
A Geometric Approach to Monitoring Threshold Functions
Over Distributed Data Streams ∗

Izchak Sharfman
Faculty of Computer Science

Technion
Haifa, Israel

tsachis@cs.technion.ac.il

Assaf Schuster
Faculty of Computer Science

Technion
Haifa, Israel

assaf@cs.technion.ac.il

Daniel Keren
Department of Computer

Science
Haifa University

Haifa, Israel

dkeren@cs.haifa.ac.il

ABSTRACT
Monitoring data streams in a distributed system is the fo-
cus of much research in recent years. Most of the proposed
schemes, however, deal with monitoring simple aggregated
values, such as the frequency of appearance of items in the
streams. More involved challenges, such as the important
task of feature selection (e.g., by monitoring the information
gain of various features), still require very high communica-
tion overhead using naive, centralized algorithms.

We present a novel geometric approach by which an arbi-
trary global monitoring task can be split into a set of con-
straints applied locally on each of the streams. The con-
straints are used to locally filter out data increments that
do not affect the monitoring outcome, thus avoiding unnec-
essary communication. As a result, our approach enables
monitoring of arbitrary threshold functions over distributed
data streams in an efficient manner.

We present experimental results on real-world data which
demonstrate that our algorithms are highly scalable, and
considerably reduce communication load in comparison to
centralized algorithms.

1. INTRODUCTION
A common requirement in many emerging applications is

the ability to process, in real time, a continuous high volume
stream of data. Examples of such applications are sensor
networks [18], real-time analysis of financial data [26, 27],
and intrusion detection. These applications are commonly
referred to as data stream systems [3]. The real-time nature
of data stream systems and the vast amounts of data they
are required to process introduce new fundamental problems
that are not addressed by traditional Database Management
Systems (DBMS). Traditional DBMS are based on a pull

∗Honorable mention for best paper award (ranked
second/third paper in SIGMOD06). Partially sup-
ported by the Israeli Ministry of Science.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006,June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

paradigm, where users issue queries regarding data stored
by the system, and the system processes these queries as
they are issued and returns results. Data stream systems
[8, 10, 17, 18, 22] are based on a push paradigm, where
the users issue continuous queries [5, 25] that specify the
required processing of the data, which the system processes
as it arrives, continuously providing the user with updated
results.

Various types of continuous queries have been studied in
the past, including continuous versions of selection and join
queries [19], various types of aggregation queries [21, 1], and
monitoring queries [8]. While most previous work regarding
data stream systems considers sequential setups (the data
is processed by a single processor), many data stream appli-
cations are inherently distributed: examples include sensor
networks [18], network monitoring [13], and distributed in-
trusion detection.

A useful class of queries in the context of distributed data
streams are monitoring queries. Previous work in the con-
text of monitoring distributed data streams considered mon-
itoring simple aggregates, such as detecting when the sum
of a distributed set of variables exceeds a predetermined
threshold [13], or finding frequently occurring items in a set
of distributed streams [20]. Some work has been done on
monitoring more complex constructs derived from distrib-
uted streams, but the proposed solutions are customized for
the problem at hand. Examples include [7] which presents
an algorithm for detecting similar sets of streams among a
large set of distributed streams, and [11], which presents
an algorithm for approximating quantiles over distributed
streams.

A useful, more general type of monitoring query can be
defined as follows: let X1,X2,...,Xd be frequency counts for
d items over a set of streams. Let f(X1,X2,...,Xd) be an
arbitrary function over the frequency counts. We are inter-
ested in detecting when the value of f(X1,X2,...,Xd) rises
above, or falls below, a predetermined threshold value. We
refer to this query as a threshold function query.

There is a fundamental difference between the cases of
linear and non-linear f , which can be demonstrated even
for the case of one-dimensional data. Let x1 and x2 be
values stored in two distinct nodes, and let f(x) = 6x− x2.
Suppose one needs to determine whether f(x1+x2

2
) > 1. If

f was linear, the solution would have been simple, since in

that case f(x1+x2
2

) = f(x1)+f(x2)
2

. Suppose that initially
the value at each node is < 1; then a simple distributed
algorithm for monitoring whether f(x1+x2

2
) > 1 is for each

node i to remain silent as long as f(xi) < 1. However, even
for the simple non-linear function above, it is impossible to
determine from the values of f at the nodes whether its value
at the average is above 1 or not. For example, if x1 = 0, x2 =
6, then f ’s value in each node is below 1, but its value in
the average of x1 and x2 is 9. But if x1 = 10, x2 = 20, the
value at both xi and their average is below 1. So, nothing
can be deduced about the location of f(x1+x2

2
) vis-a-vis the

threshold given the locations of f(xi) vis-a-vis it.
In this trivial example, the cost of sending the data stored

in the nodes is the same as sending the value, but in data
mining applications the data can be of very high dimension-
ality. This necessitates a distributed algorithm for locally
determining whether f ’s value at the average data vector is
above the threshold.

Following is a more practical example of a threshold func-
tion query: consider a classifier built over data extracted
from a set of streams, for example a distributed spam mail
filtering system. Such a system is comprised of agents in-
stalled on several dispersed mail servers. Users mark spam
mail they have received as such, providing each server with
a continuous stream of positive and negative samples. These
samples serve as a basis for building a classifier. Since the
vocabulary comprising these samples may be very large, an
important task in such a setup is determining which words,
or features, should be used for performing the classification.
This task is known as feature selection. Feature selection
is typically performed by calculating, for every feature, a
non-linear scoring function, such as Information Gain or χ2,
over statistics collected from all the streams. All the fea-
tures scoring above a certain threshold are chosen as para-
meters for the classification task. Since the characteristics
of spam mail may vary over time, one may wish to monitor
the features in order to determine if selected features re-
main prominent, or if any of the features not selected have
become prominent. Determining whether a certain feature
should be selected at a given time can be viewed as a thresh-
old function query.

Threshold function queries can be implemented by col-
lecting all the mail items to a central location, but such a
solution is very costly in terms of communications load. We
are interested in algorithms that implement threshold func-
tion queries in a more efficient manner. We achieve this
by defining numerical constraints on the data collected at
each node. As data arrives on the streams, every node veri-
fies that the constraint on its stream has not been violated.
We will show that as long as none of these constraints have
been violated, the query result is guaranteed to remain un-
changed, and thus no communication is required.

In this paper we present two algorithms for efficiently
performing threshold function queries. The algorithms are
based on a geometric analysis of the problem. Upon initial-
ization, the algorithms collect frequency counts from all the
streams, and calculate the initial result of the query. In ad-
dition, a numerical constraint on the data received on each
individual stream is defined. As data arrives on the streams,
each node verifies that the constraint on its stream has not
been violated. The geometric analysis of the problem guar-
antees that as long as the constraints on all the streams are
upheld, the result of the query remains unchanged, and thus
no communication is required. If a constraint on one of the
streams is violated, new data is gathered from the streams,
the query is reevaluated, and new constraints are set on the

streams.
The first algorithm is a decentralized algorithm, designed

for a closely coupled environment, where nodes can effi-
ciently broadcast messages. The second algorithm is de-
signed for loosely coupled environments, where the cost of
broadcasting a message is high. These algorithms are, to
the best of our knowledge, the first to enable efficient moni-
toring of arbitrary threshold functions over distributed data
streams.

1.1 Detailed Example
Following is a detailed description of the spam filtering

example given above. We will use this example to demon-
strate the concepts we present. Let p1, p2, ..., pn be n agents
installed on n different mail servers. Let Mi = {mi,1, mi,2, ...
, mi,k} be the last k mail items received at the mail server
installed on pi, and let M denote the union of the last k mail

items received at each one of the n mail servers, M =
nS

i=1

Mi.

Let X denote a set of mail items, let Spam(X) be the set of
mail items in X labeled as spam, and let Spam(X) be the
set of mail items in X not labeled as spam. Let Cont(X, f)
be the set of mail items in X that contain the feature f ,
and let Cont(X, f) be the set of mail items in X that do
not contain the feature f . Let the contingency table Cf,X

for the feature f over the set of mail items X be a 2 × 2

matrix, Cf,X = {ci,j}, such that c1,1 = |Cont(X,f)∩Spam(X)|
|X| ,

c1,2 =
|Cont(X,f)∩Spam(X)|

|X| , c2,1 =
|Cont(X,f)∩Spam(X)|

|X| , and

c2,2 =
|Cont(X,f)∩Spam(X)|

|X| . Cf,Mi is called the local contin-

gency table for the node pi, and Cf,M is called the global

contingency table. Note that Cf,M =

nP
i=1

Cf,Mi

n
. We are

interested in determining, for each feature f , whether the
Information Gain over its global contingency table, denoted
by G(Cf,M), is above or below a predetermined threshold r.
The formula for Information Gain is given below1

G(Cf,X) =
X

i∈{1,2}

X

j∈{1,2}
ci,j ·log

�
ci,j

(ci,1 + ci,2) · (c1,j + c2,j)

�

Note that the answer to the threshold function query can-
not be derived from the value of the monitored function on
data from each individual stream. Consider, for example,
a spam filtering system consisting of two streams, with a
threshold value of 0.5. The first node may hold a contin-

gency table Cf,M1 =

�
1 0
0 0

�
, resulting in G(Cf,M1) = 0,

and the second node may hold a contingency table Cf,M2 =�
0 0
0 1

�
, resulting in G(Cf,M2) = 0. As we can see, the

gain calculated on each individual stream is 0, and thus
below the threshold value, but the gain on the global contin-

gency table for f , Cf,M1∪M2 =
Cf,M1+Cf,M2

2
=

�
0.5 0
0 0.5

�
,

is G(Cf,M1∪M2) = 1, and thus above the threshold value.
Note that this behaviour does not occur when monitoring
frequencies of occurrence of items over distributed streams,
i.e., if the frequency of occurrence of a certain item in all
the streams is below a predetermined threshold, then the

1If ci,j =0 then ci,j ·log
�

ci,j

(ci,1+ci,2)·(c1,j+c2,j)

�
is defined as 0.

frequency of occurrence of that item over the union of the
streams is below the threshold as well.

2. RELATED WORK
A well studied problem is the monitoring of frequency

counts over a single data stream [1, 2, 9, 21], however these
works do not address distributed environments.

Algorithms proposed in [13] enable detecting when the
sum of a distributed set of variables exceeds a predetermined
threshold. However, the algorithms proposed in [13] concen-
trate on monitoring the sum of a set of variables, whereas
our algorithm enable monitoring arbitrary threshold func-
tions over such variables. More recently, [12] presented al-
gorithms that adapt local thresholds when monitoring the
sum of a set of variables, so that the communication cost is
minimized. An interesting avenue for future work is mak-
ing use of the techniques presented in [12] when monitor
arbitrary threshold functions.

The algorithm proposed in [23] enables a central coordina-
tor to answer continuous queries designed to track the sum,
average, or minimum of a distributed set of variables within
a certain predetermined error margin. That work focuses on
minimizing the communications required for performing sev-
eral concurrent monitoring tasks, whereas our work proposes
algorithms for monitoring arbitrary threshold functions.

Babcock and Olston propose an algorithm for finding the
k largest aggregated values (for example the k largest fre-
quency counters) over a set of distributed streams [4]. Their
algorithm employs a coordinator, which determines the ini-
tial set of the k largest aggregates, and sends each node a
set of numerical constraints. Each node checks that the data
received on its stream does not violate this constraint. As
long as all the constraints are upheld, the list of top k val-
ues is guaranteed to remain unchanged. In case a constraint
is violated at one of the nodes, it notifies the coordinator,
which performs a resolution process. The goal of the resolu-
tion process is to check if the list of the k largest values has
changed, and to update the constraints at the nodes. The
coordinator-based algorithm proposed in our work is similar
to that algorithm in its use of numerical constraints, but its
purpose is to monitor an arbitrary threshold function.

Algorithms proposed in [14, 15] enable estimating certain
functions over a set of distributed streams, for example the
number of distinct elements in the streams, but this work
does not address the monitoring of threshold functions.

3. COMPUTATIONAL MODEL
Let S={s1,s2,...sn}, be a set of n data streams, collected

at nodes P={p1,p2,...,pn}. Let ~v1(t),~v2(t),...,~vn(t) be d-
dimensional real vectors derived from the streams (the value
of these vectors varies over time). These vectors are called
local statistics vectors. Let w1,w2,...,wn be positive weights
assigned to the streams.

The weight wi assigned to the node pi usually corresponds
to the number of data items its local statistics vector is
derived from. Assume, for example, that we would like to
determine whether the frequency of occurrence of a certain
data item in a set of streams is above a certain threshold
value. In this case, the weight we assign to each node at time
t is the number of data items received on the stream at time
t (and ~vi(t) is a scalar holding the frequency of occurrence of
the item in the stream si). In this setup weights change over

time. A variant of the problem stated above is for each node
to maintain the frequency of occurrence of the item in the
recent Ni data items received on the stream (this is known as
working with a sliding window of size Ni). In that case, the
weight assigned to each node is the size of its sliding window.
In this setup weights do not change over time. For the sake
of clarity, we assume at first that the weights are fixed, and
that they are known to all nodes. Later, we modify our
algorithms to handle weights that vary with time.

Let ~v(t) =

nP
i=1

wi~vi(t)

nP
i=1

wi

. ~v(t) is called the global statistics

vector. Let f : Rd → R be an arbitrary function from the
space of d -dimensional vectors to the reals. f is called the
monitored function. We are interested in determining at
any given time, t, whether or not f(~v(t)) > r, where r is a
predetermined threshold value.

We present algorithms for two settings, a decentralized
setting and a coordinator-based setting. Algorithms in both
settings construct a vector called the estimate vector, de-
noted by ~e(t). The estimate vector is constructed from the
local statistics vectors collected from the nodes at certain
times, as dictated by the algorithms. The last statistics vec-
tor collected from the node pi is denoted by ~v′i. Each node
remembers the last statistics vector collected from it. The
estimate vector is the weighted average of the latest statis-

tics vectors collected from the nodes, i.e., ~e(t) =

nP
i=1

wi
~v′i

nP
i=1

wi

.

From time to time, as dictated by the algorithm, an updated
statistics vector is collected from one or more nodes, and the
estimate vector is updated. At any given time the estimate
vector is known to all nodes.

In the decentralized setting, when the algorithm dictates
that a statistics vector should be collected from a node, the
node broadcasts the statistics vector to the rest of the nodes.
Each node keeps track of the last statistics vector broadcast
by every node, and locally calculates the estimate vector.
In the coordinator-based setting, we designate a coordinator
node and denote it by p1. The coordinator is responsible for
collecting local statistics vectors from the nodes, calculating
the estimate vector, and distributing it to the nodes.

In both settings, each node pi maintains a parameter
called the statistics delta vector. This vector is denoted
by ∆~vi(t). The statistics delta vector held by the node pi

is the difference between the current local statistics vector
and the last statistics vector collected from the node, i.e.,
∆~vi(t) = ~vi(t)− ~v′i.

In both settings, each node pi also maintains a parameter
called the drift vector. This vector is denoted by ~ui(t). The
drift vector is calculated differently in each setting. In the
decentralized setting the drift vector is a displacement of
∆~vi(t) in relation to the estimate vector,

~ui(t) = ~e(t) + ∆~vi(t) (1)

The coordinator-based algorithm employs a mechanism
for balancing the local statistics vectors of a subset of the
nodes. Consider the case where at a certain time t the sta-
tistics delta vector in two equally weighted nodes, pi and
pj , cancel each other out: that is ∆~vi(t) = −∆~vj(t). We
will see that balancing the local statistics vectors held by
pi and pj can improve the efficiency of the algorithm. The

coordinator facilitates this balancing by sending each node

a slack vector, denoted by ~δi. The sum of the slack vectors
sent to the nodes is ~0. The drift vector held by each node is
calculated as follows:

~ui(t) = ~e(t) + ∆~vi(t) +
~δi

wi
(2)

In the decentralized algorithm, nodes communicate by
broadcasting messages. The cost of performing a broadcast
varies according to the networking infrastructure at hand.
In the worst case broadcasting a message to n nodes requires
sending n point to point messages. While the decentralized
algorithm remains highly efficient even in those settings, in
practice, the cost of broadcasting a message is significantly
lower. Some networking infrastructures, such as wireless
networks and Ethernet based networks, support broadcast-
ing at the cost of sending a single message. In other cases
efficient broadcasting schemes have been developed that sig-
nificantly reduce the cost of broadcasting.

We assume that communication links are reliable, i.e., no
messages are lost (otherwise standard methods for imple-
menting reliability can be employed).

4. GEOMETRIC INTERPRETATION
At the heart of our approach is the ability to decompose

the monitoring task into local constraints on streams. As
data arrives on the streams, each node verifies that the lo-
cal constraint on its stream has not been violated. We will
show that as long as none of these constraints have been vi-
olated, the query result is guaranteed to remain unchanged,
and thus no communication is required. As demonstrated in
Section 1, this cannot be done solely by observing the value
of the monitored function on each stream. Therefore, an es-
timated global statistics vector, called the estimate vector,
is known to all nodes. The estimate vector is said to be cor-
rect at a given time if the value of the monitored function
on the estimate vector and the value of the monitored func-
tion on the global statistics vector at that time (this value
is unknown to any singe node) are on the same side of the
threshold. Given an initially correct estimate vector, our
goal is to set local constraints on each stream such that as
long as no constraints have been violated, the estimate vec-
tor remains correct, and thus no communication is required.
The method for decomposing the monitoring task is based
on the following, easily verifiable observation—at any given
time the weighted average of the drift vectors held by the
nodes is equal to the global statistics vector,

nP
i=1

wi~ui(t)

nP
i=1

wi

= ~v(t) (3)

We refer to Property (3) as the convexity property of the
drift vectors. The geometric interpretation of Property (3)
is that the global statistics vector is in the convex hull of
the drift vectors held by the nodes,

~v(t) ∈ Conv(~u1(t), ~u2(t), ..., ~un(t)) (4)

This observation enables us to take advantage of Theorem
1 in order to decompose the monitoring task.

�
�

����
�
�
�

����	
�� �
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

Figure 1: Illustration of Theorem 1. The drift vec-
tors held by 5 nodes and the balls constructed by
them are depicted. The convex hull of the drift vec-
tors is highlighted in gray. As stated by the theorem,
the union of the balls bounds the convex hull.

Theorem 1. Let ~x, ~y1, ~y2, ..., ~yn ∈ Rd be a set of vec-
tors in Rd. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the convex hull of

~x, ~y1, ~y2, ..., ~yn. Let B(~x, ~yi) be a ball centered at ~x+~yi
2

and

with a radius of
~x−~yi

2

2

i.e., B(~x, ~yi) =
n

~z
���
~z − ~x+~yi

2

2

≤
~x−~yi

2

2

o
, then Conv(~x, ~y1, ~y2, ..., ~yn) ⊂

nS
i=1

B(~x, ~yi).

Theorem 1 is used to bound the convex hull of n+1 vectors
in Rd by the union of n d -dimensional balls. In our case
it is used to bound the convex hull of the estimate vector
and the drift vectors i.e., Conv(~e(t), ~u1(t), ~u2(t), ..., ~un(t)),
by a set of n balls, where each ball is constructed indepen-
dently by one of the nodes. Each node, pi, constructs a ball

B(~e(t), ~ui(t)), which is centered at ~e(t)+~ui(t)
2

, and has a ra-

dius of
~e(t)−~ui(t)

2

. Note that at any given time each node

has all the information required to independently construct
its ball. Theorem 1 states that Conv(~e(t), ~u1(t), ~u2(t), ...,
~un(t)) ⊂ Si B(~e(t), ~ui(t)).

The application of Theorem 1 is illustrated in Figure 1,
which depicts a setup comprised of 5 nodes, each holding a
statistics vector, ~vi(t) ∈ R2. The drift vectors held by the
nodes (~u1(t)..., ~u5(t)), the global statistics vector ~v(t), and
the estimate vector ~e(t) are depicted, as are the balls con-
structed by the nodes. The convex hull of the drift vectors
is highlighted in gray, and one can see that, as the theorem
states, the area defined by the convex hull is bounded by
the set of balls.

4.1 Local Constraints
The local constraint on each stream is set as follows: the

monitored function f and threshold r can be seen as in-
ducing a coloring over Rd. The vectors {~x|f(~x) > r} are
said to be green, while the vectors {~y|f(~y) ≤ r} are said
to be red. The local constraint each node maintains is to
check whether the ball B(~e(t), ~ui(t)) (the ball centered at
~e(t)+~ui(t)

2
, and having a radius of

~e(t)−~ui(t)
2

) is monochro-

matic, i.e., whether all the vectors contained in the ball have
the same color. Testing for monochromicity is done by find-

ing the maximal and minimal values of f in the ball. This
is done locally at each node hence has no effect on the com-
munication load.

If all the local constraints are upheld, the estimate vector
is correct: because all the balls contain the estimate vector,
and all the balls are monochromatic, the set of vectors de-
fined by the union of all the balls is monochromatic as well.
Since the union of all the balls contains the convex hull of the
drift vectors and the estimate vector (Conv(~e(t), ~u1(t), ~u2(t),
..., ~un(t))), and according to Equation (4) the global statis-
tics vector is contained in the convex hull of the drift vectors,
the estimate vector and the global statistics vector have the
same color. Therefore, they are on the same side of the
threshold, i.e., the estimate vector is correct.

4.2 Proof of Theorem 1
Following is the proof of Theorem 1. The proof uses the

following variant of Carathéodory’s theorem [6]:

Theorem 2. Let ~x, ~y1, ~y2, ..., ~yn ∈ Rd be a set of vec-
tors in Rd. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the convex hull of
~x, ~y1, ~y2, ..., ~yn. Any vector ~z ∈ Conv(~x, ~y1, ~y2, ..., ~yn) can
be expressed as a convex combination of ~x, and at most d
members of {~y1, ~y2, ..., ~yn}.

Proof of Theorem 1: The theorem is proven by induction
over d. The base of the induction is d = 1. Proving the base
of the induction is trivial (~x, ~y1, ~y2, ..., ~yn are real numbers
and both Conv(~x, ~yi) and B(~x, ~yi) are the segment [x, yi]).

The induction step is proven as follows: according to The-
orem 2, since any vector ~z ∈ Conv(~x, ~y1, ~y2, ..., ~yn) can be
expressed as a convex combination of ~x and a set of at most
d members of {~y1, ~y2, ..., ~yn}, it is sufficient to show that for
an arbitrary set of vectors, {~x,~v1, ~v2, ..., ~vd} ∈ Rd,

Conv(~x,~v1, ~v2, ..., ~vd) ⊂
d[

i=1

B(~x,~vi) (5)

Furthermore, we observe that any vector ~z ∈ Conv(~x,~v1, ~v2,

..., ~vd) is a convex combination of some vector ~z′ ∈ Conv(~v1,
~v2, ..., ~vd) and ~x. Therefore, it is sufficient to show that:

Conv(~v1, ~v2, ..., ~vd) ⊂
d[

i=1

B(~x,~vi) (6)

Equation (6) entails Equation (5) since ~z is a convex combi-

nation of ~z′ ∈ Conv(~v1, ~v2, ..., ~vd) and ~x, and since, accord-

ing to Equation (6), Conv(~v1, ~v2, ..., ~vd) ⊂
dS

i=1

B(~x,~vi), ~z′ be-

longs to at least one of the balls B(~x,~v1),B(~x,~v2),...,B(~x,~vd),
say B(~x,~vj). Since by definition ~x also belongs to B(~x,~vj), ~z
also belongs to B(~x,~vj). This is because ~z is a convex com-

bination of ~z′ and ~x, which both belong to B(~x,~vj), which
is a convex set.

Since for any rotation matrix R and vectors {q1...qn},
Conv{R(q1)...R(qn)} = R(Conv{q1...qn}), we assume with-
out loss of generality that the vectors ~v1, ~v2, ..., ~vd lie on a d−
1 dimensional hyperplane, P, which consists of vectors whose
last coordinate is constant. It is easy to show that the inter-
section of B(~x,~v1),B(~x,~v2),...,B(~x,~vd) with P yields the set
of d − 1 dimensional balls, B(~xp, ~v1),B(~xp, ~v2),...,B(~xp, ~vd),
where ~xp is the projection of ~x on the plane P. Note that
for every i, the d− 1 dimensional ball B(~xp, ~vi) is contained

in the d dimensional ball B(~x,~vi) (B(~xp, ~vi) ⊂ B(~x,~vi)).
Since the vectors ~xp, ~v1, ~v2, ..., ~vd lie on the d − 1 dimen-
sional plane P, then, according to the induction hypothe-

sis, Conv(~v1, ~v2, ..., ~vd) ⊂
dS

i=1

B(~xp, ~vi). Since for every i,

B(~xp, ~vi) is contained in B(~x,~vi), then Conv(~v1, ~v2, ..., ~vd) ⊂
dS

i=1

B(~x,~vi). We have proved Equation (6), and thus con-

cluded the proof. ¤

5. DISTRIBUTED MONITORING
In this section we present algorithms that are based on

the geometric method for decomposing the monitoring task
into local constraints on the streams. After presenting the
algorithms, we describe how they can be tuned to relax per-
formance requirements in favour of reducing communication
load, and how they can be modified to support time-varying
weights.

5.1 The Decentralized Algorithm
Following is a simple, broadcast-based algorithm for mon-

itoring threshold functions: each node maintains a copy of
the last statistics vector sent by each of the nodes. The
initialization stage consists of every node broadcasting its
initial statistics vector. Upon receipt of all the initialization
messages, each node calculates the estimate vector, ~e(t).
Then, as more data arrives on the stream, each node can
check its local constraint according to the estimate vector
and its drift vector. If a local constraint is violated at a node,
pi, the node broadcasts a message of the form < i,~vi(t) >,
containing its identifier and its local statistics vector at the
time. The broadcasting node updates its ~v′i parameter and
recalculates the estimate vector. Upon receiving a broadcast
message from a node, pi, each node updates its ~v′i parame-
ter and recalculates the estimate vector.

If all the local constraints are upheld, Theorem 1 guaran-
tees the correctness of the estimate vector (enabling every
node to locally calculate the value of the threshold func-
tion). After a node broadcasts a message, its local con-
straint is upheld (because the ball it constructs has a radius
of 0, and therefore is monochromatic). If a local constraint
has been violated, at worst all n nodes (but possibly fewer)
will broadcast a message before all the local constraints are
upheld again.

A formal description can be found in Algorithm 1.

5.2 The Coordinator-Based Algorithm
Local constraints are also used in the coordinator-based

algorithm, but the coordinator is responsible for calculating
the estimate vector, maintaining its correctness, and distrib-
uting it to the other nodes. In the decentralized algorithm
the violation of a constraint on one node requires commu-
nicating with all the rest of the nodes (a broadcast message
is sent). While this may be a good solution in setups where
the nodes are closely coupled, in other cases we can further
reduce the communication load by introducing a coordina-
tor. The presence of a coordinator enables us to resolve
a violation at a node by communicating with only a sub-
set of the nodes, as opposed to communicating with all the
nodes as required in the decentralized algorithm. Consider,
for example, a set of equally weighted nodes monitoring the
function f(x) = (x − 5)2 (a function over a single dimen-
sional statistics vector), and a threshold value of r = 9. Say

Algorithm 1 The decentralized algorithm

Initialization: at a node pi

• Broadcast a message containing the initial statistics
vector and update ~v′i to hold the initial statistics vec-
tor. Upon receipt of messages from all the nodes, cal-
culate the estimate vector (~e(t)).

Processing Stage at a node pi:

• Upon arrival of new data on the local stream, recal-
culate ~vi(t), and ~ui(t), and check if B(~e(t), ~ui(t)) re-
mains monochromatic. If not, broadcast the message
<i,~vi(t)> and update ~v′i to hold ~vi(t).

• Upon receipt of a new message <j,~vj(t)>, update
~v′j to hold ~vj(t), recalculate ~e(t), and check if
B(~e(t), ~ui(t)) is monochromatic. If B(~e(t), ~ui(t)) is not
monochromatic, broadcast the message <i,~vi(t)> and

update ~v′i to hold ~vi(t).

that at time t the estimate vector is ~e(t) = 5. Note that
since f(~e(t)) = 0 < r, any drift vector in the range [2, 8]
satisfies the local constraint at the node. Let us assume
that the drift vector at the coordinator, p1, is ~u1(t) = 4,
and the constraints at all n nodes are satisfied except for
p2, which holds the drift vector ~u2(t) = 1. In the decen-
tralized algorithm, since the constraint at p2 has been vio-
lated, it would have broadcast its statistics vector to all n
nodes. However, the constraint violation at p2 can be re-
solved by setting the drift vector at both p1 and p2 to the
average of the drift vectors on both nodes, i.e., by setting

~u1(t) = ~u2(t) = ~u1(t)+~u2(t)
2

= 2.5. After this averaging op-
eration, drift vectors on both p1 and p2 are within the range
[2, 8], and thus all the local constraints are upheld. Note
that this action preserves the convexity property of the drift
vector (Property 3). The act of averaging out a subset of
drift vectors in order to resolve a violated constraint is called
a balancing process.

In order to facilitate the balancing of vectors, every node

pi holds a slack vector denoted by ~δi, as defined in Section
3. The slack vector is first normalized by dividing it by
the weight assigned to the node. Then it is added to the
drift vector as specified in Equation (2). The coordinator
is responsible for ensuring that the sum of all slack vectors
is ~0, thus maintaining the convexity property of the drift
vectors (Property 3).

To initialize the algorithm, each node sends its initial sta-
tistics vector to the coordinator. Initially the slack vector
held by each node is set to ~0. The coordinator calculates
the estimate vector and sends it to the rest of the nodes. As
more data arrives on a node’s stream, the node checks its
local constraint. If a local constraint is violated at one of
the nodes, it notifies the coordinator by sending it a message
containing its current drift vector and its current statistics
vector. The coordinator first tries to resolve the constraint
violation by executing a balancing process.

During the balancing process the coordinator tries to es-
tablish a group of nodes (called the balancing group and de-
noted by P ′), such that the average of the drift vectors held
by the nodes in the balancing group (called the balanced vec-

tor and denoted by ~b), creates a monochromatic ball with

the estimate vector i.e., such that B(~e(t),~b) is monochro-
matic. The balanced vector is calculated as follows:

~b =

P
pi∈P ′

wi~ui(t)

P
pi∈P ′

wi
(7)

The balancing process proceeds as follows: when a node
pi notifies the coordinator that its local constraint has been
violated, it appends its drift vector and its current statistics
vector to the message. The coordinator constructs a balanc-
ing group consisting of pi and itself. It then checks if the

ball defined by the balanced vector, B(~e(t),~b), is monochro-

matic. If B(~e(t),~b) is not monochromatic, the coordinator
randomly selects a node that is not in the balancing group,
and requests it to send its drift vector and local statistics
vector. Then it adds that new node to the balancing group

and rechecks B(~e(t),~b). The process is performed iteratively

until either B(~e(t),~b) is monochromatic, or the balancing
group contains all the nodes. If the coordinator established

a balancing group such that B(~e(t),~b) is monochromatic,
the balancing process is said to have succeeded. In this case
the coordinator sends each node in the balancing group an
adjustment to its slack vector. This causes the drift vectors

held by all nodes in the balancing group to be equal to ~b.
The adjustment to the slack vector sent to each node pi ∈ P ′

is denoted by ∆~δi, and is calculated as follows:

∆~δi = wi
~b− wi~ui(t)

After receiving the slack vector adjustment, each node
simply adds the adjustment to the current value, i.e.,
~δi ← ~δi + ∆~δi. One can easily verify that after a successful
balancing process the sum of all slack vectors remains ~0, and
the drift vector held by each node in the balancing group is
~b, thus resolving the original constraint violation.

If the balancing process has failed (i.e., the balancing

group contains all the nodes, and B(~e(t),~b) is not mono-
chromatic), the coordinator calculates a new estimate vec-
tor (according to the updated statistics vectors sent by the
nodes) and sends it to all the nodes. Upon receipt of the new

estimate vector, the nodes set their slack vectors to ~0 and
modify their ~v′i parameter to hold the value of the statis-
tics vector they sent to the coordinator during the balancing
process, thus resolving the original constraint violation.

In order to implement the algorithm, the following mes-
sages must be defined:

<INIT,~vi> Used by nodes to report their initial statistics
vector to the coordinator in the initialization
stage.

<REQ> Used by the coordinator during the balancing
process to request that a node send its statistics
vector and drift vector.

<REP,~vi,~ui> Used by nodes to report information to the
coordinator when a local constraint has been vi-
olated, or when the coordinator requests infor-
mation from the node.

<ADJ-SLK,∆~δi> Used by the coordinator to report slack
vector adjustments to nodes after a successful
balancing process.

<NEW-EST,~e> Used by the coordinator to report to the
nodes a new estimate vector.

A formal description is given in Algorithm 2.

5.3 Relaxing the Precision Requirements
A desired trade-off when monitoring threshold functions

is between accuracy and communication load. In some cases
an approximate value of the threshold function is sufficient,
that is, the correct value of the threshold function is required
only if the value of the monitored function is significantly far
from the threshold. In other words, if ε is a predetermined
error margin, and if f(~v(t)) > r + ε or f(~v(t)) ≤ r − ε, we
require that the estimate vector, ~e(t), be correct, but we do
not require it if r − ε < f(~v(t)) ≤ r + ε.

Consider the feature monitoring example given in Section
1. Say we would like to select all the features whose in-
formation gain is above 0.05. Obviously, it is important to
select a feature whose information gain is significantly high,
and not to select a feature whose information gain is sig-
nificantly low. For example, it is important to select a fea-
ture whose information gain score is 0.1, and not to select
a feature whose information gain score is 0.01. Including
or excluding features whose information gain score is very
close to the threshold value, for example a feature whose
information gain score is 0.048, will probably not have a
significant effect on the quality of the selected feature set,
while the cost of monitoring such features is expected to be
high, since their information gain is expected to fluctuate
around the threshold value. Therefore we can significantly
improve the efficiency of our monitoring algorithms if we set
some error margin, say 0.005. In other words, features that
are currently selected will be removed from the set of se-
lected features only when their information gain falls below
0.045, and features that are currently not selected will be
added to the set of selected feature only if their information
gain rises above 0.055.

Our algorithm can be easily tuned to relax the precision
requirements by an error margin of ε as follows: instead of
working with a single coloring, induced by the monitored
function f and the threshold value r, two sets of coloring are
defined, one induced by the monitored function f and the
threshold value r + ε, and a second induced by the moni-
tored function f and the threshold value r − ε. Whenever
the original algorithm checks whether a ball is monochro-
matic, then, if f(~v(t)) ≤ r, the modified algorithm will check
whether the ball is monochromatic according to the first col-
oring (the one induced by f and r + ε). If f(~v(t)) > r, the
modified algorithm will check whether the ball is monochro-
matic according to the second coloring (the one induced by
f and r − ε). This ensures that if all the balls are in the
range defined by {~x|r − ε < f(~x) ≤ r + ε}, no messages are
transmitted.

5.4 Handling Time-Varying Weights
Up to this point we have assumed that the weights as-

signed to nodes are fixed, such as when the weights are the
size of sliding windows used for collecting data from the
streams. We now address cases where weights assigned to
nodes may vary with time, as when a node’s weight at a

Algorithm 2 The coordinator-based algorithm

Initialization:

• Send an INIT message to the coordinator, set ~v′ to
hold the initial statistics vector, and set the slack vec-
tor to ~0. Upon receipt of messages from all nodes, the
coordinator calculates the estimate vector and informs
the nodes via a NEW-EST message.

Processing Stage at an Ordinary Node pi:

• Upon arrival of new data on a node’s local
stream, recalculate ~vi(t) and ~ui(t), and check if
B(~e(t), ~ui(t)) remains monochromatic. If not, send
a <REP,~vi(t),~ui(t)> message to the coordinator, and
wait for either a NEW-EST or an ADJ-SLK message.

• Upon receipt of a REQ message, send a
<REP,~vi(t),~ui(t)> message to the coordinator and
wait for either a NEW-EST or ADJ-SLK message.

• Upon receipt of a NEW-EST message, update the esti-
mate vector (~e(t)) to the value specified in the message,
set the value of ~v′ to the statistics vector sent to the
coordinator, and set the slack vector to ~0.

• Upon receipt of an ADJ-SLK message, add the value
specified in the message to the value of the slack vector

(~δi ← ~δi + ∆~δi).

Processing Stage at the Coordinator:

• Upon arrival of new data on the local stream, re-
calculate ~v1(t) and ~u1(t), and check if B(~e(t), ~u1(t))
remains monochromatic. If not, initiate a balanc-
ing process, setting the balancing group to P ′ = {<
1, ~v1(t), ~u1(t) >}.

• Upon receipt of a REP message from the node pi, ini-
tiate a balancing process, setting the balancing group
to P ′ = {< 1, ~v1(t), ~u1(t) >, < i,~vi, ~ui >}.

Balancing Process at the Coordinator:

1. Calculate balanced vector, ~b, according to Equation

(7). If the ball B(~e(t),~b) is monochromatic goto (2),
otherwise goto (3).

2. For each item in the balancing group, < i,~vi, ~ui >,

calculate the slack vector adjustment, ∆~δi = wi
~b −

wi~ui(t), send pi a <ADJ-SLK,∆~δi> message, and then
exit the Balancing Process.

3. If there are nodes not contained in the balancing
group, select one of these nodes at random, and send
it a REQ message. Upon receipt of the REP mes-
sage, add the node to the Balancing Group and goto
(1). Otherwise calculate a new estimate vector (based
on the ~vi values received from all the nodes), send a
NEW-EST message to all nodes, and exit the Balanc-
ing Process.

given time is the number of data items received on its stream
so far.

We next describe the required modifications to the algo-
rithms in order to ensure their correctness in a setup where
weights vary with time. In such a setup we denote the weight
assigned to the node pi at time t by wi(t). Each message in
the original algorithms is modified by appending wi(t) to it.
Along with the last vector broadcast by each of the other
nodes (~v′i), the nodes in the decentralized algorithm keep
track of the last broadcast weight, denoted by w′i. Nodes
calculate ~ei(t), ∆~vi(t), and ~ui(t) as follows:

~ei(t) =

nP
i=1

w′i ~v′i

nP
i=1

w′i

∆~vi(t) =
wi(t)~vi(t)− w′i ~v′i(t)− (wi(t)− w′i)~ei(t)

wi(t)

In the decentralized algorithm the drift vector is calcu-
lated by

~ui(t) = ~ei(t) + ∆~vi(t)

and in the coordinator-based algorithm, by

~ui(t) = ~e(t) + ∆~vi(t) +
~δi

wi(t)

In the coordinator-based algorithm, the balanced vector
and the slack vector adjustments are calculated according
to the weights appended to the messages:

~b =

kP
i=1

wi(t)~ui(t)

kP
i=1

wi(t)

∆~δi = wi(t)~b− wi(t)~ui(t)

Note that if the weights are fixed, ~ei(t), ∆~vi(t), and ~ui(t)
hold the same values they hold in the original algorithms.
Furthermore, one can easily verify that the new definitions
of these parameters maintain Equation (3) i.e.,

~v(t) =

nP
i=1

wi(t)~ui(t)

nP
i=1

wi(t)
, and thus maintain the correctness of

the algorithm.

6. PERFORMANCE ANALYSIS
We would like to determine how the various parameters

of the monitoring problem affect the communication load
generated by the proposed algorithms. In order to do so we
present a simplified model of our algorithm and analyze the
probability that a constraint violation will occur at a node.
Since a constraint violation is the trigger for communications
in both algorithms, this analysis should provide indications
regarding the generated communication load.

Generally speaking, the dominant factor affecting the per-
formance of the algorithms is the average distance of the

���

��

�

�

��

��� �� � � ��

(a)
���

��

�

�

��

��� �� � � ��

(b)

Figure 2: The colorings induced by two sets of moni-
tored functions and threshold values. (a) depicts the

coloring induced by f1 = sin(2
p

x2+y2) ≥ 0, and (b)
depicts the coloring induced by f2 = 1

1+e−x + 1
1+e−y ≥

0.75.

estimate vector from the set of vectors for which the value
of the monitoring function equals the threshold value. More
formally, let the threshold set defined by the monitoring
function f and threshold value r be the set of vectors for
which the value of the threshold function equals the thresh-
old value. Let the threshold set be denoted by T (f, r), i.e.,

T (f, r) = {~x|f(~x) = r}
Let the distance of a vector ~x from the threshold set

T (f, r), denoted as dist(~x, f, r), be the minimum distance
of ~x from any point in T (f, r) i.e.,

dist(~x, f, r) = min(‖~y − ~x‖ |f(~y) = r)

The farther the estimate vector is, at a given time, from
the threshold set, the more the local statistics vectors can
change without violating local constraints. Therefore, a
greater average distance of the estimate vector from the
threshold set will result in a greater reduction in commu-
nications.

The average distance of the estimate vector from the thresh-
old set is affected by many parameters. To begin with, it is
affected by the coloring induced by the monitored function
and the threshold value. Figure 2 illustrates the coloring
induced by two sets of a monitored function and a thresh-
old value. Figure 2(a) illustrates the coloring induced by

the function f1(x, y) = sin(2
p

(x2 + y2)) and the threshold
value 0, and Figure 2(b) illustrates the coloring induced by
the function f2(x, y) = 1

1+e−x + 1
1+e−y and the threshold

value 0.75 (f2(x, y) is a simple two-layer neural net).
It is clear that the distance of any point in R2 from the

threshold set defined by f1 and 0 cannot be greater than
π
4
≈ 0.785. Therefore, the average distance of the estimate

vector from the threshold set in this case is bounded from
above by 0.785, thus yielding a relatively low reduction in
communications when monitored by our algorithms. How-
ever, the maximum distance of a point in R2 from the thresh-
old set defined by f2 and 0.75 is unbounded, and the domi-
nating factor affecting the performance of our algorithms in
this case is the nature of the data received on the streams.

In order to analyze how our algorithms are affected by
the nature of the data on the streams, we consider periods
during which this data is stationary (this fact, however, is

���

��

�

��

��� �� � ��

�
�
��
�
�

��
��
�
�
�
�

�

���	
�������

���
���	
	���

��	�� ��
�

���������
��

�	
	�����	��
� �� �
�

� � � ��� � ���	 � � � � �
� �

Figure 3: Depicts the coloring induced by the func-
tion f2 = 1

1+e−x + 1
1+e−y and the threshold value 0.75,

together with the expected global statistics vector,
its distance from the threshold set, and a local sta-
tistics vector, that is contained within the distance
sphere. One can see that the ball B(E[~v(t)], ~vi(t)) is
fully contained in the distance sphere.

not known to any of the nodes). More formally, we assume
that each stream item is a d-dimensional vector, where the
jth component is independently drawn from a random vari-
able denoted by Xj with a defined expectancy and variance,
denoted by E[Xj] and V [Xj] respectively. We assume the
system consists of n nodes, and that each node holds a slid-
ing window of N items. We denote the last N items received
on the stream monitored by pi as ~vi,1,~vi,2,...,~vi,N , and the

components of a vector as follows: ~vi,k = (v
(1)
i,k , v

(2)
i,k , ..., v

(d)
i,k).

The local statistics vector held by a node is the average of
the items contained in its sliding window, and the global
statistics vector is the average of the items contained in the
sliding windows held by all the nodes, i.e.,

~vi(t) =
1

N

NX

k=1

~vi,k ; ~v(t) =

nP
i=1

NP
k=1

~vi,k

N · n
It is easy to see that the expected value for the global

statistics vector and each local statistics vector is E[~v(t)] =
E[~vi(t)] = (E[X1], E[X2], ..., E[Xd]).

Figure 3 depicts the coloring induced by f2 and the thresh-
old value 0.75, the expected global statistics vector, and the
distance of the expected global statistics vector from the
threshold set. The expected global statistics vector and its
distance from the threshold set define a sphere called the
distance sphere. We denote the distance of the expected
global statistics vector from the threshold set by Dglobal i.e.,
Dglobal = dist(E[~v(t)], f, r).

We present the following simplified model of our algo-
rithms: we assume that the estimate vector holds the value
of the expected global statistics vector, i.e., ~e(t) = E[~v(t)] =
(E[X1], E[X2], ..., E[Xd]). Furthermore, we assume that data
on each stream arrives in blocks of N items. We would like
to bound Prviolation, the probability that the arrival of a

new block of data items on a stream will cause a constraint
violation at the node monitoring the stream.

We assume that the estimate vector is the expected global
statistics vector. Consequently, as long as the local statis-
tics vector held by a node is contained within the distance
sphere, the constraint checked by the node is guaranteed not
to be violated. That is, if ‖E[~v(t)]− ~vi(t)‖ < Dglobal, then
B(E[~v(t)], ~vi(t)) is fully contained in the distance sphere (see
Figure 3) .

Therefore, the probability that a constraint violation will
occur at a node is less than the probability that the local
statistics vector held by the node will not be contained in
the distance sphere. Using the Markov Inequality we obtain:

Prviolation ≤

dP
i=1

V [Xi]

N · (Dglobal)2

The proof is omitted due to lack of space. If the compo-
nents of the data vectors are bounded between 0 and 1 – as
happens in the important case in which they represent prob-
abilities of terms to appear in a document – the Hoeffding
bound can be used, to show that:

Prviolation ≤ exp

0
BBBBB@
−2

0
BBBB@

D2
global −

dX
i=1

V [Xi]

N

1
CCCCA

2

/d

1
CCCCCA

Both bounds decrease quickly when Dglobal increases. This
suggests that for data mining applications, features with a
small information gain will not cause many constraint viola-
tions at any node, since their Dglobal is large. This is practi-
cally important, since usually most of the candidate features
have a rather small information gain, and thus the proposed
algorithm will considerably reduce communication. This is
supported by the experimental results presented in the next
section.

7. EXPERIMENTAL RESULTS
We performed several experiments with the decentralized

algorithm. We tested the algorithm in a distributed feature
selection setup. We used the Reuters Corpus (RCV1-v2) [24]
in order to generate a set of data streams. RCV1-v2 consists
of 804414 news stories, produced by Reuters between August
20, 1996, and August 19, 1997. Each news story, which we
refer to as a document, has been categorized according to
its content, and identified by a unique document id.

RCV1-v2 has been processed by Lewis, Yank, Rose, and
Li [16]. Features were extracted from the documents, and
indexed. A total of 47236 features were extracted. Each doc-
ument is represented as a vector of the features it contains.
We refer to these vectors as feature vectors. We simulate
n streams by arranging the feature vectors in ascending or-
der (according to their document id), and selecting feature
vectors for the streams in a round robin fashion.

In the original corpus each document may be labeled as
belonging to several categories. The most frequent cate-
gory documents are labeled with is “CCAT” (the “COR-
PORATE/INDUSTRIAL” category). In the experiments
our goal is to select features that are most relevant to the

��������	��
��	�
��
��������
�����

�

�����

�����

�����

�����

�����

�����

����	

����

� ������ ������ ������
�����
��������
�����

��
��
�
�
�
�	
�
�

�
�
	�

�����

���

�����

Figure 4: Information gain for the features
“bosnia”, “ipo”, and “febru” as it evolves over
the streams. The information gain for the feature
“bosnia” displays a declining trend as the stream
evolves. The information gain for the feature “ipo”
remains relatively steady, while the information gain
for the feature “febru” peaks about halfway through
the stream.

“CCAT” category, therefore each vector is labeled as posi-
tive if it is categorized as belonging to “CCAT”, and nega-
tive otherwise.

Unless specified otherwise, each experiment was performed
with 10 nodes, where each node holds a sliding window con-
taining the last 6700 documents it received. In each experi-
ment we used the decentralized algorithm in order to detect
for each feature, at any given time, whether its information
gain in above or below a given threshold value. At any given
time the information gain of a feature is based on the doc-
uments contained at the time in the sliding windows of all
the nodes.

The experiments were designed to explore several proper-
ties of the algorithm. We were interested in determining how
various parameters of the monitoring task affect the perfor-
mance of the algorithm. The parameters of the monitoring
task can be divided into characteristics of the monitoring
task, and tunable parameters. The characteristics of the
monitoring task include the number of streams to be moni-
tored, and the desired threshold value. Tunable parameters
include the size of the sliding window used by each node,
and the permitted error margin. In addition we were in-
terested in examining the behaviour of the algorithm when
used for simultaneously monitoring several features.

In order to examine the effect of the various parameters
on the performance of the algorithm, we chose three features
that display different characteristic behaviour. The chosen
features are “bosnia”, “ipo”, and “febru”. Figure 4 depicts
how the information gain for each feature evolves over the
streams. The information gain for the feature “bosnia” dis-
plays a declining trend as the stream evolve. The informa-
tion gain for the feature “ipo” remains relatively steady,
while the information gain for the feature “febru” peaks
about halfway through the stream.

We start by examining the influence of the characteris-
tics of the monitoring task on the performance of the algo-
rithm. Figure 5 show the number of broadcasts produced
when monitoring each one of the features for threshold val-
ues ranging from 0.00025 to 0.006. In addition the cost

�

���

���

���

���

���

���

���

	��

� �
��� �
��� �
��� �
��� �
��� �
���
���������

�����

���

�����

���������

	

�
�
�
�
�
�
�
	
�
�
�
�
�

�������	���	���������

Figure 5: Number of broadcasts produced in order
to monitor each feature as a function of the thresh-
old value. In addition, the cost incurred by monitor-
ing a feature by a naive algorithm is plotted. Even
for adverse threshold values our algorithm performs
significantly better than the naive algorithm.

incurred by the naive algorithm is plotted, i.e., the number
of messages required for collecting all the data to a central
location. One can notice that even for adverse threshold
values, the algorithm incurs a significantly lower communi-
cation cost than the cost incurred by the naive algorithm.

In order to check the effect the number of nodes has on
the performance of the algorithm, we performed the follow-
ing experiment: the stream of documents was divided in
advance into 100 sub-streams in a round robin fashion. Sim-
ulations were run with the number of nodes ranging from 10
to 100. In a simulation consisting of n nodes, the first n
sub-streams were used. This methodology ensures that the
characteristics of the streams remain similar when simulat-
ing different numbers of nodes. Each node held a sliding
window of 670 items.

Obviously, increasing the number of nodes will increase
the number of broadcasts required in order to perform the
monitoring task. Since the nodes in our experiment re-
ceive streams with similar characteristics, we expect that
the number of broadcasts will increase linearly.

Two sets of simulation were run, the first with a threshold
value of 0.003, and the second with a threshold value of
0.006. The results are plotted in Figure 6. Both graphs
show that the number of broadcasts increases linearly as
more nodes are added. Comparing the two graphs reveals
that the number of broadcasts increases more moderately
when using a threshold value of 0.006. This is due to the
fact that as indicated in Figure 4, the average information
gain on the monitored features is closer to 0.003.

Next we performed two experiments in order to evalu-
ate the effect of tunable parameters on the performance of
the algorithm. We performed the following experiments on
the three features: for each feature we chose the threshold
value that incurred the highest communication cost (0.0025
for “bosnia”, 0.003 for “ipo”, and 0.00125 for “febru”). We
ran a set of simulations on each feature, using error margin
values ranging from 0 to 50 percent of the threshold value.
Then we ran an additional set of simulations for each feature,
setting the size of the sliding window used by each node to
values ranging from 6700 items to 13400 items. The results
of these experiments are plotted in Figure 7. The results

�

���

���

���

���

���

���

���

	��

� �� �� �� ���
��������	���
��

�
�
�
�

�
�
�
��
�
�
�
�
�

����

���

��
��

�����

��������������������	���
������������
�� ������

�

���

���

���

���

���

���

���

	��

� �� �� �� ���
��������	���
��

�
�
�
�

�
�
�
��
�
�
�
�
�

����

���

��
��

�����

��������������������	���
������������
�� ������

Figure 6: Number of messages produced in relation to the number of nodes. The number of messages
increases linearly as the number of nodes increases, indicating that the algorithm scales well. Since the
average information gain of all the features is closer to 0.003 than to 0.006, the number of messages increases
more moderately when using a threshold value of 0.006.

�

��

���

���

���

���

�� ��� ��� ��� ��� ���
�����������	

�	
��

��	

�����

�
����
����������������	

�

�
�
�
�

�
��
�
�
�
�
�

�������������	
�����
��

�

��

���

���

���

���

���� ���� 	
�� ����� ����� �
���

	
�����
��

�
�
�
�
�
�
�
�
��
�
�
�
�
�

�����

���

�����

Figure 7: The influence of tunable parameters on performance. Increasing the error margin is more effective
in reducing the communication load than increasing the window size. Using an error margin as small as 5
percent significantly reduces the communication load.

indicate that increasing the error margin is very effective in
reducing the communication load. Using an error margin as
small as 5 percent significantly reduces the communication
load. Increasing the window size also reduces the commu-
nications load. The effect of increasing the window size is
most evident for the feature “ipo”, which incurs the highest
communication cost among the three features. In general,
increasing the window size has a greater effect the closer the
information gain of feature is to the threshold value.

Finally, we checked the performance of the algorithm when
simultaneously monitoring multiple features. As the num-
ber of features that are monitored simultaneously increases,
the probability that a constraint on one of the features will
be violated when a new data item is received increases as
well. Furthermore, a constraint violation can cause a cas-
cading effect. A constraint violation for a feature at one
of the nodes causes all the nodes to calculate a new esti-
mate vector for the feature. Since the value of the estimate
vector for the feature has changed, the constraint for the
feature may be violated at additional nodes, causing these
nodes to broadcast. The purpose of this experiment is to de-
termine the number of simultaneous features the algorithm
can monitor while remaining efficient, i.e., incurring a cost
that is lower than the cost incurred by the naive algorithm.
The experiment consisted of a series of simulations, using

a threshold value of 0.001. In each simulation a number of
features were selected randomly. Simulations were run with
the number of features ranging from 1 to 5000. The results
of this experiment are plotted in Figure 8. In addition the
cost incurred by the naive algorithm is plotted.

The results indicate the algorithm remains efficient when
simultaneously monitoring several thousands of features, but
is inefficient when simultaneously monitoring more than about
4500 features.

8. CONCLUSION
Monitoring streams over distributed systems is an impor-

tant challenge which has a wide range of applications. Scal-
ability and efficiency of proposed solutions strongly depend
on the volume and frequency of communication operations.
However, despite the amount of work that was invested in
this direction, most of the efficient solutions found in the
literature can only be applied to simple aggregations or to
linear functions. Most probably the reason is that when the
function is non linear, effects seen in one – or only a few
– of the streams may often turn out to be misleading with
regards to the global picture.

In this work we proposed a solution through a general
framework for monitoring arbitrary threshold functions over

�������������	
������������������

�

��

���

���

���

���

���

� ���� ���� ���� ���� ����
�����������
��������������

�
�
�
�
�
�
�
�
��
�
�
�
�
�

��	
������

���������

Figure 8: Number of messages in relation to the
number of simultaneously monitored features. Our
algorithm remains efficient when simultaneously
monitoring up to about 4500 features.

a system of distributed streams. The evaluation of this ap-
proach using real-life data, applied to the information gain
function, reveals that it is highly effective in reducing com-
munication frequency.

Immediate future work will concentrate on developing meth-
ods to fine-tune various parameters (window size, error mar-
gin, threshold) in order to find an optimal trade-off between
communication load and accuracy. We also plan to try and
characterize families of functions for which the algorithm is
more efficient.

9. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
In STOC ’96, pages 20–29, New York, NY, USA,
1996. ACM Press.

[2] A. Arasu and G. S. Manku. Approximate counts and
quantiles over sliding windows. In PODS ’04, pages
286–296, New York, NY, USA, 2004. ACM Press.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS ’02, pages 1–16, New York, NY, USA, 2002.
ACM Press.

[4] B. Babcock and C. Olston. Distributed top-k
monitoring. In SIGMOD ’03, pages 28–39, New York,
NY, USA, 2003. ACM Press.

[5] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109–120, 2001.

[6] L. Berkovitz. Convexity and Optimization in Rn.
Wiley, 2002.

[7] A. Bulut, A. K. Singh, and R. Vitenberg. Distributed
data streams indexing using content-based routing
paradigm. In IPDPS. IEEE Computer Society, 2005.

[8] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - a new class of data
management applications. In VLDB, 2002.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP ’02, pages
693–703, London, UK, 2002. Springer-Verlag.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. Zdonik.

Scalable Distributed Stream Processing. In CIDR
2003, Asilomar, CA, January 2003.

[11] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
distributed tracking of approximate quantiles. In
SIGMOD ’05, pages 25–36, New York, NY, USA,
2005. ACM Press.

[12] G. Cormode, R. Keralapura, and J. Ramimirtham.
Communication-efficient distributed monitoring of
thresholded counts. In SIGMOD ’06, 2006.

[13] M. Dilman and D. Raz. Efficient reactive monitoring.
In INFOCOM, pages 1012–1019, 2001.

[14] P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In SPAA ’01,
pages 281–291, New York, NY, USA, 2001. ACM
Press.

[15] P. B. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In SPAA ’02, pages
63–72, New York, NY, USA, 2002. ACM Press.

[16] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397, 2004.

[17] L. Liu, C. Pu, and W. Tang. Continual queries for
internet scale event-driven information delivery. IEEE
Transactions on Knowledge and Data Engineering,
11(4):610–628, 1999.

[18] S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. In ICDE ’02, page 555, Washington, DC, USA,
2002. IEEE Computer Society.

[19] S. Madden, M. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In SIGMOD ’02, pages 49–60, New
York, NY, USA, 2002. ACM Press.

[20] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and
C. Olston. Finding (recently) frequent items in
distributed data streams. In ICDE ’05, pages 767–778,
Washington, DC, USA, 2005. IEEE Computer Society.

[21] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, pages 346–357,
2002.

[22] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
resource management, and approximation in a data
stream management system. In CIDR, pages 245–256,
Asilomar, California, Jan. 2003.

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In SIGMOD ’03, pages 563–574, New York, NY, USA,
2003. ACM Press.

[24] T. Rose, M. Stevenson, and M. Whitehead. The
Reuters Corpus Volume 1 - from Yesterday’s News to
Tomorrow’s Language Resources. In LREC-02, Las
Palmas de Gran Canaria, May 2002.

[25] D. Terry, D. Goldberg, D. Nichols, and B. Oki.
Continuous queries over append-only databases. In
SIGMOD ’92, New York, NY, USA, 1992. ACM Press.

[26] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Biliris. Online data mining for

co-evolving time sequences. In ICDE ’00, page 13,
Washington, DC, USA, 2000. IEEE Computer Society.

[27] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
In VLDB, pages 358–369, 2002.

