zero mean and variance σ 2 to every image
coordinate. In each set of experiments, the epipolar
geometry (FOE or essential matrix) was estimated 100
times with different instances of points and noise.

For each simulation the estimation errors of the
epipole and the rotation angle were calculated. The
estimation error of the epipole was calculated as fol-
lows: Let v be the “real” epipole point in the simulation
and let v̂ be the estimated epipole. Let �v = (vx , vy, fo)
and �̂v = (v̂x , v̂y, fo), where fo is the focal length. The
estimation error is the angle verr between these two
vectors. i.e., verr = arccos

(
v̂·�̂v

|v̂||�̂v|

)
. The estimation er-

ror of the rotation matrix is the rotation angle about
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Figure 6. (a) Likelihood function for the geometric method, 100 point correspondence. The correct FOE is at (5, 5). (b) IML likelihood
function for the same scenario as (a). The function is much more stable and obtains its global minimum close to the correct location.

the axis of rotation corresponding to the rotation ma-
trix Rerr = R−1 R̂, where R is the ground truth rotation
matrix in the simulation and R̂ the estimated rotation
matrix.

The numerical parameters used in the simulations
were: image size 600 × 800 pixels and the internal
calibration matrix

K =






1000 0 0

0 1000 0

0 0 1




 .

6.1.1. Pure Translation. In the following experiment
we compared the likelihood functions of the IML
method Eq. (4) to the geometric method Eq. (3). In
this simulation there were 100 point correspondences
and a very small translation, resulting in a disparity of
1.8 pixels on the average. The simulated motion was
nearly forward, with the (normalized) motion vector
(0.086, 0.086, 0.992). The noise was Gaussian with
standard deviation 1. Typical examples of the values of
the likelihood functions are shown in Fig. 6 as contour
maps. These examples demonstrate that the IML likeli-
hood function has less local minima than the geometric

Figure 7. (a) Likelihood function for the geometric method, with parameters similar to those in Fig. 6, except that the motion has a stronger
sideways component and the correct FOE is at (60, 5). (b) IML likelihood function for the same scenario as (a). The function is much more
stable and obtains its global minimum close to the correct location.
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Figure 8. Performance of the IML (Lower graph) and geomatric (upper graph) methods for pure translation.

Figure 9. (a) Results for FOE in the calibrated rotation and translation case. (b) Results for the rotation angle in the calibrated rotation and
translation case. In both figures, IML error is lower graph, geometric method error upper graph.

Figure 10. First Image pair, with matching points marked.
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Figure 11. (a) Error in FOE for IML (lower graph) and geometric (upper graph) methods, vs. the number of point correspondences. (b) Error
in rotation for IML (lower graph) and geometric (upper graph) methods, vs. the number of point correspondences.

Figure 12. Second image pair, with matching points marked.

Figure 13. (a) Error in FOE for IML (lower graph) and geometric (upper graph) methods, vs. the number of point correspondences. (b) Error
in rotation for IML (lower graph) and geometric (upper graph) methods, vs. the number of point correspondences.
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likelihood function. Thus the optimization procedure
will usually not get trapped in local minima.

In Fig. 7 the parameters are similar to those in
Fig. 6, but the motion has a stronger sideways com-
ponent, and the correct FOE is at (60◦, 5◦). Again,
the IML likelihood function is more stable, less local
minima exist and the location of its global minimum
is closer to the correct location. Next, the estimates
of the geometric and IML methods for the parame-
ters corresponding to Fig. 6 are compared; the results
are shown in Fig. 8, with the average error plotted as a
function of the disparity between corresponding points.
The IML method performs better, especially for small
translations.

6.1.2. Calibrated Translation and Rotation. In this
simulation the IML and geometric method were com-
pared for translation and rotation (essential matrix re-
covery). There were 10 point correspondences. The
translation was such that the mean disparity between
the corresponding points, due to the translation alone,
was 8 pixels. The rotation angle was 3◦. The results are
presented in Fig. 9. As for the translation only case,
the IML method outperforms the geometric method,
especially when the noise increases.

The IML method is more significant for the problem
of essential matrix recovery. It gives superior results
also in configurations in which the noise is relatively
small and translation relatively large. In such configu-
rations for the pure translation case, the geometric and
IML methods yield very similar results.

6.2. Real Images

Next we show results obtained for two real image pairs.
The image pairs consist of two images of office scenes
shown in Figs. 10 and 12. The camera motion was very
small (a few centimeters). The corners were recovered
using the Harris corner detector (Harris, and Stephens,
1988).

In this case the internal calibration matrix K was
known, and the goal was to recover the essential matrix
E by optimizing over all values of the rotation matrix
R and the epipole e.

When taking the entire field of view, and using all
the point correspondences, an accurate estimate of
the essential matrix was found using the geometric
method, with the Nelder-Mead optimization method
(Press et al., 1986); this was regarded as the ground
truth. Then, the performance of the IML and geomet-

ric methods were tested on small random subsets of
the matched pairs.

In the first scene (Fig. 10) the total number of cor-
respondences was 240 and the rotation angle was 1.1◦.
Figure 11 compares the results of the geometric and
IML method for 30 to 110 corresponding pairs. In
the second scene (Fig. 12) the total number of corre-
spondences was 330 and the rotation angle was 2.6◦.
Figure 13 compares the results of the geometric and
IML method for 100 to 250 corresponding pairs. In
both cases the IML method outperformed the geomet-
ric method. The running times of the algorithm for the
two examples is 26–55 min and 96–120 min for 30 and
100 pairs respectively. The algorithm’s running time is
linear in the number of point pairs given.

7. Summary and Conclusions

We have described an IML estimation method for the
recovery of epipolar geometry. The introduction of the
joint image space manifold allows to treat the problem
of recovering camera motion and epipolar geometry as
the problem of fitting a manifold to the data measured
in a stereo pair.

If the camera motion is small, and/or the objects are
small relative to their distance from the camera, the
IML method has the potential to significantly improve
on the geometric method. This is because the manifold
which represents the epipolar geometry has a singular-
ity and boundary; hence the local linearity assumption,
under which the geometric method is a reasonable ap-
proximation, may well be violated—since the points
may in these cases be close to the singularity and to
the manifold’s boundary. The IML method can handle
these situations better than the geometric method.

Planned future work includes further developing the
numerical integration and optimization techniques, as
well as extending the ideas presented here to more than
two images.
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