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Abstract. A general paradigm for recognizing 3D objects is offered, and applied to some geometric primitives
(spheres, cylinders, cones, and tori). The assumption is that a curve on the surface, or a pair of intersecting curves,
was measured with high accuracy (for instance, by a sensory robot). Differential invariants of the curve(s) are then
used to recognize the surface. The motivation is twofold: the output of some devices is not surface range data, but
such curves. Also, a considerable speedup is obtained by using curve data, as opposed to surface data which usually
contains a much higher number of points.

We survey global, algebraic methods for recognizing surfaces, and point out their limitations. After introducing
some notions from differential geometry and elimination theory, the differential and “semi-differential” approaches
to the problem are described, and novel invariants which are based on the curve’s curvature and torsion are derived.
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1. Introduction and Previous Work

One task an intelligent system should be able to ac-
complish isrecognition. Usually, a recognition system
derives some characteristics of an object it examines,
and tries to match them against similar characteristics
in a data base. Suppose, for instance, that one is deal-
ing with 2D objects, and tries to recognize them, given
their boundary. Typically, there is a finite data base
these boundaries are matched against; variousinvari-
antshave been derived, some global and some local

[1, 18, 26], to solve this problem. These are quantities
that do not change under certain transformations (Eu-
clidean, affine, projective), and therefore can be used
to recognize an object even after it had been altered by
such transformations.

Here, a different problem is addressed—recognizing
a surface in 3D space, while the information we have
is one-dimensional. Specifically, we assume that some
measuring device has sampled a curve, or a pair of in-
tersecting curves, on the surface. Given the curve(s),
the goal is to recognize the surface. Typical sensors
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Figure 1. High-accuracy measuring device and a curve it measured
on a cylinder.

which are the source of such curves are measuring de-
vices, such as coordinate measuring machines, manu-
factured by the Brown & Sharpe Company (Fig. 1), or
the IBM RS/1 Cartesian robot. Such devices can mea-
sure 3D curves with very high accuracy (for instance,
typical error range for a coordinate measuring machine
is 0.01 mm).

In [3], an algorithm is presented for determining the
axis of a surface of revolution, using the information
measured by a tactile sensor which can also estimate
the two principal curvatures (see Section 3.2). Here,
we assume that only the data points are given. In [6],
the parameters of a cylinder are computed from struc-
tured light patterns.

Some previous work has addressed the problem
of recognizing various surfaces given their occluding
contours [8, 14]. However, the aggregate of possible
curves on a surface is, usually, much larger than the
aggregate of its occluding contours, and may contain
far more complicated curves; for instance, the occlud-
ing contour of a sphere is always a circle, while there
are a great many 3D curves—some of which have rather
complicated structure—on a sphere.

Clearly, we are facing a different type of recognition
problem from the one previously described, which is
usually solved by matching against a data base. It is
impossible to build a data base which contains, say,
all the curves on a sphere, or even a dense sampling
of these curves. Therefore, we have to discover curve
characteristics which will enable to answer a question
such as “can this curve, after a certain transformation,
be embedded on a sphere?”, as opposed to “can this
curve, after a certain transformation, be superimposed
on curve No. 129 in the data base?”.

One way to proceed is straightforward: fit an im-
plicit polynomial to the curve’s points, and, from its
type, determine the surface. This is thealgebraic ap-
proach [11, 20]. However, this approach will fail if

the curve does not lie on a single “primitive” (sphere,
cylinder etc.), but “crosses over” between two or more
primitives (see Section 2.1 and Fig. 3). In that case, the
global algebraic fit will give us a meaningless result.
A very rich theory oflocal, or differential invariants,
was developed to solve this problem [4, 5, 16, 24, 25].
In Section 2 we quickly survey the global approach as
applied to our problems, but the focus of this paper is
on the local approach.

Natural curve characteristics to use for recognition
are curvature and torsion, as they do not change un-
der rigid transformations. Since we’re dealing with 3D
data, a rigid transformation is usually a general enough
model. So, the goal is to discover invariants depending
on a curve’s curvature and torsion, which will provide
a necessary condition for it to lie on a certain type of
surface.

Let us demonstrate this by a simple, 2D example: a
plane curve can be embedded in a circle if and only if
its curvature is constant. So, in this case, the invari-
ant is the curvature’s derivative. Naturally, we don’t
expect to find such simple invariants for curves lying
on 3D surfaces; one trivial example is the well-known
condition for a 3D curve to be planar—that its torsion
equals zero—but this is an exceptional case.

In the sequel, we derive invariants which are a nec-
essary condition for a curve, or an intersection of two
curves, to lie on a sphere, cylinder, cone, or torus.
These depend only on the curvature and torsion at a
point on the curve (or the curvature and torsion of two
curves at their intersection point). We also derive some
“semi-differential” invariants, which use not only the
differential properties of the curve, but a few points
on it. Such invariants have been widely used in com-
puter vision for recognizing plane and space curves
[4, 16, 19]; their main advantage is that they allow to
use derivatives of lower order than the “purely differ-
ential” invariants necessitate.

2. The Algebraic Approach

Implicit polynomials can be used to describe 2D and
3D objects. Some works which address the fitting of
implicit polynomials are [2, 12, 21–23]. One can then
use polynomial invariants to recognize the objects
[9–11, 20]. Let us shortly describe how a sphere, cone,
cylinder and torus can be recognized using such invari-
ants. Note that the first three objects can be fitted with a
quadratic, and the torus with a quartic. Suppose, then,
that we succeeded to fit data with a quadratic. Write
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it as

X AXt + (v, X)+ s= 0 (1)

whereA is a 3× 3 matrix,v a vector inR3, ands a
scalar. It is easy to verify that

• If the object is a sphere,A has three positive and
identical eigenvalues. It is then trivial to extract the
sphere’s center and radius.
• If the object is a cylinder,A has two positive and

identical eigenvalues, and one zero eigenvalue; also,
the axis of the cylinder is in the direction of the eigen-
vector with zero eigenvalue, and it is trivial to extract
its radius.
• If the object is a cone,A has two identical positive

eigenvalues and one negative eigenvalue. The axis
of the cone is in the direction of the eigenvector with
the negative eigenvalue. It is then trivial to extract
the cone’s opening angle and apex.
• If the object is a torus, its general equation is

Etor = ((x − a)2+ (y− b)2+ (z− c)2

+ R2− r 2)2− 4 R2((x − a)2+ (y− b)2

+ (z− c)2− ((x − a)n1+ (y− b)n2

+ (z− c)n3)
2)

where(a, b, c) is its center point,(n1, n2, n3) a unit
vector perpendicular to the plane over which the
torus lies, andR (r ) are the major (minor) radii.

It’s trivial to extracta, b, c from Etor (for instance,
differentiatingEtor three times byx gives 24x − 24a).
To extractr andR, note that substituting{x = a, y =
b, z= c} in Etor givesr 4+R4−2R2r 2, andsubstituting
{x = a, y = b, z = c} in ∂

2Etor
∂x2 + ∂2Etor

∂y2 + ∂2Etor
∂z2 gives

−12R2−12r 2+8R2n2
1+8R2n2

2+8R2n2
3 = −4R2−

12r 2. It is trivial to extractR and r from these two
identities. AfterR, r , a, b, c have been recovered, it is
trivial to recover(n1, n2, n3).

2.1. Number of Points Needed

Experiments on curve data show that a relatively high
number of points is necessary to achieve reliable alge-
braic fitting. For instance, for the cylinder data we have
used (Fig. 1), more than 200 points are required for a
reliable fit. We are not sure why this happens; appar-
ently, the fact that the points lie on a curve, which is a
“one dimensional entity”, results in singularities when

trying to fit it with an implicit polynomial which, by
its nature, is appropriate for fitting “two dimensional
entities”.

On the other hand, when using the differential invari-
ants proposed here, a far smaller number of points was
necessary; usually, invariants were computed using 10
points or so.

2.2. Applying Invariants to Segmentation

Since the algebraic approach for recognition given a
curve may fail, because it can pass through a few ge-
ometric primitives, one may try to segment the curve,
using some notion of discontinuity, and then use alge-
braic techniques for each segment. We now show that
this is not always easy, by constructing a curve which is
infinitely differentiable, yet crosses over from a sphere
to a cylinder. Define

s(t) =


0 t ≤ 0

exp

(−1

t2

)
t > 0

it is well-known that this function is smooth (infinitely
differentiable) at every point, and that all its deri-
vatives att = 0 are zero. Usings(t), it is trivial to
construct smooth functionss1(t), s2(t) on the inter-
val [0,∞) such thats1(0) = 0, s1(t) = 1 for t ≥ 1,
s2(t) =

√
3 for 0≤ t ≤ 1, ands2( ) is monotonically

increasing fort > 1 (see Fig. 2).
Define a curvec(t) as follows

c(t) =



(
s1(t) cos(t),

s1(t) sin(t),
√

4− s2
1(t)

)
0≤ t ≤ 1

(cos(t), sin(t), s2(t)) 1≤ t ≤ 2

.

It is easy to see thatc(t) is a smooth curve which crosses
over from a sphere with radius 2 to a cylinder with ra-
dius 1 (att = 1). The curve is displayed in Fig. 3. Next
to it, we plot the curvature, torsion, curvature’s deriva-
tive, and a spherical invariant for curves (see Section 5,
Eq. (10)). It is interesting to see that, although the cur-
vature and torsion are continuous, there is a very sharp
break in the spherical invariant, at the point in which
the curve crosses over from the sphere to the cylinder;
this demonstrates that the kind of invariants presented
here can succeed where segmentation by “ordinary”
differential properties (curvature, torsion etc.) fails.
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Figure 2. Auxiliary functions used to construct the curve in Fig. 3.

Figure 3. Demonstrating how invariants manage to detect when a curve crosses over from one geometric primitive (sphere) to another (cylinder),
although the curvature, torsion etc. cannot detect this crossing over.

3. Mathematical Preliminaries—Some
Differential Geometry and Elimination Theory

In the sequel, a few concepts from geometry and alge-
bra are required. We proceed to define them and state
some of their important properties.

3.1. Some Differential Geometry of Curves

A curve in 3D Euclidean space is a differentiable func-
tion c : [0, 1]→R3. At each pointc(t), three ortho-
gonal unit vectors are associated with the curve: its
tangent vector T, which points at the direction of the
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curve’s derivative, itsnormal vector N, and itsbinor-
mal vector B, which is equal to the vector (cross) prod-
uct of T andN.

This triplet of vectors is called theFrenet trihedron
atc(t).

In addition, two scalars are associated with each
point on the curve. These are thecurvatureκ and
torsionτ . Intuitively speaking, the curvature measures
how “bent” the curve is; for instance, the curvature of
a circle is equal to the inverse of its radius. The torsion
measures the speed at which the curve moves out of
the plane (the so-calledosculating plane) which locally
approximates it; thus, the torsion of a planar curve is
zero.

The curvature and torsion can be computed from the
parameterization of the curve:

κ = |c
′ × c′′|
|c′|3

τ = − (c
′ × c′′) · c′′′
|c′ × c′′|2

κ and τ are invariant to translation and rotation;
this makes them especially attractive for recognition
purposes.

The celebratedFrenet formulasrelate the Frenet tri-
hedron with the curvature and torsion. If the curve
is parameterized by arclength (that is,|c′| = 1), the
following hold:

T ′ = κN

N ′ = −κT − τB

B′ = τN

A concept of crucial importance to this work is the
local canonical form. Let us see how it is derived.
Assume that the curve is parameterized by its arclength
s. From Taylor’s expansion, we have

c(s) = c(0)+ sc′(0)+ s2

2!
c′′(0)+ s3

3!
c′′′(0)

+ s4

4!
c(4)(0)+ s5

5!
c(5)(0)+ o(s5)

c′(0) is equal to the tangent vectorT at t = 0. Using
the first Frenet formula,c′′(0) = T ′ = κN. Therefore,
c′′′(0)= (κN)′ = κ ′N + κN ′ = κ ′N+ κ(−κT − τB)
= κ ′N − κ2T − κτB.

Similarly, we can derive expressions for the fourth
and fifth derivatives. Substituting them into the Taylor

series gives

c(s)

= c(0)+ sT+ s2κN

2
+ s3(κ ′ N− κ2T− κτ B)

6

+ s4(κ ′′N− 2κ ′τB− 3κκ ′ T− κ3N− κτ ′B− κτ 2N)

24

+ s5

120
(κ ′′′N− 4κκ ′′T− 3κ ′′τB− 3κ ′ τ ′ B

− 3κ ′ τ 2N− 3κ ′2T− 6κ2κ ′N+ κ4T

+ κ3τB− κτ ′′ B− 3κτ τ ′ N+ κ2τ 2T

+ κτ 3B)+ o(s5) (2)

from now on, we shall omit theo(s5) part. We are
allowed to do so as long as the powers ofs used are
bounded by 5.

3.2. Some Differential Geometry of Surfaces

Locally, a surfaceSin 3D Euclidean space is a differen-
tiable image of an open setO inR2. Formally, it is the
set of triplets{(x(u, v), y(u, v), z(u, v))/(u, v) ∈ O}.
The tangent plane to S at the point ((x(u, v),
y(u, v), z(u, v)) is the plane spanned by(xu, yu, zu)

and (xv, yv, zv). The normal to S at (u, v) is the
unit vector pointing at the direction of(xu, yu, zu) ×
(xv, yv, zv); it is therefore perpendicular to the tangent
plane.

In the sequel, we shall use the fact that ifC1 and
C2 are curves which intersect onS, then the nor-
mal to S at their intersection point is a unit vector
at the direction of the vector product of their tangent
vectors. This holds unless these tangent vectors are
parallel.

The intersection ofS with any plane containingN
is called anormal sectionof S. Note that the normal
section is determined by a unit vectorv in the tangent
plane, which is the direction at which the plane con-
taining N intersects the tangent plane. Thus, we may
speak of a normal section at the directionv.

The curvature of a normal section is called thenor-
mal curvature. The maximal such curvature,κ1, and
the minimal,κ2, are called theprincipal curvatures
of S. Let us denote their directions byEκ1 and Eκ2. It
can be proved that they are orthogonal and that, if
v = Eκ1 cos(θ) + Eκ2 sin(θ), then the normal curvature
at the directionv equals

κ1 cos2(θ)+ κ2 sin2(θ) (3)
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The productK = κ1κ2 is called theGaussian curva-
ture, and the meanH = κ1+κ2

2 is themean curvature.
Suppose a curveC lies on the surfaceS. Then, if its

curvature isκC, and the normal curvature ofS at the
direction ofC’s tangent vector isκS, then

κS = κC cos(θ) (4)

whereθ is the angle betweenNS, the normal toS, and
NC, the normal toC.

3.3. Elimination Theory

Elimination theory is a branch of algebra which deals
with eliminating variables from equations. It is espe-
cially useful for determining when a system of equa-
tions has a root. Let us start with the simplest case—
two polynomials in one variable,p= pnxn+ pn−1xn−1

+ · · · + p0, andq=qmxm+qm−1xm−1+ · · · +q0.
To compute theresultantof p andq, one first con-

structs an(n + m) × (n + m) matrix as follows. Its
first row consists ofp’s coefficients, followed by zeros.
The second row is obtained by translating the first one
to the right, etc. When this can be done no more, the
same process is repeated forq’s coefficients. The resul-
tant is equal to the determinant of this matrix. For in-
stance, the resultant ofax4+ bx3+ cx2+ dx+ e and
Ax3+ Bx2+Cx+ D is the determinant of

a b c d e 0 0

0 a b c d e 0

0 0 a b c d e

A B C D 0 0 0

0 A B C D 0 0

0 0 A B C D 0

0 0 0 A B C D


A basic result in elimination theory is that the resul-

tant is equal to zero ifp andq have a common root.
It is also possible to eliminate variables from sys-

tems of polynomials with more equations. For exam-
ple, if we have three polynomial equations with two
variables, there is an expression in the coefficients of
these polynomials which is zero if the system has a
solution. In general, elimination is a difficult problem,
and it is not always possible to explicitly write down
these expressions.

4. The Differential Invariants Method

In this section, a general overview of the method for
deriving differential and semi-differential invariants for
curves lying on surfaces is provided.

We wish to find conditions on the curvature and
torsion of a curveC which will allow us to deter-
mine if it possibly lies on a certain geometric object
OBJ , which is described by a generic implicit equa-
tion, P(x, y, z) = 0.

The method by which these conditions is derived
proceeds as follows. First, we use the local canonical
form to write down an expression forC in the vicin-
ity of a point M we have measured onOBJ ; we also
assume that we have measuredκ, τ , and their deriva-
tives, as well as the Frenet trihedron atM . These are
all determined from the derivatives ofC; so, if we have
accurate measurements forC in the vicinity of M ,
we may directly calculate them. Sinceκ andτ do not
depend on the pose of theC, we are allowed to translate
and rotateOBJ—and the curve on it—thus obtaining
a new curveC. Denote the rotated and translated object
byOBJ new.

Every condition onτ andκ we derive forC is, of
course, also a condition forC. The reason we apply
rigid transformations toOBJ is because these allow
us to make assumptions onC’s Frenet trihedron which
result in simpler calculations; this will be explained
in the sequel. LetP(x, y, z) be the implicit equation
definingOBJ new.

Next, we substituteC’s local canonical form into
P(x, y, z); This results in a Taylor series ins. This
serieshas to be identically zero, becauseC is con-
tained inOBJ new, and, therefore, has to satisfy the
equation which definesOBJ new. This gives us a set
of equations—each for every coefficient in the Taylor
series. Next, we eliminate from these equations ev-
erythingbutC’s curvature and torsion. For one curve,
we usually have to eliminate the Frenet trihedron. For
two curves, we will show that the Frenet trihedrons are
known and therefore need not be eliminated. In both
cases, the elimination gives an expression that has to
be zero; and this is the sought invariant.

We proceed to apply this paradigm to specific ob-
jects; first, the sphere is tackled.

5. The Case for a Sphere

In order to derive a differential invariant for a curvec(s)
to lie on a sphere, we need to use only the following
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Figure 4. Rotating and translating the sphere.

part ofc’s local canonical form:

c(s) = c(0)+
(

s− κ
2s3

6

)
T +

(
s2κ

2
+ s3κ ′

6

)
N

− s3

6
κτB+ o(s3) (5)

Since translation and rotation do not change the cur-
vature and torsion, we may assume, without loss of
generality, that the pointM , at which our measure-
ments ofκ andτ were taken, is at the origin, and that
the sphere lies on theXY plane. Hence, the sphere’s
equation is

x2+ y2+ (z− R)2− R2 = 0 (6)

Let us also assume, without loss of generality, that
the sphere had been rotated so thatT = (1, 0, 0) (see
Fig. 4).

SinceN is a unit vector perpendicular toT , it has
to be of the formN = (0, cos(α), sin(α)) for someα;
also,B = T × N = (0,− sin(α), cos(α)).

Note that the rigid transformation applied to the
sphere has reduced the Frenet trihedron to a trihedron
depending only on the single parameterα. This is im-
portant, because we have to eliminate the trihedron, in
order to obtain a condition depending only onκ and
τ ; and, in general, the more variables we have to elim-
inate, the more equations are necessary, and there’s a
danger that the solution will be extremely complicated.

Substituting theseT, N, B in Eq. (5) gives the fol-
lowing expressions for the components ofc(s):

x(s) = s− s3k2

6

y(s) = s2k cos(α)

2
+ s3(κ ′ cos(α)+ kτ sin(α))

6

z(s) = s2k sin(α)

2
+ s3(κ ′ sin(α)− kτ cos(α))

6

Plugging these expressions into the sphere’s Eq. (6)
gives a Taylor series ins, which has to be identically
zero, therefore all its coefficients are zero. The expres-
sion is rather complicated, so we don’t write it down
here; However, its constant and linear coefficients are
identically zero, the coefficient ofs2 is

1− κ sin(α)R= 0 (7)

The coefficient ofs3 is

κ ′ sin(α)R− κτ cos(α)R= 0 (8)

And, naturally, we have the equation

sin2(α)+ cos2(α)− 1= 0 (9)

We may view these as algebraic equations, by treat-
ing sin(α) and cos(α) as algebraic variables. Then,
from these three Eqs. (7)–(9), we may eliminate sin(α)

and cos(α), to obtain the identity

R2 = κ2τ 2+ (κ ′)2
κ4τ 2

(10)

This gives us a differential invariant for a curve lying
on a sphere; namely, the expression

κ2τ 2+ (κ ′)2
κ4τ 2

has to be a constant. Note that we can immediately
extract the sphere’s radius.

It should be noted that this condition has been de-
rived before, using other methods (see, for instance,
[7], page 25). We have nonetheless decided that it’s
worthwhile to show how it is derived by using the local
canonical form and elimination theory. This derivation
will hopefully make it easier to follow the derivation
of differential invariants for curves on the cylinder and
cone, presented in the following sections.

6. The Case for a Cylinder

6.1. One Curve, Known Radius

We now proceed to derive differential invariants for a
curve which lies on a cylinder. To the best of our knowl-
edge, such invariants have not been derived before. The
method is roughly the one used for the sphere, however,
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Figure 5. Rotating and translating the cylinder.

the mathematical details are considerably more com-
plicated.

Given a pointM on a curve which lies on a cylin-
der, we can assume without loss of generality that the
cylinder had been translated and rotated so thatM is at
the origin, and the cylinder lies on theXY plane (recall
that this does not alter the curvature and torsion). Let
us further assume that it had been rotated at some angle
β so that the tangent vector atM is aligned with the
X-axis (see Fig. 5).

Hence,T = (1, 0, 0), and the cylinder’s equation
becomes

(x cos(β)+ y sin(β))2+ (z− R)2− R2= 0 (11)

As for the sphere, it follows thatN= (0, cos(α),
sin(α)) for someα, andB= (0, −sin(α), cos(α)).

We now substitute theseT, N, B in the local canon-
ical form (2). This gives the following expressions for
the components ofc(s):

x(s)= s− s3κ2

6
− s4κκ ′

8
+ s5(−4κκ ′′ − 3κ ′2 + κ4 + κ2τ 2)

120

y(s)= s2κ cos(α)

2
+ s3(κ ′cos(α)+ κτ sin(α))

6
+ s4(κ ′′cos(α)+ 2κ ′τsin(α)− κ3 cos(α)+ κτ ′sin(α)− κτ 2 cos(α))

24

+ s5

120
(κ ′′′ cos(α)+ 3κ ′′ τ sin(α)+ 3κ ′τ ′ sin(α)− 3κ ′τ 2 cos(α)− 6κ2κ ′ cos(α)− κ3τ sin(α)+ κτ ′′ sin(α)

− 3κτ τ ′ cos(α)− κτ 3 sin(α))

z(s)= s2κ sin(α)

2
+ s3(κ ′ sin(α)− κτ cos(α))

6
+ s4(κ ′′ sin(α)− 2κ ′τ cos(α)− κ3 sin(α)− κτ ′ cos(α)− κτ 2 sin(α))

24

+ s5

120
(κ ′′′ sin(α)− 3κ ′′τ cos(α)− 3κ ′τ ′ cos(α)− 3κ ′τ 2 sin(α)− 6κ2κ ′ sin(α)+ κ3τ cos(α)− κτ ′′ cos(α)

− 3κ τ τ ′ sin(α)+ κτ 3 cos(α))

Plugging these into the cylinder’s Eq. (11) gives, as
before, a Taylor series ins which has to be identically
zero. This expression is huge and we do not write it
down here; we need only the coefficients of the powers
of s between 0 and 5.

The coefficients of the constant and linear terms are
identically zero.

For the other terms, we obtain the following expres-
sions, after substituting cos(α) = C1, sin(α) = S1,

cos(β) = C2, sin(β) = S2:
For the coefficient ofs2

−2κS1R+ 2C2
2 = 0 (12)

For the coefficient ofs3

6C2S2κC1− 2κ ′S1R+ 2κτC1R= 0 (13)

For the coefficient ofs4

8C2S2κτ S1− 2κ ′′S1R+ 4κ ′ τ C1R+ 2κ3S1R

+ 2κτ ′C1R+ 2κτ 2S1R− 6κ2C2
1C2

2

+ 8C2S2κ
′C1− 8C2

2κ
2+ 6κ2 = 0 (14)

In the sequel, it will be beneficial to use a simplified
version of (14). Note that we can subtract from (14) the
product of (12) by an appropriate constant, and elim-
inate the coefficient ofC2

2 in (14) (it already has an
S1R term, so we are not adding anything). Similarly,
we can subtract from the new equation an appropri-
ate multiple of (13), to remove from it the term with
the monomialC1C2S2—also, without adding anything
new, as the set of monomials of (14) contains that of
(13). After grouping, we can write the simplified (14)
as

A0+ A1C2
1C2

2 + A2C1R+ A3S1R+ A4S1C2S2 = 0

(15)

Note that we can easily compute theAi ’s as functions
of κ andτ . Hence, (15) is equivalent to (14), but much
simpler. This will turn out to be useful.

For the coefficient ofs5, we obtain the equation

−2κ ′′′ S1R− 20κ2S1τ C1C2
2 − 20κκ ′C2

1C2
2

− 30C2S2κ
3C1− 10C2S2κτ

2C1+ 10C2S2κτ
′ S1
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+ 20C2S2κ
′τS1+ 10C2S2κ

′′C1− 2κ3τC1R

+ 6κ ′′τC1R− 30C2
2κκ

′ + 6κ ′τ 2S1R

+ 12κ2κ ′S1R+ 6κ ′τ ′C1R+ 2κτ ′′C1R

− 2κτ 3C1R+ 20κκ ′ + 6κττ ′S1R= 0 (16)

in addition we have

C2
1 + S2

1 − 1 = 0 (17)

C2
2 + S2

2 − 1 = 0 (18)

Assume now that the radiusR is known. In that case,
we have to eliminateC1, S1,C2, S2 from Eqs. (12)–
(14), (17) and (18) (note that we need at least five
equations in order to eliminate four unknowns). All
our attempts to directly do this, using various packages
for symbolic computations, have failed; however, it is
possible to proceed as follows. First, solve the system
consisting of the four simplest Eqs. (12), (13), (17) and
(18). Then, substitute the solution into (14).

Using the Maple symbolic computation program, it
was possible to find a solution for Eqs. (12), (13), (17)
and (18). This solution uses an auxiliary polynomial
we denote byp1(δ):

p1(δ) = 81κ8δ8R2+ (18R2κ ′2κ4− 18κ6τ 2R2+ 81κ6

− 162κ8R2)δ6+ 36κ4Rδ5κ ′τ + (−81κ6

+ 81κ8R2− 36R2κ ′2κ4+ κ4τ 4R2

+ 2κ2τ 2R2κ ′2+ R2κ ′4+ 18κ6τ 2R2) δ4

− 36κ4Rδ3κ ′τ + (18R2κ ′2κ4− 2κ2τ 2R2κ ′2

− 2R2κ ′4)δ2+ R2κ ′4

Denote byq a root ofp1(δ). Then, the solution of (12),
(13), (17) and (18) equals

C2 = R

√
−9κ4q4− q2κ2τ 2+ q2κ ′2− 9κ4q2− κ ′2

q(9qκ2+ 2κ ′τ R)

S2 = −9κ ′Rκ4q4+ κ ′Rq2κ2τ 2+ κ ′3Rq2− 9κ ′ Rκ4q2− κ ′3R+ 9κ4τ q3

3q2(9qκ2+ 2κ ′τR)κ2
√
− 9κ4q4−q2κ2τ 2+q2κ ′2−9κ4q2−κ ′2

q(9qκ2+2κ ′τR)

S1=−R(9κ4q4− q2κ2τ 2+ q2κ ′2− 9κ4q2− κ ′2)
q(9qκ2+ 2κ ′τR)κ

C1=q

Substituting these expressions into (14) and simplify-
ing, we obtain the following identity

(18κ6τ 2R2− 45R2κ ′2κ4+ 27R2κ ′′κ5+ 162κ8R2

− 81κ6)q6+ (27κ5τ ′R− 54τκ ′Rκ4)q5

+ (−36κ6τ 2R2− κ2τ 2R2κ ′2+ 6τκ ′κ3τ ′R2

+ 3κ ′2R2κ ′′κ − 2κ4τ 4R2− 5R2κ ′4+ 72R2κ ′2κ4

+ 162κ6− 3τ 2R2κ ′′κ3− 162κ8R2− 27R2κ ′′κ5)q4

+ 90τκ ′Rκ4q3+ (−3κ ′2R2κ ′′k+ 6R2κ ′4

+ 9κ2τ 2R2κ ′2− 27R2κ ′2κ4)q2− R2κ ′4 = 0

Let us denote this polynomial byp2(q).
Now, we know thatp1( ) and p2( ) must have a

common root; therefore, their resultant must be zero.
This resultant is, therefore, an invariant for a curve
lying on a cylinder.

Recalling the definition of the resultant of two poly-
nomials (Section 3.3), we can write down the resultant
of p1( ) andp2( ). It is a determinant whose elements
depend on the curvature and torsion; if the curve lies
on a cylinder, this determinant has to be zero, and this
is an invariant for a curve lying on a cylinder.

6.2. One Curve, Unknown Radius

6.2.1. Numerical Search for the Correct Radius.
Suppose we do not know the radii of the cylinders in
the data-base.

There are two ways to proceed. We can simply follow
the trivial observation that, if we substitute the correct
R into p1( ) and p2( ), we will get two polynomials
whose resultant is zero. We can therefore conduct a
simple, one-dimensional search forRwhich minimizes
this resultant.
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Figure 6. Logarithm of the resultant ofp1( ) and p2( ), as a function ofR, for a point sampled from a curve on a cylinder of radius 2.

Experience has shown us that this simple numerical
algorithm works quite well. For example, in Fig. 6, a
plot for the logarithm of the resultant, for values ofκ
andτ measured on a curve on a cylinder with a radius
of 2, is displayed. We can clearly see a strong minimum
at the correct radius.

6.2.2. Solve for the Correct Radius.The second
method for the case in which the radius is unknown is to
eliminateR,C1, S1,C2, S2 from Eqs. (12), (13), (15)–
(18). This can be done by solving Eqs. (12), (13), (15),
(17) and (18), and substituting the solution in Eq. (16);
if this gives zero, it means that these six equations have
a common solution, which is a necessary condition for
the curve to lie on a cylinder. This is why it was im-
portant to define Eq. (15), the simplified version of
(14); we could not find a reasonable solution with (14).
However, it turns out that Eqs. (12), (13), (15), (17) and
(18) do have a relatively simple solution, expressed as
follows. C1 is the root of the following equation:

81κ8A2
1δ

12+ (− 162A2
1κ

8− 54τ A4A1κ
7

+ 162κ8A1A0+ 162A3A1κ
7
)
δ10+ (108τ A4A1κ

7

− 54κ7A0A4τ + 81A2
2κ

6+ 162κ7A0A3

− 18A0τ
2κ6A1+ 81κ8A2

0− 54κ ′A4A2κ
5

− 54τ A4A3κ
6− 324A3A1κ

7+ 9τ 2A2
4κ

6+ 9κ ′2A2
4κ

4

− 324κ8A1A0+ 81A2
1κ

8+ 18κ4A1κ
′2A0

+ 81A2
3κ

6
)
δ8+ (162κ8A1A0− 18A0τ

2κ5A3

+ 18κ4A2
0κ
′2+ 108τ A4A3κ

6− 162A2
3κ

6

− 18τ 2A2
4κ

6+ 18A0τ
2κ6A1+ 6κ3A4τκ

′2A0

− 36κ4A1κ
′2A0− 18A2

0τ
2κ6+ 108κ7A0A4τ

− 36κ4κ ′τ A0A2+ 18κ3A3κ
′2A0+ 108κ ′A4A2κ

5

− 324κ7A0A3+ 6A0τ
3κ5A4+ 162A3A1κ

7

− 27κ ′2A2
4κ

4− 54τ A4A1κ
7− 81A2

2κ
6

− 162κ8A2
0

)
δ6+ (36κ4κ ′τ A0A2− 54κ ′A4A2κ

5

− 12κ3A4τκ
′2A0+ 27κ ′2A2

4κ
4+ 18A2

0τ
2κ6

+ A2
0τ

4κ4+ 9τ 2A4
2κ6− 54κ7A0A4τ + κ ′4A2

0

+ 81κ8A2
0+ 162κ7A0A3+ 81A2

3κ
6+ 2A2

0τ
2κ2κ ′2

− 54τ A4A3κ
6− 6A0τ

3κ5A4− 36κ3A3κ
′2A0

+ 18A0τ
2κ5A3− 36κ4A2

0κ
′2+ 18κ4A1κ

′2A0
)
δ4

+ (− 2A2
0τ

2κ2κ ′2+ 6κ3A4τκ
′2A0+ 18κ4A2

0κ
′2

+ 18κ3A3κ
′2A0− 9κ ′2A2

4κ
4− 2κ ′4A2

0

)
δ2+ κ ′4A2

0

Note that this is really a sixth-degree equation, as only
even powers ofδ appear. AfterC1 is solved for, we can
easily extractS1 from Eq. (17). Then, after substituting
the known values ofC1 andS1 in Eqs. (12), (13), and
(18), we can solve for the remaining unknowns—S2,
C2 andR:

Defineε to be

κ2τ 2C2
1 − 2kτ C1S1κ

′ + S2
1κ
′2+ 9κ4C2

1 S2
1

and then{
S2 = −

Root
(
ε δ2− 9κ4C2

1 S2
1

)
(κτ C1− S1κ

′)
3κ2C1S1

,

C2 = Root
(
ε δ2− 9κ4C2

1 S2
1

)
,

R = 9κ3S1C2
1

ε

}
(19)

(by Rootof an equation, we mean the root of the equa-
tion when viewed as an equation inδ). The equations in
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(19) are trivial to solve and involve only taking square
roots.

The reader may ask why we did not apply this trick
to simplify the solution of the equations for the case
in which the radius is known. If we had done that, it
would not have been possible to obtain a function ofκ

andτ alone; theC1 would still have been there! And,
as long as it is there, we cannot find a condition onκ

andτ , as desired, but only a condition onC1, κ andτ .
There is also a direct solution to the system of

Eqs. (12), (13), (15), (17), and (18), in which all the
unknowns—R,C1, S1,C2, S2—are written in terms of
κ, τ , and their derivatives; however, that expression
is truly horrendous, covering three entire pages when
written in small format! For all practical purposes, it
is better to use the solution above, which first extracts
C1 andS1 and then solves for the other unknowns.

6.2.3. Comparison of Methods.While the second
method is straightforward and does not require any
search (as opposed to the first method), it has the draw-
back of requiring the fifth derivative of the curve, which
appears in Eq. (16) (note that calculating the third
derivative of the curvature and the second derivative
of the torsion requires the fifth derivative of the curve).
The first method requires a numerical search for the
correct radius, but uses only the fourth derivative of
the curve. Depending on how accurate the measure-
ments are, one may opt for using the first or the second
method.

6.3. The Case for a Cylinder with Two Intersecting
Curves and Unknown Radius

Suppose we have two curves on the cylinder, intersect-
ing at a pointM . For instance, one can design a sensory
robot to traverse a point twice, in different directions.
Another possible source is an intersecting pattern of
structured light rays. It turns out that a particularly
simple invariant can be written in this case, the main
reason being that, in this case, it is easy to recover the
surface normal.

We refer to the curves as “first” and “second” (it
makes no difference which is which, of course). As
noted in Section 3.2, two intersecting curves on the
surface allow us to compute its normalNS (denoted
this way to prevent confusion withN, the normal to
a curve). We may, as before, translate and rotate the
cylinder so that the intersection pointM is in the ori-
gin, the cylinder lies on theXY plane, and the tangent

vector of the first curve equals(1, 0, 0). The differ-
ence is that now, as opposed to when we only had
a single curve, we know the normalN and the bi-
normal B of the new curves; this is because now we
know that the rotation and translation not only move
M to the origin and align the tangent to the first curve
with (1, 0, 0), they also alignNS with (0, 0, 1). Let
us look at the triplet(T, N, B) for the first curve (be-
fore the rotation). We can calculate the inner prod-
ucts (N, T) and (N, NS). These inner products do
not change after the rotation of the curve; ifN is ro-
tated intoNnew, then, sinceT is rotated into(1, 0, 0),
we have the equality(Nnew, (1, 0, 0)) = (N, T), and,
sinceNS is rotated into(0, 0, 1), we have the equality
(Nnew, (0, 0, 1)) = (N, NS). SinceNnew is a unit vec-
tor, we can recover it; and, since we know the tangent
and normal of the new curve, we know its binormal,
which is equal to their vector product. Following a
similar argument, we also know the Frenet trihedron
of the (new) second curve.

As before, letβ denote the angle in which the
cylinder is aligned relative to theXY plane. Let
us denote the tangent, normal and binormal of
the first curve by(1, 0, 0), (0, cos(α), sin(α)) and
(0,− sin(α), cos(α)), and those of the second curve
by (T1, T2, 0), (N1, N2, N3), (B1, B2, B3) (remember
that all these coordinates are now known). Note that
the z-coordinate of both tangents has to be zero, as
they are both in the tangent plane which, after the rigid
transformation, is theXY plane.

Substituting these expressions into the local canoni-
cal form, then into the cylinder’s equation, and equating
coefficients to zero, results in the following equations
(K is the curvature of the second curve):

For the coefficient ofs2, first curve, we have

2C2
2 − 2κ sin(α)R= 0 (20)

For the coefficient ofs3, first curve, we have

6C2S2κ cos(α) − 2κ ′ sin(α)R+ 2κτ cos(α)R= 0

(21)

For the coefficient ofs2, second curve, we have

2T2
2 − 2K N3 R+ 2C2

2T2
1 − 2T2

2 C2
2

+ 4C2T1 S2T2 = 0 (22)

Also

C2
2 + S2

2 − 1= 0 (23)

(where, as before, cos(β) = C2, sin(β) = S2).
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Eliminating S2,C2 and R from (20)–(23) results in
the identity

9T2
1 sin(α)2 cos(α)2κ4− 6κ3 cos(α)2 sin(α)τ T2 T1

− 9κ3 cos(α)2 sin(α)KN3+ κ2τ 2T2
2 cos(α)2

+ 6κ2T1T2κ
′ sin(α)2 cos(α)

− 2κ ′τT2
2 sin(α) cos(α)κ(κ ′)2T2

2 sin(α)2 = 0

(remember thatα is known, and does not have to be
eliminated).

And this is an invariant for two intersecting curves,
which can be used to test whether they lie on a cylinder.
The invariant depends on the curvature and torsion of
one curve, and the curvature of the other; therefore, it
does not require any derivatives of order higher than
three.

6.4. A Simple Case: Upright Cylinder

If we assume that the objects lie in astable pose[13],
this allows for considerable simplification in the ma-
nipulations carried out in the previous sections. As-
suming, for instance, that the cylinder is upright (that
is, its axis is parallel to thez axis), and following in
exactly the same manner as described before, it is easy
to prove that

R2 =
(
1− T2

z

)3
κ2B2

z

this expression is simpler than the ones derived before,
as there is no need to eliminate the rotation angle.

We have tested this invariant on the data depicted
in Fig. 1 (in reality, that data came from an upright

Figure 7. (a) Jitters in input data and (b) invariant.

cylinder; for display purposes, it is shown in Fig. 1 at
an angle). As we can see in Fig. 7(a), the data in ac-
tuality is quite “jittery”; the distances in the various
axis, between consecutive data points, are rather
discontinuous. It is possible to overcome this problem
by sub-sampling the curve, and running a median filter
on the values of the invariant at a neighborhood of each
point at which the invariant is computed. This results
in a relatively stable invariant, which clusters around
the correct value of the cylinder’s radius squared. In
Fig. 7(b), the invariant is plotted.

7. The Case for a Cone with Two
Intersecting Curves

We have not addressed the problem of finding invariants
for a cone using a single curve; because a cone has
more degrees of freedom than a sphere or a cylinder,
this would necessitate using the sixth derivative of a
curve to express such an invariant.

We proceed to show how two intersecting curves
yield an invariant for the cone. We will not go into all
the details, as the method resembles the one used for a
cylinder with two intersecting curves.

First, the cone is rotated and translated so that its
apex is at the origin, and the point of intersection of the
two curves,M , lies on theXY plane, which is also the
tangent plane atM . Then, it is rotated in theXY plane
so that the tangent vector of the first curve is(1, 0, 0).
As for the cylinder, we can extract the tangent, normal,
and binormal vectors to the two curves at their new
location; denote the normal to the first curve atM by
(0, cos(β), sin(β)). Note that nowM does not lie at
the origin, but at an (unknown) distance ofy0 from
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Figure 8. Rotating and translating the cone.

it. The (unknown—as for the cylinder) rotation angle
of the cone in theXY plane is denoted byα, and the
(unknown) rotation angle around theY axis (Fig. 8) is
denotedθ ; this is just half of the cone’s opening angle.

It is then a trivial matter to write down the equation
of the rotated and translated cone, and to substitute into
it the local canonical forms of the two curves. As be-
fore, the coefficients of the two resulting Taylor series
have to be zero, resulting in the following equations.
Let K andT denote the curvature and torsion of the
second curve, andT1 etc. the components of its Frenet
trihedron vectors.Sstands for sin(β), C for cos(β), C1

for cos(θ), S1 for sin(θ), C2 for cos(α), S2 for sin(α)
(remember thatSandC are known, and do not have to
be solved for):

For the coefficient ofs2, first curve, we have

2C2
1C2

2 + 2C1κSy0 S1 = 0 (24)

For the coefficient ofs3, first curve, we have

−2C1κτ C y0 S1+ 6S1C1S2κS+ 2C1κ
′ Sy0 S1

− 6C2
1C2S2κC = 0 (25)

Which can be written more compactly as

A1 C2
1C2S2+ A2 C1S1y0+ A3 C1S1S2 = 0 (26)

For the coefficient ofs2, second curve, we have

2C2
1C2

2T2
1 − 4C2

1C2S2T1 T2+ 2C2
1T2

2

− 2C2
1T2

2 C2
2 + 2C1K N3y0S1 = 0 (27)

Just as for the cylinder, we can subtract from (27) ap-
propriate multiples of (24) and (25), and obtain the
simpler form

A4 C2
1 + A5 C1S1y0+ A6 C2

1C2S2 = 0 (28)

For the coefficient ofs3, second curve, we have

6S1C1C2K N3 T2+ 6S1C1S2K N3 T1

+ 6C2
1T2K N2− 6C2

1T2K N2C2
2

− 2C1KT B3y0S1+ 2C1K1N3y0S1

− 6C2
1C2S2T1K N2− 6C2

1C2S2K N1T2

+ 6C2
1C2

2T1K N1 = 0 (29)

Which, as before, can be reduced to

A7 C1S1S2+ A8 C1S1C2+ A9 C2
1 + A10 C1S1y0 = 0

(30)

Note that theAi ’s can be readily computed from the
known quantities—the curvature, torsion, and Frenet
trihedron of the two curves.

We also have the equations

C2
1 + S2

1 − 1 = 0 (31)

and

S2
2 + C2

2 − 1= 0 (32)

It is possible to eliminate{C1, S1,C2, S2, y0} from
these six Eqs. (24), (26), (28), (30)–(32), and obtain

− 2Sk A3
4 A3 A10 A2 A7 − A2

4 A2
2 A2

7 A5

+ 2SκA2
4 A2 A7 A5 A3 A9 − SκA6 A2

4 A2
2 A7 A8

− S2κ2 A2
6 A2

3 A2
9 A5 − A2

3 A2
9 A3

5 + SκA4 A2
3 A2

9 A2
5

− S2κ2 A2
6 A4 A2

3 A9 A10− S2κ2 A3
6 A3 A9 A2 A8

+ 2S2κ2 A6 A2
4 A2 A8 A3 A9 − S2κ2 A2

4 A2
1 A2

8 A5

− S3κ3 A6 A2
4 A2

1 A7 A8 − 2S2κ2 A2
4 A1 A5 A8 A3 A9

+ 2S3κ3 A6 A2
4 A1 A7 A3 A9 + SκA6 A2

4 A3 A10A2 A8

− 2SκA2
4 A2

3 A10A5 A9 + S3κ3 A3
4 A2

1 A2
8

+ S2κ2 A6 A2
4 A1 A2

8 A2 + S3κ3 A3
4 A2

1 A2
7

+ SκA3
4 A2

2 A2
8 + S3κ3 A2

6 A4 A2
3 A2

9

+ 2A4 A2
3 A9 A2

5 A10− 2A4 A3 A9 A2
5 A2 A7

− 3SκA6 A4 A3 A9 A5 A2 A8 + SκA3
4 A2

3 A2
10

+ 2SκA4 A3 A9 A2
5 A1 A8 + 2S2κ2 A3

4 A1 A8 A3 A10

− 2SκA2
4 A1 A8 A3 A10A5 + S2κ2 A2

6 A4 A3 A9 A2 A7

+ SκA3
4 A2

2 A2
7 − S3κ3 A2

6 A4 A3 A9 A1 A8

− SκA2
6 A3 A9 A2 A7 A5 + SκA6 A3 A9 A1 A2

5 A7

+ SκA2
6 A3

2 A9 A10A5 + S2κ2 A2
6 A3 A9 A1 A5 A8

− 2S2κ2 A2
4 A2

1 A2
7 A5 + S2κ2 A6 A2

4 A1 A2
7 A2

− S2κ2 A6 A2
4 A1 A7 A3 A10− A2

4 A2
3 A2

10A5
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− 3S2κ2 A6 A4 A1 A7 A3 A9 A5 + 2A2
4 A3 A10A2 A7 A5

− SκA6 A4 A1 A2
7 A2 A5 + SκA6 A4 A1 A7 A3 A10A5

− S2κ2 A2
6 A4 A1 A7 A2 A8 + S2κ2 A6 A4 A2

1 A7 A5 A8

+ SκA4 A2
1 A2

7 A2
5 = 0

And this is an invariant for two curves on a cone. It
depends on the curvature and torsion of the two curves;
therefore, it does not require any derivatives of order
higher than three. This is an invariant for two curves
on a cone.

8. Numerical Computation of Derivatives

The algorithms suggested here require computing the
derivatives of a curve in 3D space. The problem of
computing high-order derivatives from discrete data
was addressed in [27]. The derivatives at each point
are calculated by convolving appropriate differentia-
tion filters with the given curve. One way of deriving
such filters is based on fitting high-order polynomials
to the data curve and differentiating the polynomial.
We do not need to do the fitting for each actual curve;
it is only done in deriving the filters.

In deriving the filters, the data curvef is approxi-
mated by a linear combination of orthogonal polyno-
mials of orders 0, . . . , l :

Fl (−x) = w(x)
l∑

i=0

ai Pi (x)

where Pi (x) are polynomials which are orthonormal
with respect to a weight functionw(x). The coeffi-
cientsai are determined by the condition that the poly-
nomial fits the curve in the sense of (weighted) least
squares. It can be proved that if the curvef is a poly-
nomial of order up tol , than the above filter yields an
exactkth derivatives when the coefficientsai are:

ai = P(k)
i (0)

In practice, good results are obtained for any reasonably
smooth f (not only polynomials), as long as the the
orderl of the filter is larger than the desired orderk of
the derivative. However, a highl requires a filter with
a wide support.

Discrete versions of this method on a finite inter-
val are described in detail in [15]. In particular, the
Krawtchouk and the discrete Chebyshev polynomials
were studied and closed form formulas for them were
given up to fifth order. However, it was shown in [27]

Figure 9. Derivative of spherical invariant (Eq. (10)) for the curve
in Fig. 3, after noise had been added to it. Note change in derivative
when the curve crosses over from the sphere to the cylinder (att = 1).

that continuous polynomials, defined on a finite inter-
val, are just as effective but much simpler to calculate.
Good results were obtained using the Legendre and
continuous Chebyshev polynomials.

For example, see Fig. 9 for the derivative of the
spherical invariant (Eq. (10)), for the curve plotted in
Fig. 3, when noise of variance equal to 5 percent of the
distance between the points was added to it. Deriva-
tives were computed using the method described in
[27]. The derivative is relatively small for the part of
the curve that lies on the sphere (0≤ t ≤ 1), and
significantly changes when the curve crosses over to
the cylinder (att = 1). Note that computing the in-
variant’s derivatives requires the first derivative of the
torsion and the second derivative of the curvature, that
is, the fourth derivative of the curve.

9. Semi-Differential Invariants

In this section we study curve invariants which use
only curvature (this requires computing only the first
and second derivatives of the curve). We also as-
sume that the only primitives the recognition system
may encounter are spheres, cylinders, cones, and tori.
When the information from one point is not enough
to uniquely determine the object, we will use an addi-
tional point or two on the curve to help disambiguate
the object.

The additional points will usually be of no avail if
they lie on a degenerate curve (for instance, suppose the
object to be recognized is a cylinder, and the curve is a
cross-sectional circle). However, it is easy to identify
such cases; for instance, if the curve is planar, its torsion
is zero.
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Another danger is that the two points on the curve
will belong to different geometric primitives (for in-
stance, if the object is the “perfume bottle” from Fig. 3,
and one point lies on the sphere, and the other on the
cylinder). To resolve this problem, we can use the local
invariants described in the previous sections. While
they may be more sensitive to noise, Figs. 7 and 9
demonstrate that they are stable enough to indicate that
we have moved from one primitive to another.

Each of the classes of objects mentioned above have
a small number of parameters which determine its
shape. The sphere is defined by its center and radius
(four parameters) and as mentioned in Section 2 the
cylinder, cone, and torus have 5, 6, and 7 parameters
respectively.

In order to be able to recover the shape of primitives,
constraints which involve the differential properties of
the curve and shape parameters have to be derived,
simple techniques for recovering the shape parameters
from these constraints have to be found, and additional
constraints are used to verify that the shape is correct.

For each point on a curve the proposed primitive
must satisfy the following constraints:

• The pointM must lie on the surface. This means that
if P is the object’s implicit equation,P(M)= 0.
• TC, the curve’s tangent, must be orthogonal to the

surface normalNS at the point. ThusNS · TC = 0.
• If θ is the angle betweenNS and NC, thenκS =
κC cos(θ) (see Eq. (4)), where the value ofκS (the
curvature of the normal section on the surface) is de-
termined by the principal curvaturesκ1 andκ2 and
the angle between them andTC.

Therefore, each point yields three equations which
have to be satisfied. These equations can be used to ver-
ify hypotheses or to determine the value of unknown
parameters. When two curves intersect, at the intersec-
tion point only five constraints exist because the first
constraint for the two curves is identical.

If additional points are not on a curve, and we don’t
have any differential properties associated with them,
we still have the first condition (they have to satisfy
the surface equation). In that case, we will need more
points; this is a typical tradeoff for semi-differential
invariants.

In all the cases considered, we will require at least
as many constraints as unknown shape parameters and
use the remaining (or additional) constraints to verify
the shape hypothesis.

9.1. Object Recognition from Two
Intersecting Curves

Given two intersecting curvesC1 andC2, we extract
T1, N1, B1, κc1, T2, N2, B2, κc2 at the intersection point
M . These are the Frenet trihedrons and the curvature
for both curves respectively. Recall thatNS, the normal
to the surface atM , equalsT1× T2.

For each curve we computeθ , the angle betweenNS

and the curve’s normal. The surface normal curvature
equalsκNS = κC cos(θ), andκNS(β) = κ1 sin2(β) +
κ2 cos2(β), whereκ1, κ2 are the principal curvatures for
the surface atM , andβ is the angle between the tangent
to the curve andEκ2, the second principal direction.

Given two curves we have two equations for the sur-
face normal curvature, with three unknowns—κ1, κ2,
andβ:

κNS1 = κ1 sin2(β)+ κ2 cos2(β)

κNS2 = κ1 sin2(β + φ)+ κ2 cos2(β + φ), (33)

whereφ is the angle betweenT1 andT2. Usually, it
is impossible to solve such a system; however, if we
know in advance that the geometric primitives can only
be spheres, cylinders, cones, and tori, it is possible to
identify them and extract their parameters.

Sphere. In this caseκ1= κ2 and consequentlyκNS1 =
κNS2. For all other objects (cylinders, cones, and tori)
the two principal curvatures are not equal; therefore,
two distinct normal curvatures are identical only in
the degenerate case in which the angles between the
curves’ tangents andEκ1 are equal. Therefore, if the sur-
face normal curvatures corresponding to the two curves
are equal, we can assume with high probability that we
are dealing with a sphere.

The sphere’s radius is thenR= 1/κNS, and its cen-
ter is atM + RNS. When measurement errors are too
large making it impossible to verify thatκNS1 = κNS2

or when they have similar values accidentally, an ad-
ditional point can be used to determine if the object is
indeed a sphere.

Cylinder. If the given object is a cylinder, its parame-
ters can be recovered as follows. Asκ1= 0, the surface
normal equations are reduced to two equations with
two unknowns. Solving them, we can recoverκ2 and
the principal directionsEκ1, Eκ2. The cylinder’s radius is
R = 1

κ2
, and the orientation of its axis isEκ1. A point
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on the axis is:

C = M + RNS.

It is important to note that this does not prove that
the object is a cylinder. That has to be verified using
an additional point on the curve.

Cone. Assume the object is a cone. As for the cylin-
der, κ1= 0, and we can recoverκ2 and the princi-
pal directionsEκ1, Eκ2. The radius of the cone atM is
R = 1

κ2
cos(α), whereα is the cone’s opening angle.

The apex is located atM + Eκ1
cot(α)
κ2

, and the axis ori-
entation isEκ1 cos(α)+ Eκ2 sin(α). α can be determined
from an additional point on the curve.

Torus. From (33) we cannot recover the torus, be-
cause the number of unknowns is three. We will pa-
rameterized our solution as a parameter ofβ. For a
givenβ, we can recoverκ1, κ2. The values ofκ1, κ2

change on the torus as a function ofγ , the angle be-
tween the major radius of the torus,R, and the vector
to the current point on the torus.κ1, κ2 are given as a
function ofγ :

κ1 = −cos(γ )

R+ r cos(γ )
κ2 = 1

r

where R and r are the major and minor radii of the
torus respectively (see Fig. 10).

Givenκ1, κ2, γ we can recoverR, r as follows:

R= −
(

1

κ1
− 1

κ2

)
cos(γ ) r = 1

κ2

Figure 10. Torus.

The orientation of the torus,Nt , can be recovered by:
Nt = NS sin(γ ) + Eκ2 cos(γ ). The center of the torus
is then at:

C = M + Ntr + (NS cos(γ )− Eκ2 sin(γ ))R

β andγ can be determined by an additional point on
the curve.

9.2. Object Recognition from One Curve

When two intersecting curves are given, we are able to
recoverNS and thus we know the angleθ betweenNS

and NC. When we are given only one curve,θ is an
unknown parameter which has to be recovered.

Sphere. In this caseκ1= κ2, and consequentlyκNS =
1/R. For every value ofθ , the surface normal and
the sphere’s radius are determined as follows, where
(TC, NC, BC) are the Frenet trihedron of the curve:

NS = cos(θ)NC + sin(θ)BC R= 1

κC cos(θ)

From that we recover the center of the sphere,

M + RNS = M + NC

κC
+ tan(θ)

κC
BC (34)

Thus we have a family of possible spheres, parameter-
ized byθ .

Given additional points, we can proceed as follows:
either substitute them at the (hypothesized) sphere’s
equation, or, if they are on a curve use all the three dif-
ferential constraints. Alternatively, given two points
on a curve, applying Eq. (34) and the equation for
R to both of them results in four linear equations in
cos(θ1), tan(θ1), cos(θ2), and tan(θ2). The solution is
verified by checking if the two angles satisfy

tan(θi ) =
√

1− cos2(θi )

cos(θi )
.

Cylinder. In the case of the cylinder we know that
κ1 = 0 andκ2 = 1

R. Given a pointM1 on the curve,
the two unknowns areθ1 andβ1. When they are given,
the cylinder is uniquely defined. Note thatEκ1 is the
axis of the cylinder, so it has to be the same for every
point on the cylinder. We will now use these facts to
defineR andEκ1 the axis of the cylinder as functions of
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θ1 andβ1 (see Eqs. (33), (4)):

R = cos2(β1)

κC1 cos(θ1)
.

NS = cos(θ1)NC + sin(θ1)BC (35)

Eκ1 = TC sin(β1)+ (TC × NS) cos(β1)

And a point on the axis is:

C1 = M1+ RNS1

Given an additional point, itsβ2 andθ2 can be recovered
as follows:

β2 = arcsin(TC2 · Eκ1), θ2 = arccos

(
cos2(β2)

κC2R

)
.

From them we can recover the point on the axisC2

closest to the second point, and both points must lie on
the cylinder’s axis, which is parallel toEκ1; therefore,

(C1− C2)× Eκ1 = 0,

which gives us two equations in two unknowns, which
can be solved for the values ofθ1 andβ1.

These two points give the equation of the cylinder
that passes through them and satisfies the given con-
straints. In addition, from (35)β2 = arccos((TC2 ×
NS2) · Eκ1), which gives an additional constraint to ver-
ify that this is indeed a cylinder with the computed
parameters.

Cone. The case of the cone is similar to the cylinder
but slightly more complicated. Given two points on a
curve we would like to find the anglesθ1, β1, θ2,andβ2.
These angles parameterize the local surface structure
of the two points. At first we will exploit the fact that
the line from the point on the surface in the direction of
Eκ1 must pass through the tip of the cone. Thus we have
a constraint that the two such lines of the two points
must intersect. The pointC = M + NS

κ2
lies on the

central axis of the cone. Therefore we two additional
constraints which are due to the fact thatC1,C2, and
the tip of the cone lie on the same line. Finally, the
angle of the coneα must be the same for both surface
points. Asα is the angle betweenEκ1 and the axis of the
cone, we can write an additional constraint enforcing
the uniqueness ofα. With the four above mentioned
constraints we can recover the values of the unknown
angles and recover the shape of the object.

As in the cylinder, these two points give the equa-
tion of the cone that passes through them and satisfies
the given constraints. However, an additional point is
needed to verify that this is indeed the real object.

Torus. In order to be able to recover the seven param-
eters of the torus, we parameterize them by four local
parameters of one point. The parameters areθ, β, κ1,

andγ . As described above these four parameters are
enough to describe the torus. In order to recover those
parameters we need two additional points because each
point yields three constraints. Thus using three points
we can recover the shape of the torus and verify that
the object is indeed a torus.

9.3. Experimental Results

The algorithm for a single curve has been tested on real
data received from the Brown & Sharpe Company us-
ing their coordinate measuring machines (Fig. 1). The
data is a curve measured on a cylinder. For each point
on the curveTC, NC, BC, andκC are estimated. Using
the algorithm described above, the problem is reduced
to solving for cos(θ1) and cos(β1), where all other pa-
rameters are expressed as functions of these unknown
values. The correct values must satisfy four equations
and have to satisfy the constraints that the absolute val-
ues of the cosine and sine of the various angles must
be less than 1. The values of the unknowns are found
using non-linear least squares optimization techniques.
In this case we use the Levenberg-Marquardt procedure
of the MINPACK library [17].

We chose at random 200 pairs of points and ran the
minimization procedure on them using several initial
conditions for the minimization. Even though the data
is noisy, most pairs of points yielded results close to
the correct shape. The results were sorted according
to the least-squares error (LSE) of the four equations.
We trace the five cylinders with the smallest LSE in
Fig. 11(a). One of these results and the original data
are shown in 11(b). It is important to note that only the
data on the two points and their derivatives mentioned
above was used to recover the shape of the cylinder.
Additional points can then be used, if desired, to get a
better estimate for the shape.

10. Conclusions

A novel method to recognize some surfaces, given
curve(s) on them, was presented. It proceeds by using
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Figure 11. (a) The five recovered cylinders with the lowest LSE.
(b) The recovered shape of the cylinder and the data points.

invariants which are computed on curves, but which
supply information on the type of surfaces the curve
can possibly lie on.

The method can use 3D curves derived from stereo
and structured light; it is particularly useful when given
the output of measuring devices which produce such
curves (for instance, sensory robots and coordinate
measuring machines).

The main advantage of the proposed method com-
pared to algebraic methods is in its local nature, which
enables it to segment and recognize curves (and the
surfaces they lie on), even if the curves lie on more
than one geometric primitive. Also, it necessitates a
far smaller number of curve points than the algebraic
method, for recognizing a single primitive.
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