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Abstract. In some capturing devices, such as digital cam-
eras, there is only one color sensor at each pixel. Usually,
50% of the pixels have only a green sensor, 25% only a
red sensor, and 25% only a blue sensor. The problem is
then to restore the two missing colors at each pixel – this is
called “demosaicing”, because the original samples are usu-
ally arranged in a mosaic pattern. In this short paper, a few
demosaicing algorithms are developed and compared. They
all incorporate a notion of “smoothness in chroma space”, by
imposing conditions not only on the behavior of each color
channel separately, but also on the correlation between the
three channels.
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1 Introduction

With the advent of color technology, more and more of the
images which are captured, copied, transmitted, and pro-
cessed, are color images. Naturally, this results in a growing
interest in extending various algorithms for gray-level im-
ages, to color images. Various researchers have discovered
that applying standard deblurring or enhancement algorithms
separately to every color channel is not optimal; better results
can be obtained in view of the fact that, in natural images,
there are strong correlations between the channels [6, 7, 9–
12, 14–17, 20]. In this paper, the so-called “demosaicing”
problem is addressed; this problem is relatively new, and is
motivated by the fact that, in digital cameras and other cap-
turing devices, there is often only one color sensor at each
pixel. Thus, the missing colors have to be “filled in”. The
array of sensors is often called a “mosaic”, hence the name
“demosaicing” for the task of filling in the missing colors.
The following algorithms are introduced and studied.

– Regularization with a “color correlation term”. This al-
gorithm resembles ordinary regularization, however, an
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additional term is introduced to account for the between-
channel correlations, using the estimated local averages
and covariance matrices.

– The local MAP algorithm, which also uses the estimated
local averages and covariance matrices of the color chan-
nels. Here, the missing colors are filled in simply by
choosing, at each pixel, values which maximize the prob-
ability with regard to the Gaussian distribution induced
by the local average and covariance matrices. The al-
gorithm can be improved by segmenting each neighbor-
hood before the local averages and covariance matrices
are computed; this improves the results, particularly in
areas of strong discontinuities between uniform regions.

– Processing in the angle domain.This is the simplest
among the suggested algorithms, and consists of repre-
senting the color image in spherical coordinates, and then
filtering it in the new representation; we tried both stan-
dard regularization and median filtering. However, only
the angle components of the spherical representation are
regularized. This allows preservation of luminance dis-
continuities in the image, while smoothing it in chroma
space.

– Regularization with a vector-product-based between-
channel term. Here, correlation between the channels
is forced by minimizing not only the standard regu-
larization smoothness term, but also a smoothness term
which consists of the sum of the squared norms of vec-
tor products between neighboring pixels, where the color
values are viewed as vectors inR3. The advantage of
this algorithm is that it does not require any estimation
of the between-channel correlation; also, it gives rather
good results, and preserves image discontinuities. The
vector-product-based term also proved useful for denois-
ing color images [12].

1.1 Previous work

Most previous research on demosaicing took place in indus-
try, due to the great importance of demosaicing in color-
capturing devices. In [5], the missing color values are filled
in by linear interpolation; then, the color differences are me-
dian filtered and the image restored according to the new
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values, which reduces “color fringes” near edges. In [2], the
missing green values are first filled in by a simple interpola-
tion, and then the other missing values are filled, in a manner
which forces the ratios between the different color channels
to change slowly between neighboring pixels. In [3], it is
suggested to first segment the image, based on the green
(luminance) values, and fill in the missing colors in each
region independently. In [19], the optimal approximation (in
the mean square error sense) of the missing colors as linear
combinations of the measured ones is derived, and used to
interpolate the missing colors. In [1], the Bayesian restora-
tion paradigm is extended to color images, by assuming a
prior distribution over color images which favors positive
correlation between the different channels. In [4], a non-
linear algorithm is suggested, which locates structures such
as edges in the image, and tries to preserve discontinuities
during the demosaicing process.

2 Demosaicing algorithms studied in this paper

First, let us formulate the problem in more exact terms. As
noted, many capturing devices have only one color sensor at
each pixel; a standard “mosaic” of sensors is the following
(Bayer pattern); here, and in the sequel, RGB will stand for
red, green, and blue, respectively.

R G R G R
G B G B G
R G R G R
G B G B G
R G R G R

One obvious way to restore the image is to perform stan-
dard single-channel restoration on each channel, and com-
bine the restored channels into a color image. Such an ap-
proach, however, does not work well in general. Usually,
the resulting image is contaminated with false colors (also
referred to as “color artifacts”); that is, certain areas contain
streaks of colors which do not exist in the original image.
This problem is more acute in highly textured areas, or im-
age discontinuities; see Figs. 1, 2, and 3.

2.1 Regularization with “color correlation term”

Regularization has proven quite successful in image restora-
tion and other computer vision problems. Some general ref-
erences are [13, 18]. Regularization usually tries to minimize
a “cost functional” of the restored image, which is composed
of a “data fidelity term”, measuring the compatibility of the
image with the measured data, and a “quality term”, which
reflects some prior assumption about the image. The latter
is usually defined as a “spatial smoothness term”, which is
small for smooth images, but attains large values on “rough”
and noisy images. A typical example of how regularization
is applied is the following: if an image was measured at
the locations{(xi, yi)} with the measurement values being
{zi}, then the restored image is the one minimizing the cost
functional

Fig. 1. Real image of vending machine. Results are presented for Kodak
algorithm for the DCS 200 Camera (upper), simple restoration (lower left),
and the algorithm suggested in Sect. 2.4 (lower right). The real-world image
is gray level. Note the very strong color artifacts in areas with discontinu-
ities, which are greatly reduced by using the algorithm of Sect. 2.4

n∑
i=1

[F (xi, yi) − zi]2

2σ2
+ λ

∫ ∫
(F 2

xx + 2F 2
xy + F 2

yy)dxdy, (1)

where σ is the noise variance, andλ a positive constant,
which can be chosen by various methods [10, 20]. Here, we
assume that there is very little noise in the capturing device,
so in the sequel we will omit the first summand in Eq. 2;
however, all the algorithms suggested in this short paper can
be directly extended to deal with measurement noise [12].

Regularization has also been extended to restoring color
images [9, 10, 12, 17, 20].

One possibility of extending the cost functional to color
images is to estimate, for each pixel, the probability for its
combination of colors. Formally, ifCx,y is the covariance
matrix of the RGB values at a pixel (x, y), then, assuming
a Gaussian distribution, the probability for the combination
of colors (R(x, y), G(x, y), B(x, y)) is proportional to

exp

(
− 1

2
(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)

×C−1
x,y(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)t, (2)

where (R̄, Ḡ, B̄) are the average colors in the pixel’s vicin-
ity. This suggests adding the following expression (“color
correlation term”)∫ ∫

(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)

×C−1
x,y(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)tdxdy, (3)

to the functional of Eq. 1. This term assigns lower values to
combinations of colors which are consistent with the local
color distribution. Thus, the combined expression to mini-
mize is
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Fig. 2. Grass scene. Results are presented for Kodak algorithm for the
DCS 200 Camera (upper), simple restoration (lower left), and the algorithm
suggested in Sect. 2.4 (lower right). We used the same color correction as
the Kodak algorithm used. Again, it can be seen that the algorithm of
Sect. 2.4 greatly reduces the color artifacts

Fig. 3. Synthetic image, one of those used to estimate the MSE restoration
error of the suggested algorithms. Note very strong color artifacts in some of
metallic parts in the simple restoration, and how the algorithm of Sect. 2.4
succeeds to restore them

∫ ∫
(R2

xx + 2R2
xy + R2

yy + G2
xx + 2G2

xy + G2
yy

+B2
xx + 2B2

xy + B2
yy)dxdy

+λ

∫ ∫
(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)

×C−1
x,y(R(x, y)−R̄, G(x, y)−Ḡ, B(x, y)−B̄)tdxdy, (4)

subject, of course, to the measurements obtained from the
digital camera. We used a simple finite-element method
to minimize this cost functional. It results in an iterative
scheme, which is applied only to the colors that have to be
filled in. For instance, if we know the red value at a pixel
(because it coincided with a camera pixel that has a red
sensor), we update only its green and blue values at each
iteration.

In order to run this iterative scheme, we have to know the
local averages and color correlation matrices. These cannot
be estimated directly from the original image, since it only
has one color per pixel. To overcome this, a simple boot-
strapping technique is used: each channel is restored sepa-
rately, thus resulting in three color channels at each pixel.
These are then used to computeCx,y and (R̄, Ḡ, B̄).

Usually, ten or so iterations are enough, and the image
does not change any more. Using the estimated local av-
erages and covariance matrices from the new images, and
running the iterative scheme again, did not improve the re-
sult.

2.2 Local MAP algorithm

This algorithm, like the one described in Sect. 2.1, first
estimates the local averages and covariance matrices from
a standard restoration carried out separately in each color
channel. Then, it fills in the missing colors at every pixelP
with the values that maximize the probability ofP , given
the estimated local averages and covariance matrix, and the
(single) color channel atP whose value is known from the
measurements. It may be therefore viewed as a “local max-
imum a priori probability”, or “local minimal square error”,
approach.

Suppose, for instance, that the red value is known, and
the green and blue values have to be filled in. Also given are
the estimates for the local averages (R̄, Ḡ, B̄) and covariance
matrix Cx,y. Assuming, as before, a Gaussian distribution,
the probability of the color vector (R(x, y), G(x, y), B(x, y))
is given by Eq. 2, and it is easy to see that the values of
G(x, y) andB(x, y), which maximize this probability (for a
given R(x, y)), are

G(x, y) =
c11Ḡ + c12(R(x, y) − R̄)

c11
,

B(x, y) =
c11B̄ + c13(R(x, y) − R̄)

c11
.

2.2.1 An improvement to the local MAP approach:
vector quantization

The success of the local MAP algorithm depends to a large
extent on whether the estimates for the local averages and
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Fig. 4. Synthetic image with uniform regions separated by discontinuities.
Simple restoration (left), local MAP algorithm (middle), and local MAP
with vector quantization (right)

covariance matrix at a pixelP are accurate. If there are
strong discontinuities nearP , these estimates may be influ-
enced by pixels whose colors are very different fromP ’s,
which is undesirable.

To solve this problem, the neighborhood of each pixel
P is segmented into two regions (one may perform this seg-
mentation only if a certain test for the neighborhood’s homo-
geneity fails). Then, the local average and covariance matrix
at P are estimated using only the pixels in the largest re-
gion. Since the pixels’ natural representation is as vectors in
3D color space, vector quantization [8] was used to segment
them. The improvement when using the vector quantization
is less noticeable in natural images, and more in images
which have relatively uniform regions separated by strong
discontinuities (see Fig. 4).

Our tests indicated that the local MAP algorithm gave
results of the same quality as the algorithm presented in
Sect. 2.1, but in shorter running time. The somewhat sur-
prising result is that the lack of a spatial regularization term,
which was used in Sect. 2.1, hardly affects the results. This
is probably due to the fact that spatial smoothness is implic-
itly forced via the covariance matrices, which are close for
neighboring pixels, since they are computed on intersecting
neighborhoods.

2.3 Processing in the angle domain

This is conceptually the simplest algorithm suggested in this
short paper. It attempts to remove color artifacts by forcing
adjacent pixels to have similar directions in 3D Euclidean
spaceR3. The intuition is straightforward – color artifacts
are usually caused by adjacent pixels with different chro-
mas, so it is natural to try and prevent this from happening.
It is important to note that spatial smoothness alone is not
enough to detect different chromas; the difference between
spatial smoothness and chroma smoothness can be demon-
strated by a simple example [12]. SupposeP1 and P2 are
adjacent pixels. In case (a), let the color values ofP1 be
(r, g, b), and those ofP2 (r(1+δ), g(1+δ), b(1+δ)), for some
small constantδ. In case (b), the values are (r, g, b) and
(r(1 + δ), g(1 − δ), b(1 + δ)), respectively. In both cases, the
spatial smoothness, as measured separately in the three color
channels, is the same; however, in case (b), the clique ofP1
andP2 is less smooth in chroma space. This is because, in
case (a), the orientations ofP1 and P2 in RGB space are
identical, but are different in case (b).

The following simple algorithm was used to force
smoothness in chroma space. First, standard regulariza-

tion is applied separately to each color channel. Then,
each pixel is represented in spherical coordinatesR =
ρ cos(θ) sin(φ), G = ρ cos(θ) cos(φ), B = ρ sin(θ), and then
some filtering – regularization, or median filtering – is ap-
plied to the two anglesφ and θ only. This allows the
preservation of luminance discontinuities between neighbor-
ing pixels, while forcing their chromas to be similar; this
is becauseρ is closely related to the luminance component
of the image. After each iteration of the filtering process,
the image is transformed back to RGB space, and the colors
measured by the camera are set back to their original values.

2.4 Regularization with a vector-product-based
between-channel term

This algorithm combines standard regularization with a novel
method for forcing a correlation between the color channels.
The missing colors are restored in a manner which forces
neighboring pixels to have similar directions in color space;
this is the same idea as in Sect. 2.3, however, here, chroma
smoothness and spatial smoothness are merged into a sin-
gle cost functional (see Sect. 2.1), and treated in a uniform
manner.

The algorithm presented in this section results both in
sharp images and in practically eliminating the “color ar-
tifacts” mentioned in Sect. 2.1. The solution is given as a
closed-form expression, which is iteratively applied to the
image. The technical details follow; they are elaborated upon
in some detail, as the functional to be optimized is not stan-
dard, due to the appearance of fourth-order powers in it. We
also chose to explain the iterative scheme in some detail, as
it gave the best results among all the algorithms suggested
and tested in this short paper.

Let P be a pixel in the image, and let us look at a 5× 5
square aroundP . Denote this neighborhood byN22, and
index its pixels with indexes running from (0, 0) to (4, 4),
where the index ofP is (2, 2):

0 1 2 3 4
0 r00,g00,b00 r01,g01,b01 r02,g02,b02 r03,g03,b03 r04,g04,b04

1 r10,g10,b10 r11,g11,b11 r12,g12,b12 r13,g13,b13 r14,g14,b14

2 r20,g20,b20 r21,g21,b21 P = (r22,g22,b22) r23,g23,b23 r24,g24,b24

3 r30,g30,b30 r31,g31,b31 r32,g32,b32 r33,g33,b33 r34,g34,b34

4 r40,g40,b40 r41,g41,b41 r42,g42,b42 r43,g43,b43 r44,g44,b44

Next, define two scalar functions of the 25 pixels in
N22. The first, denoted byROUGH, measures the amount
of roughness inN22; the largerROUGH is, the less smooth
the image.ROUGH is defined as∫ ∫

(R2
xx + 2R2

xy + R2
yy + G2

xx + 2G2
xy

+G2
yy + B2

xx + 2B2
xy + B2

yy)dxdy.

The discrete analog of the integral is obtained in a standard
manner, by representing the derivatives as finite differences
(see, for instance, [18]). It is desired thatROUGH be small,
for this results in an image which is nicely behaved in the
spatial domain.

Next, define another scalar function of the pixels inN22,
which is called theCHROMA−T ERM. This function



201

measures what may be described as smoothness in chroma
space. It will be smaller when adjacent pixels have similar
directions in (R, G, B) space. Formally, theCHROMA−
T ERM is defined as follows. For each pixel (viewed as a
vector inR3), compute its vector products with all its neigh-
bors; this gives eight vectors. Then, add the squared norms of
all these vectors, and this sum (when, of course, added over
all the pixels inN22) constitutes theCHROMA−T ERM.
Thus, a typical summand is‖(r22, g22, b22)× (r21, g21, b21)‖2.
The intuition behind this definition is simple. If adjacent pix-
els have similar directions in color space, and hence similar
chromas, the vector product’s norm will be small, as it be-
haves like sin(α), whereα is the angle between the vectors.
Conversely, chroma smoothness can be forced by minimiz-
ing this norm. In [12], a more elaborate explanation as to
why the vector product’s norm is a good quality measure is
provided (it is shown how it is related to the surface area
of the color image, when embedded in 5D Euclidean space;
see [14–16].

Next, define the cost functionalCOST , as a weighed
sum of the two terms defined above. It is desired that it
will be small, since this will mean that the image is nicely
behaved both in the spatial domain and in chroma space:

COST = ROUGH + λ(CHROMA−T ERM),

where λ is a positive constant.COST is minimized by
a standard finite-element method, using Gauss-Seidel iter-
ations on the set of equations{∂(COST )

∂c〉|
= 0}, where cij

stands, in turn, for all the colors in every pixel. For instance,
the iterative step forr22 is defined as follows (assuming it
was not measured by the camera): ifr(n)

ij , b(n)
ij , g(n)

ij denote
the current values of the red, green and blue values in the
(i, j)-th pixel in the neighborhoodN22, the value assigned
in the next iteration toP ’s red channel is

r(n+1)
22 = (r(n)

02 + r(n)
42 + r(n)

20 + r(n)
24 + λ r(n)

11 b(n)
22 b11

+λ r(n)
11 g(n)

22 22g(n)
11 + λ r(n)

21 b22 b(n)
21 + λ r(n)

21 g(n)
22 g(n)

21

+λ r(n)
31 b(n)

22 b(n)
31 + λ r(n)

31 g(n)
22 g(n)

31

+λ r12 b(n)
22 b(n)

21 + λ r(n)
12 g(n)

22 g(n)
12

+λ r(n)
32 b(n)

22 b(n)
32

+λ r(n)
32 g(n)

22 g32 + λ r(n)
13 b(n)

22 b(n)
13

+λ r(n)
13 g(n)

22 g(n)
13 + λ r(n)

23 b(n)
22 b(n)

23

+λ r(n)
23 g(n)

22 g(n)
23 + λ r(n)

33 b(n)
22 b(n)

33 + λ r33 g(n)
22 g(n)

33 )/

(λ b(n)
12

2
+ λ g(n)

12

2
+ λ b(n)

11

2
+ λ g(n)

11

2
+ λ b(n)

21

2

+λ g(n)
21

2
+ λ b(n)

31

2
+ λ g(n)

31

2

+λ b(n)
32

2
+ λ g(n)

32

2
+ λ b(n)

13

2

+λ g(n)
13

2
+ λ b(n)

23

2
+ λ g(n)

23

2
+ λ b(n)

33

2
+ λ g(n)

33

2
+ 4).

The expressions for updating the green and blue values are
derived similarly. These iterations are repeated over the en-
tire image, with each pixel in its turn assigned the role of
P in the iterative process, andN22 replaced by the neigh-
borhood of the pixel which is now updated. The starting
point for the iterations is the image consisting of the three
independently restored channels.

Fig. 5. Vending machine (same image as in Fig. 1) restored using local
MAP algorithm (left) and processing in the angle domain (right)

Note that, although the process is described for each
pixel separately, a global cost function is minimized (which
consists of the sum over all pixel neighborhoods of the dis-
tinct pixels).

Due to the density of the measurements, the convergence
is fast (4–5 iterations will do). It turns out that the value ofλ
hardly makes a difference, once it is large enough; a value
of 1.0, for all images on which the algorithm was tested,
gave satisfactory results. We are currently investigating other
methods for choosingλ.

3 Results

We present here some results on real and synthetic images.
A few images are used, to highlight the performance of the
different algorithms. The real images were captured with a
Kodak DCS 200 digital camera (which allows extraction of
the raw data, as well as the restored, uncompressed image),
and then demosaiced both according to the Kodak off-line
algorithm and some of the algorithms presented in this short
paper. The Kodak algorithm usually gave good results, how-
ever, it sometimes gave unsatisfactory results on images with
strong high frequencies (see Figs. 1 and 2). Synthetic im-
ages were used to compare the algorithms of Sects. 2.1–2.4
in terms of the MSE restoration error (this could not be
done with the captured images, as, for those, we do not
have the “ground truth”). The algorithm of Sect. 2.4 was
the winner in this category, with the exception of the image
in Fig. 4, for which the local MAP algorithm with vector
quantization gave the best results. On the aggregate of im-
ages we have tested, the average MSE error was 26.4 for
the “simple restoration” (that is, independent regularization
in every channel), 21.3 for the local MAP algorithm, 20.3
for the local MAP algorithm with vector quantization, 17.1
for processing in the angle domain, and 14.9 for regulariza-
tion with a vector product based term. The latter also gave
results which were, in general, superior in appearance.
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