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Abstract. This paper addresses the problem of motion parameter re-
covery. A novel paradigm is offered to this problem, which computes
a maximum likelihood (ML) estimate. The main novelty is that all
domain-range point combinations are considered, as opposed to a sin-
gle “optimal” combination. While this involves the optimization of non-
trivial cost functions, the results are superior to those of the so-called
algebraic and geometric methods, especially under the presence of strong
noise, or when the measurement points approach a degenerate configu-
ration.

1 Introduction

A key problem in motion analysis is the recovery of motion between two succes-
sive frames (the first of which will be referred to as the domain, and the second
as the range – these names are meant to indicate that the sought transforma-
tion operates on points in the first image, and transforms them into the second
image), given a set of point correspondences. Two facets of this problem are
studied in this paper:

1. If the measured points in the domain and range frames are denoted {Pi}m
i=1

and {Qi}m
i=1, find a transformation which “maps Pi close to Qi”; there are

two common methods for defining this notion of “closeness”. The first, which
is usually referred to as the algebraic method, seeks a transformation T ,
restricted to be of a certain class (Euclidean, linear, affine, projective etc.)

which minimizes
m∑

i=1

‖T (Pi)−Qi‖2. The geometric method searches for a set

of points {P̂i}m
i=1 and a transformation T , such that

m∑
i=1

[
‖P̂i − Pi‖2 + ‖T (P̂i) −Qi‖2

]
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is minimal. One may think of a domain-range combination {P̂i, Q̂i} such
that T (P̂i) = Q̂i as “legal”; the goal is then to find a “legal” combination
which is closest to {Pi, Qi}.

2. The FOE (focus of expansion) problem: given are two images of a set of n 3D
points, I1 and I2, taken from a translating calibrated camera. Let P1 and P2

be the projections of the points in I1 and I2. Every pair of corresponding
points is collinear with an epipole F . Assuming that the camera is moving
forward, the points in the second image will be further away from the epipole
than their corresponding points in the first image. The points that have
been measured in the images are not collinear with the epipole due to noise,
and therefore the lines connecting all pairs of corresponding points will not
intersect at a single point. For this problem one can also define the algebraic
and geometric distances.
The algebraic approach to determine the epipole F is to use a linear least
squares algorithm which finds the point closest to all the lines passing
through the pairs of points. The analogue of the geometric method is as
follows. Given a candidate epipole F , for each pair of points p1i ∈ P1

and p2i ∈ P2, compute the line through F that is closest to the two points.
Now, measure the distance of the points from this line, and add the square
of each of these two distances to the error function. As opposed to the al-
gebraic approach for which there is a closed-form solution, the geometric
requires non-linear optimization techniques. For a comprehensive survey of
these methods as well as other motion recovery problems, see [4, 7, 12, 3, 1, 9].

In this paper a new method is introduced, which is compared to these two
methods. We first study the linear transformation model, and then extend it to
FOE recovery. The method is based on computing the maximum likelihood (ML)
estimate for the unknown parameters [5, 6]. The major difference compared with
the algebraic and geometric methods is that the ML approach seeks not only
a single “good” combination of domain-range points, but looks for a combination
which has a “wide support” in the vicinity of the noisy measurement points. In
all experiments, it performed considerably better than both other methods, at
the price of optimizing more complicated cost functions.

Our approach resembles the one in [11], in which the compatibility between
a model and a data point is obtained by integrating over the entire model. The
differences between our method and the Bayesian approaches in [10, 2] are in
that a) we integrate out the “real” domain points, and b) we do not integrate
over all possible models, but find the mode of the distribution of the model.
Since the full probability distribution is computed, we could also integrate over
all models, but this is beyond the scope of this paper.

2 Linear Transformation

In this section the ML estimate to the parameters of a linear transformation is
derived, and its performance compared to that of the algebraic and geometric
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methods. We chose to start with the 1D case as it is technically simpler, yet
it captures the basic idea of the ML method, and also lends itself to a simple,
intuitive explanation.

2.1 The 1D Case

Let us first analyze the ML estimate in a very simple case: a linear transforma-
tion from R to itself. As will be seen, even this case (transformation with one
parameter) involves non-trivial computations and admits no explicit solution.

We seek to estimate the parameter a of a mapping from R to itself, g(t) = at,
given two noisy measurement points: Y (range) and X (domain). If additional
pairs are given, the probability is the product over all pairs, assuming indepen-
dence. The algebraic and geometric estimates for the single pair case are both
equal to Y

X .
The ML estimate proceeds to compute the density function of every a con-

ditioned on the measurements. Denote this density f(·) (hereafter f() will de-
note probability density). Denote by x, y the “true” values of the domain and
range points; hence, if the noise model is n, then X = x + n, Y = y + n,
and g(x) = y. Hereafter we will assume a Gaussian noise with variance σ2, so
f(X |x) = 1√

2πσ
exp(−(x−X)2

2σ2 ) and f(Y |y) = 1√
2πσ

exp(−(y−Y )2

2σ2 ).
Since x is not known, it has to be marginalized, or “integrated out”. The first

step is to write down the expression for the joint probability density of a and x:

f(a, x/Y,X) =
∣∣∣∣∂(ax, x)
∂(a, x)

∣∣∣∣ f(ax, x/Y,X) = |x|f(Y,X/ax, x)f(ax, x)
f(Y,X)

∝

|x|f(Y,X/ax, x) ∝ |x| exp(− (x−X)2 + (ax− Y )2

2σ2
) (1)

We used the fact that f(Y,X) is constant given the measurement, and assumed
a uniform prior on ax, x. While the latter is subject to criticism, it is not per-
tinent to the theme of this paper; given a better prior on ax, x, it can easily be
incorporated into the ML computation. The choice of the “correct” prior lies
outside the scope of this paper. Next, the expression in Eq. 1 must be integrated
over x, to obtain the residual density for a. A closed-form expression can be ob-
tained for this integral, but it is rather cumbersome and we therefore omit it. We
have not been able to obtain a closed-form expression for the ML value of a, and
it was found by numerical optimization (which is easy in this case, the search
space being one-dimensional). Let us demonstrate how the ML estimate differs
from the algebraic and geometric estimates, by studying some special cases. Fig.
1 (left) depicts a plot of f(a) as a function of a, when X=Y =σ=1. It is readily
seen that the ML estimate is rather different from 1, which is the algebraic and
geometric estimate; the optimal ML value for a is about 0.467. For low levels of
noise (as demonstrated in Fig. 1, right) the ML estimate converges to 1.
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Fig. 1. Probability of the 1D transformation given by g(x) = ax, when the
domain and range measurements are 1. Left: the noise is Gaussian with unit
standard deviation; right: the noise is Gaussian with standard deviation 0.1. In
both graphs the horizontal axis stands for a and the vertical axis for f(a)

2.2 Interpretation of the Results: Cloud-to-Cloud Match

The ML estimate for a defines a line which does not touch the measurement point
(Y,X) – as opposed to the algebraic estimate, which goes through the point.
This result, which may appear counter-intuitive, can be explained as follows.
The ML estimate seeks to find a slope a which has the largest support, that
is, such that there is a large “volume” of pairs (ax, x) that are close to the
measurement point (Y,X). In other words, it does not seek an optimal points-
to-points match (like the algebraic and geometric estimates do), but an optimal
cloud-to-cloud match: one cloud is the neighborhood of (Y,X), the other is the
set {(ax, x)/x = −∞...∞}. That is, the ML estimate a seeks not only that aX
be close to Y , but that for a large volume of points x which are close to X ,
ax will also be close to Y . An explanation is presented in Fig. 2. Note that
correspondence still has to be asusmed: the “clouds” here do not refer to the
aggregate of points, but to “probability clouds” which surround each range and
domain point.

We note that least square analysis is inappropriate for the “cloud-to- cloud”
matching problem, as demonstrated in [11].

2.3 Stability

One of the characteristics of the suggested ML estimate is its stability. Consider,
for example, the case σ=1. Since the geometric and algebraic estimates for a are
both equal to Y

X , they are very unstable: since X and Y in this case are equal
to x + N(0, 1), y + N(0, 1) (N(0, 1) = normal distribution with zero mean and
unit variance), the distribution of a is equal to that of the quotient y+N1(0,1)

x+N2(0,1) .
The expectation of this estimate is equal to

∞∫
−∞

∞∫
−∞

y +N1

x+N2
exp(−N2

1 +N2
2

2
)dN1dN2
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Fig. 2. Left: two lines, corresponding to the geometric choice of slope, a = 1
(dotted line), and the ML choice a = 0.467 (continuous line). Both are for
the same data as in Fig. 1 (left), X = Y = σ = 1. On the right, the plots for
|x| exp(− (x−X)2+(ax−Y )2

2 ) for the two cases. While the solution for a = 1 passes
through (X,Y ) – and therefore the corresponding plot on the right has a higher
peak – the total probability for a = 0.467 is larger. Plots are for the range
x = −1..4

which is undefined due to the singularity when the denominator is zero (at
x = −N2). On the other hand, the ML estimate is always well-behaved in the
sense that its expectation is bounded. The proof is presented in the Appendix.

2.4 What Does the Result Mean?

As noted, the transformation a recovered by the suggested ML method may
appear counter-intuitive, because the recovered transformation does not map
the domain data point onto the range data point. The explanation we offer is
that the quality of the result should not be measured by the proximity of the
transformed measurements of the domain points to the measurements of the
range points, neither by the proximity of a configuration of “legal” domain and
range points (see the Introduction), to the measurements. We suggest that the
quality of the results should be measured by studying the entire probability
distribution over all possible sources of the measurement points.

To illustrate this for the one-dimensional case, consider again the case X =
Y =σ=1. We know that there exist “real” points x, y such that x+ N1(0, 1) =
X, y+N2(0, 1) = Y , and that the “real” a satisfies ax = y. Thus, the distribution
for a is given by 1+N1(0,1)

1+N2(0,1) (note that N(0, 1) is symmetric around the origin).
One can, in fact, compute the distribution of this expression, and prove that it
is identical to the distribution derived in Section 2.1.

The same considerations hold for the problems of 2D motion recovery dis-
cussed in the following sections.
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2.5 The 2D Case

The case of a 2D linear transformation proceeds in a manner very similar to the
1D case. Given noisy measurements of two domain points, P1 and P2, and of the
corresponding range points, Q1 and Q2, the probability of the transformation
T (x, y) = (ax + by, cx + dy) can be computed in a manner similar to the 1D
case, albeit more complicated, resulting in:

f(a, b, c, d/P1, P2, Q1, Q2) = (2)
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

(x1y2−x2y1)2

× exp(

2∑
i=1

[‖(xi, yi) − Pi‖2 + ‖T (xi, yi) −Qi‖2
]

2σ2
)dx1dy1dx2dy2

The explicit form of the integral is too long to include here. However, there
is an interesting similarity between this integral and Eq. 1. Note, especially, the
weighing factor (x1y2−x2y1)2. As in the 1D case, a higher weight is assigned
to domain measurement points which are farther from the origin; however, the
weight factor also penalizes two domain points which are in similar directions.
This is not surprising, since when two points are in the same direction, they are
linearly dependent, hence they yield less information on the transformation T .

2.6 Optimization

Given a pair of domain and range measurements, the ML linear transformation
is obtained by maximizing Eq. 2. We were not able to find an explicit solution,
so the maximum was recovered using a general-purpose optimization method,
the Nelder-Mead simplex method with simulated annealing, as presented in [8].
When more measurement points are provided, the expression for the probability
factors into a few expressions as Eq. 2, one for each combination of two domain-
range pairs. The time it took to recover the motion between two frames was on
the average 0.03 seconds on a Digital workstation, for 100 point pairs.

2.7 Some Results

We tested the suggested method for a few cases, and it consistently performed
better than both the algebraic and geometric methods. Results for two cases are
presented: a nearly degenerate configuration and a stable one.

Nearly Degenerate Configuration In this experiment, four domain and four
range points were chosen according to the following simple rule: for k = 1..4,
the k-th range point as well as the k-th domain point is equal to (k + n, k + n),
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where n is zero mean Gaussian with 0.01 standard deviation (with different
instances of n for every coordinate). We study this case in order to illustrate the
stability of the method.

For example, in one of the tested cases, the noisy measurements were:

T (0.999, 1.009) = (1.023, 1.015), T (2.021, 1.989) = (2.015, 1.985)
T (2.983, 3.009) = (3.012, 3.002), T (4.007, 4.006) = (3.996, 4.002)

The geometric method results for this type of data were very unstable. Denoting
as before T (x, y) = (ax+ by, cx+ dy), we have that a(k + n) + b(k + n) = k + n
for very small n, so a + b ≈ 1, and similarly c + d ≈ 1. In order to display the
results, it therefore suffices to show the values of a and c. For ten such tests,
the results are shown in the scatter diagram below (Fig. 3). The results are
very unstable, although the point configurations are nearly identical. The same
phenomena occurs when the algebraic method is applied to these point sets.

However, the ML estimate studied here gave very stable results; for all cases,
the values of the transformation coefficients were between 0.49 and 0.51, that is,
the recovered transformation matrix was very close to(

1
2

1
2

1
2

1
2

)

The explanation for this result is that the transformation tries to map points
which are close to (k, k) (for k = 1..4), as close as possible to (k, k) (see previous
discussion about the “cloud to cloud” matching in Section 2.2). Of all linear
combinations of noisy measurements of (k, k) whose expectation is k, the one
with weights (1

2 ,
1
2 ) has the smallest variance, hence it achieves the best concen-

tration around the range point (k, k). In this case and others, the ML estimate
has the property of choosing a “simple” and stable solution when the motion
recovery becomes ill-posed, and this is achieved without imposing an external
simplicity constraint, as in regularization or minimal description length based
methods.

Fig. 3. Scatter diagram for the coefficients (a, c) of the linear transformation
recovered by the geometric method in the nearly degenerate case
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Fig. 4. Performance of the three methods for motion recovery. Left: horizontal
axis stands for noise standard deviation, vertical for average l2 error in the
recovery of the motion parameters. The ML estimate is depicted as a solid line,
dashed line stands for the algebraic method, and dotted line for the geometric
method. Right: horizontal axis stands for noise standard deviation, vertical for
the ratio of experiments in which the respective method performed best

Non-degenerate Configuration In this set of experiments, the accuracy with
which the three methods recover the transformation(

2 1

3 2

)

was studied. The domain points formed a stable configuration: {(1, 1), (2, 1),
(1, 2), (2, 2)}, and various levels of noise were tested. An algorithm’s error was
defined as the l2 difference between the original transformation and the recov-
ered one. We have also charted the percentage of cases in which each method
performed best. The tests were run 500 times for each noise variance. Results
are presented in Fig. 4.

The suggested ML estimate was clearly superior to the algebraic and geo-
metric methods. Its average error was much smaller, and it also performed best
in most cases except for the smallest noise variance, in which it was very slightly
(1.6%) surpassed by the geometric method (however, in this case its average error
was 29% smaller than the geometric method’s error). On a side note, our exper-
iments indicated that, although the geometric method performs better than the
algebraic method over a wide range of noise variance, its average error is larger
when the noise increases.

3 Focus of Expansion

An important problem in computer vision is the recovery of the focus of expan-
sion (FOE). In the simplest instance of the problem, four points are given in the
plane: P1 = (P x

1 , P
y
1 ), P2 = (P x

2 , P
y
2 ), Q1 = (Qx

1 , Q
y
1), Q2 = (Qx

2 , Q
y
2), which are
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Fig. 5. Layout of the FOE problem. The point to be recovered is F , however
only {P1, P2, Q1, Q2}, which are the noised versions of {p1, p2, q1, q2}, are given.
For comparison, the FOE corresponding to {P1, P2, Q1, Q2} is the point F ‘

the noisy versions of p1 = (px
1 , p

y
1), p2 = (px

2 , p
y
2), q1 = (qx

1 , q
y
1 ), q2 = (qx

2 , q
y
2 ). The

point F = (F x, F y) is sought that such {F, p1, p2} and {F, q1, q2} are collinear. It
is common to assume that p2 respectively q2 is between F and p1 respectively q1
(Fig. 5). The problem is to find a good estimate for F , given {P1, P2, Q1, Q2} (if
more than four points are given then the ML estimate maximizes the product
of the densities for the subsets of size four).

In order to extend the ML paradigm to the FOE recovery problem, we inte-
grate over all the possible choices of {p1, p2, p1, p2}. Specifically, given a can-
didate F , we parameterize p2, q2 by F, p1, q1: p2 = λ1p1 + (1 − λ1)F, q2 =
λ2p2 + (1 − λ2)F (where 0 ≤ λ1, λ2 ≤ 1). Then, to compute the density of F
given {P1, P2, Q1, Q2}, we proceed as before, using Bayes’ law and an appropriate
change of variables. Alas, the computation is more cumbersome. For simplicity
we assume that the noise variance satisfies 2σ2 = 1, but obviously this does not
sacrifice any generality.

f(F, p1, q1, λ1, λ2/P1, P2, Q1, Q2) =

f(F x, F y, px
1 , p

y
1

, qx
1 , q

y
1

, λ1, λ2/Px
1 , P

y
1

, P x
2 , P

y
2

, Qx
1 , Q

y
1

, Qx
2 , Q

y
2
) =

f(px
1 , p

y
1 , q

x
1 , q

y
1 , λ1p

x
1 + (1 − λ1)F x

, λ1p
y
1 + (1 − λ1)F y

, λ2q
x
1 + (1 − λ2)F x

, λ2q
y
1 + (1 − λ1)F y

/

P
x
1 , P

y
1

, P
x
2 , P

y
2

, Q
x
1 , Q

y
1

, Q
x
2 , Q

y
2
) ·∣∣∣ ∂(px

1 , p
y
1

, qx
1 , q

y
1

, λ1px
1 + (1 − λ1)F x, λ1p

y
1

+ (1 − λ1)F y, λ2qx
1 + (1 − λ2)F x, λ2p

y
1

+ (1 − λ1)F y)

∂(F x, F y, px
1

, p
y
1

, qx
1

, q
y
1

, λ1, λ2)

∣∣∣ =

(1 − λ1)(1 − λ2)
∣∣py

1
F x − F xq

y
1

− p
y
1

qx
1 + px

1q
y
1

− px
1 F y + F yqx

1

∣∣ ·
exp(−(px

1 − P
x
1 )2 − (py

1 − P
y
1 )2 − (qx

1 − Q
x
1 )2 − (qy

1 − Q
y
1 )2 −

(λ1 p
x
1 + (1 − λ1)fx − P

x
2 )2 − (λ1 p

y
1

+ (1 − λ1)fy − P
y
2

)2 −

(λ2 q
x
1 + (1 − λ2)fx − Q

x
2 )2 − (λ2 q

y
1

+ (1 − λ2)fy − Q
y
2
)2)

(3)
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Next, the “nuisance parameters” px
1 , p

y
1 , q

x
1 , q

y
1 , λ1, λ2 have to be integrated out.

The resulting six-dimensional integral is difficult to explicitly compute because
of the absolute value expression (Eq. 3). We have therefore applied numerical
integration, adopted from the qgauss method [8].

3.1 Results

As before, the results may appear counter-intuitive. For example, consider the
case
P1 = (10, 20), P2 = (7.5, 15), Q1 = (24, 12), Q2 = (20, 10), with noise satisfying
2σ2 = 1. The ML result for the FOE is (3.24, 4.03), quite different from (0, 0)
which is the result of the geometric and algebraic methods. Again, the intuitive
explanation is that the entire probability space for p1, p2, q1, q2 is sampled by
adding noise to P1, P2, Q1, Q2, and each time the FOE is computed by intersect-
ing the lines between p1, p2 and q1, q2. This results in a cloud of points whose
largest density is around the ML estimate. To make this empirical explanation

Fig. 6. Empirical demonstration of the ML FOE estimate. The measured points
are P1 = (10, 20), P2 = (7.5, 15), Q1 = (24, 12), Q2 = (20, 10). The FOE corre-
sponding to the measurements is (0, 0) (represented by the intersection of the
two dark lines). The ML estimate, on the other hand, is the FOE with the high-
est probability density; this density can be sampled by randomly adding noise
to {P1, P2, Q1, Q2}, thus obtaining {p1, p2, q1, q2}, and computing the FOE for
{p1, p2, q1, q2}. A scatter diagram for 4,000 such FOE’s is shown, together with
the measurement points and a sample {p1, p2, q1, q2}, with its corresponding
FOE (represented by the intersection of the blue dashed lines). Only points in
the square [−15, 15]× [−15, 15] are shown
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of the results clear, a sample of this point cloud is presented (Figs. 6,7). It can
be observed that it clusters not around the origin, but around the ML estimate.

4 Conclusion and Future Research

We have presented a Bayes based ML estimate for motion recovery. The basic
idea is to consider not only the noisy measurement points, but to integrate over
all possible combinations of “real” domain and range points. The method yields
results which are correct in the sense of obtaining a motion estimate which has
the highest support among all these combinations. Due to this global property,
the method is very stable even when the point configurations are nearly degen-
erate, or when the noise is large relative to the size of the point set. The price
is the computational cost of evaluating the probability of the candidate motion
parameters, which involves integrating over all possible domain configurations.

Future work will address the following questions: is a ML estimate good
enough, or should the “fully Bayesian” estimate be computed by averaging the

Fig. 7. Close-up of scatter diagram of Fig. 6: denser (darker) areas correspond
to higher values of the FOE probability density function. It can be observed that
the highest density is not around the origin. The ML estimate is (3.24, 4.03). Note
that the density is nearly flat in a large area, indicating that it is not possible
to produce a single highly reliable estimate for the FOE
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motion models weighed by their probabilities? How reliable are the ML estimates
(equivalently, is the probability distribution uni-modal and strongly peaked)?
Also, the method will hopefully be extended to cover more difficult problems
such as the recovery of the fundamental matrix. In addition, applications of the
theoretical results to real problems will be studied.
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Appendix

In this appendix we will prove that the expectation of the maximum likelihood
estimator for the recovery of the one-dimensional scale parameter, discussed in
Section 2.1, is well-defined and finite. Although this is a simple case, it serves to
demonstrate the stability and convergence properties of the suggested method.

Recall (Eq. 1) that if the mapping is given by T (x) = ax, and the domain
respectively range measurements are X and Y , then the probability density of a
is given by

f(a) =

∞∫
−∞

|x| exp(−[(x−X)2 + (ax− Y )2])dx (4)
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(where we have assumed for simplicity 2σ2 = 1). The proof will proceed by
demonstrating that the integral of Eq. 4 is smaller than f(0), for a large enough a.
Hence, the maximum likelihood estimate (which is obtained at the global max-
imum of f(a)) will be bounded, and then its expectation can be estimated by
integrating over all possible Y,X .

The integral of Eq. 4 equals

exp(−X2 − Y 2)

∞∫
−∞

|x| exp(−[(a2 + 1)x2 − 2(X + aY )x])dx

if A > 0,

∞∫
−∞

|x| exp(−[Ax2 −Bx])dx =
2A3/2 +

√
πAB exp(B2

4A )erf( B
2
√

A
)

2A5/2

then, noting that |erf(x)| < 1, and substituting A = a2 + 1, B = 2(X + aY ),
f(a) can be bounded by

exp(−X2 − Y 2)
[

1
a2

+
X + aY

a3
exp(

(X + aY )2

a2
)
]

(5)

here we gave assumed that a, Y,X ≥ 0, but this only means that in the remaining
part of the proof we should replace these three variables by their absolute values;
to make notations simpler, we will omit the absolute values.

Note that

f(0) =

∞∫
−∞

|x| exp(−[(x−X)2 + Y 2])dx

= exp(−X2 − Y 2)[1 +X exp(X2)erf(X)] ≥ exp(−X2 − Y 2).

So, in order to bound f(a) by f(0), we can cancel out exp(−X2 − Y 2). After
discarding 1

a2 in Eq. 5, as it is asymptotically negligible compared to the other

expressions, it is then sufficient to bound X+aY
a3 exp( (X+aY )2

a2 ) by 1.

Lemma 1. There exists a polynomially bounded expression p(Y,X) such that if
a > p(Y,X) then

X + aY

a3
exp(

(X + aY )2

a2
) <

1
a3/2

exp(Y 2 + 1)

Proof: It is straightforward to verify that this inequality holds for
a polynomial larger than max{2, 2X, 2Y, 2X2, 4XY, 2Y 2}. Denote p(Y,X) =
max{2, 2X, 2Y, 2X2, 4XY, 2Y 2}.
Lemma 2. If a > max{exp(4

5 (Y 2 + 1)), p(Y,X)}, then f(a) < f(0).



All Points Considered: A Maximum Likelihood Method for Motion Recovery 85

Proof:

f(a) < f(0)
[
X + aY

a3
exp(

(X + aY )2

a2
)
]
<

f(0)
a3/2

exp(Y 2 + 1) <

f(0)
exp(6

5 (Y 2 + 1))
exp(Y 2 + 1) =

f(0)
exp(1

5 (Y 2 + 1)
< f(0).

Since the ML estimate is obtained at the global maximum of f(a), it is bounded
by max{exp(4

5 (Y 2 + 1)), p(Y,X)}, and its expectation can be bounded by inte-
grating this bound over all Y,X pairs:

Theorem 1. The expectation of the maximum likelihood estimate for a is finite.

Proof: Suppose that the “real” domain and range points are x, y respectively.
Then, the expectation of a is bounded above by

∞∫
−∞

∞∫
−∞

exp(−(X − x)2 − (Y − y)2)max{p(Y,X), exp(
4
5
(Y 2 + 1))}dXdY

and this integral is convergent, because the left exponent is dominated by
exp(−X2 − Y 2) as Y,X → ∞. Hence asymptotically the integrand is bounded
by max{exp(−X2 − Y 2)p(Y,X), exp(−X2 − 1

5Y
2)}, and the integral of this ex-

pression clearly converges.
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