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Abstract

This paper presents a new measure of symmetry for bifurcating structures, which relies not only on topology and ordering, but also on
quantitative properties (e.g. length of branches). This measure is based on a specific biological mechanism and on the concept of minimum
energy. The effectiveness of the approach is demonstrated in a classification test where leaves taken from plants growing under different stress
conditions are classified. Results show that the proposed measure improves classification performance compared to classification based on other
leading measures.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Symmetry has long been of interest to people. Symmetry
appears in nature as well as in art and other human creations.
Weyl [1] introduced bilateral, translatory, rotational and orna-
mental symmetries from various aspects including art, biology,
crystallography and physics and presented mathematical for-
mulations for these symmetry groups. Concentrating on mirror
symmetry, Gardner [2] observed symmetry and asymmetry in
objects ranging from galaxies to atomic particles.

In this paper, we focus on mirror symmetry of a specific
class of structures, namely, bifurcating structures. A 2D object
is mirror-symmetric if it is invariant under a reflection about
a line (the mirror-symmetry axis). Similarly, invariance under
reflection across a plane leads to 3D mirror-symmetry.

The goal of this work is to develop a symmetry mea-
sure for bifurcating structures such as veins of plant leaves
(Fig. 1B) which can be applied to natural populations. Previous
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studies on symmetry of bifurcating structures such as graph
and tree structures [3–5] considered only topological aspects of
the structures. However, given our motivation, the morpholog-
ical and geometrical aspects of these structures are of crucial
importance. In several studies [6,7] measures of symmetry were
developed for molecular structures which are considered as 2D
and 3D bifurcating structures. These approaches considered the
geometry of the structures and the topological connectivity be-
tween molecular atoms, but assumed no other constraint on the
structures.

In biological systems mirror symmetry forms an important
characteristic. Measures of normally distributed deviations
from mirror symmetry, known as ‘Fluctuating Asymmetry’
(FA), is widely used for detecting developmental instability
[8]. FA in plant and animal traits has long been known as
highly affected by environmental conditions [9,10]. In the
last two decades numerous new biological measures were
suggested in order to estimate symmetry of single [10] and
multiple traits [11–13] within an individual. More advanced
methods use morphometric tools, in order to determine FA
levels, using landmarks (developmentally homologous points)
on the individual body [12,14,15]. Although these methods are
used and have been proven to be efficient, they do not consider
the specific biological trait developmental mechanism.
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Fig. 1. Examples of bifurcating structures. (A) Molecule. (B) Leaf veins. (C) Human skeleton.

In this work we introduce a novel approach to measuring
symmetry of bifurcating structures in which we constrain the
topological connectivity of the structures according to biologi-
cal models. Motivated by an environmental study on the effects
of stressful environments on the symmetry of various traits in
plants and animals [9,12], the algorithm for measuring the sym-
metry of bifurcating structures, such as leaf veins, takes into
account the biological mechanisms of development and growth
[16,17] and relies on nature’s laws rather than on arbitrary math-
ematical models. Following this approach we are able to assert
and support the claims of the evolutionary study, that deviation
from normal conditions, due to stressful environments affects
developmental stability of growth processes manifested in the
deviation from perfect symmetry.

We present two measures of symmetry, and provide al-
gorithms for their computation. In both the Local Approach
(LoA) and the Global Approach (GoA) for measuring sym-
metry we evaluate the amount of work (energy) that must be
invested to deform a non-symmetric configuration into a per-
fectly symmetric one. The local approach relates directly to
the biological models via elementary deformations. The global
approach is based on early work on Continuous Symmetry
Measures (CSM) [37]. In Refs. [6,7] symmetry of molecules
was measured using the CSM approach, by allowing defor-
mations that preserve the topology of the original structures.
In this paper we allow deformations that do not necessarily
preserve topological connectivity but that are consistent with
biological models of the source structures (in our case veins
of leaves).

We further demonstrate the effectiveness of the suggested
symmetry measures in a classification test within an evolu-
tionary experiment. Leaves taken from plants growing under
different stress conditions are classified to their correct envi-
ronment. We show that classification based on the proposed

symmetry measures improve classification by more than 16%
over classification based on leading measures of symmetry. The
obtained results show clearly that our measures which are based
on the minimum energetic path underlying biological mecha-
nisms yield better separation ability.

2. Previous works

There are two principal questions concerning symmetry:
(1) Detection of symmetry—providing a binary decision as
to the existence of symmetry in a given object, and, if ex-
ists, providing the axes of symmetry. (2) Quantification of
symmetry—estimating a measure of the ‘amount’ of symmetry
existing in an object.

Symmetry detection has been studied on various structures
including point sets, polygons, 3D objects and grayscale im-
ages. Atallah [18] considered the problem of finding mirror
symmetry of planar figures consisting of a collection of points,
segments, circles, ellipses and other geometric patterns. The
input is divided into separate classes of geometrical patterns
and symmetry is detected independently in each class. Wolter
et al. [19] suggested an algorithm for detecting all exact ro-
tational symmetries in point sets and polygons. Highnam [20]
suggested an algorithm for finding all mirror symmetry axes of
a planar point set, based on reducing the 2D symmetry problem
to a linear pattern-matching problem.

Although efficient, these methods can only detect perfect
symmetries and would fail to detect symmetry in symmetric
point sets containing even a small amount of noise and pertur-
bations. Alt et al. [21] suggested algorithms for finding sym-
metry of point sets withinRn in which they introduced the no-
tion of approximate congruence. Saint-Marc and Medioni [22]
used contour segments rather then the whole contour as ba-
sic features for detection of symmetry. Kuehnle [23] answered
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the question of existence of symmetry in a 2D object by re-
flecting and then comparing the object with the original one.
Ogawa [24] detected symmetry using the Hough transform. And
Dinggang et al. [25] presented a method for detection of mir-
ror and rotational symmetry of 2D images based on general-
ized complex moments. Hel-Or et al. [26] performed mirror
symmetry analysis of 2D objects and suggested a robust sym-
metry measure based on rotational features of the object. This
measure is not affected by small deviations and occlusions.
Kazdan et al. [27] defined a reflective symmetry descriptor of
3D objects as a 2D function. Minovic et al. [29] presented an
algorithm for identifying symmetry of an arbitrary 3D object
represented by an octree which is robust under noise. Sun and
Sherrah [30] used the extended Gaussian image for symmetry
detection. The method they presented relies on the observation
that in most cases, if the object is symmetric then the extended
Gaussian image is symmetric as well. Kazhdan et al. [31] pre-
sented the spherical harmonic representation of objects, a rota-
tion invariant representation of spherical functions in terms of
the energies at different frequencies.

Numerous methods for detecting symmetry in gray-level im-
ages were developed. Sun [32] developed an algorithm that
finds mirror symmetry in gray-level images, using gradient in-
formation. Marola [33] concentrated on gray-level images and
presented a robust symmetry finding algorithm that relies on
identification of the centroids of the given image. Zielke et al.
[34] presented two symmetry detection methods; the first based
on intensity values of an image and the second based on a dis-
crete representation of local orientation. They detected mirror
symmetry with respect to a vertical axis. Bigun [35] presented
a method to model symmetries of neighborhoods in gray value
images, using harmonic functions.

The second principal question concerned with symmetry is
symmetry quantification. Buda and Mislov [36] introduced a
measure of mirror symmetry based on the Hausdorff distance
between sets. Zabrodsky et al. [37] considered symmetry as
a continuous feature and introduced symmetry distance that
enables both to compare the ‘amount’ of symmetry between
different shapes and the ‘amount’of different types of symmetry
of the same shape.

Very few studies deal with asymmetry of bifurcating struc-
tures (e.g., trees and graphs). Zabrodsky and Weinshall [3] con-
sidered the original configuration of points as a graph and re-
duced the problem of dividing those points into non-empty sets
to the classical problem of listing all graph isomorphisms of
order 2. Ishikawa et al. [4] considered the problem of object
extraction from images and managed the extracted data as tree
structures. Tree structures are often related to the symmetry axis
representation of shapes as well. By mapping this tree finding
problem to a variant of the Steiner Tree problem, it was shown
that tree structure detection in images is an NP-complete prob-
lem. Despite this fact, an approximate polynomial-time algo-
rithm to the Steiner Tree problem was introduced which is ap-
plied after an image has been transformed by a local symmetry
mapping. In [6,7] symmetry of molecules was measured using
the CSM approach, by allowing deformations that preserve the
topology of the original structures.

Numerous measures of symmetry [10–15] were defined and
developed within the biology community in an attempt to quan-
tify the dependence of the fluctuating asymmetry of biological
systems on environmental conditions [9,10]. Although these
methods are used widely and have been proven to be efficient,
they can only be used if there is a trivial coupling between ob-
ject traits. These methods do not consider the specific biologi-
cal trait developmental mechanism.

In this paper we introduce novel measures of symmetry for
bifurcating structures. The measures are constrained to perform
within a class of bifurcating structures and are closely related to
the mechanisms that create the structures themselves (namely,
leaf-venation hypothesis [16,17]).

3. Bifurcating structures—the leaf vein structure

We concentrate on planar bifurcating structures representing
veins of leaves. Fig. 1B shows a leaf specimen and Fig. 6A
shows the vein structure marked. These structures are assumed
to consist of a central main vein which is viewed as the symme-
try axis, from which secondary veins bifurcate on both sides.
Variations in this structure include differences in the number of
secondary veins, their bifurcation points along the main vein,
their lengths and their curvature.

In an attempt to quantify deviation from perfect symmetry
of these bifurcating structures, it is imperative to understand
and take into account the growth process itself that produced
the structure. In our case the growth process of leaves. In a
recent series of papers, a novel leaf-venation hypothesis was
introduced [16,17]. We adopt this model as the basis for our
study of asymmetry in leaves. A brief summary of this model
is given in the following section.

4. Modeling the growth process of leaf veins

The growth hormone, Auxin is the major regulatory shoot
signal [16,17] in a leaf, and is responsible for the vein dis-
tribution (e.g., density, size and diameter). The leaf veins are
made out of phloem bundles [17], through which organic ma-
terial is transported, and out of xylem which is the pathway
for water and soil nutrient. The differentiation of the leaf veins
is important, due to the need to supply these nourishing sub-
stances to the leaf cells. It must do so as best as possible in the
given environment and genome. The leaf venation hypothesis
[16,17] (Fig. 2—adopted from Ref. [38]) suggests that large
water secreting glands called hydathods are the main sites for
free auxin synthesis in a leaf. The hydathod sites typically de-
velop along the growing leaf’s boundary. A decreasing gradi-
ent of free auxin forms from the hydathod site and towards
the central leaf area, inducing secondary vein growth (Fig. 2c).
The more developed the hydathod [16], with higher free auxin
concentration, the smaller the distance between the leaf bound-
ary and the secondary vein termination (i.e. the length of the
secondary vein increases—see Fig. 3b). This distance is an im-
portant factor in the control of additional vein differentiation
and may also regulate the free auxin levels. During the early
development stages of the leaf there are gradual shifts of the
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Fig. 2. Leaf venation hypothesis. Schematic diagrams show gradual changes in hydathod sites and free auxin concentration (blue fuzzy blobs) during leaf
development in Arabidopsis—a flowering plant. Arrows mark the sites with the highest level of free auxin production located at the leaf margin in each
developmental stage (A–D), whereas arrowheads show the location of low free auxin (D–E). The ontogeny of central vein and secondary veins is illustrated
by broken red lines, while marginal and minor veins are not shown. (A) Early high free auxin production only in the stipules (s) of a very young leaf, before
free auxin is detectable in the tip and prior to central vein development. (B) Free auxin production in the tip of a fast growing leaf, illustrating leaf apical
dominance and acropetal development of the midvein. (C) High free auxin production in the upper lobes, which induces differentiation of the upper secondary
veins. (D) High free auxin production in the lower lobes and randomly distributed sites of secondary free auxin production in the lamina. Secondary veins
differentiate below the lower lobes. (E) Maintenance of low free auxin production in lobes and secondary free auxin production in the lamina during a late
phase of leaf development (adapted from Ref. [38]).

A B C D E

Fig. 3. Deviation from perfect symmetry during leaf development. Schematic diagrams show secondary veins (dashed line) and free auxin concentration sites
(blue fuzzy blobs) (A) Asymmetry in auxin concentration in the stipules and in the tip auxin center location induces non-linear growth of the main vein.
(B) Unequal free auxin concentration in the upper lobes induces asymmetry in the length of the secondary veins. (C) Misalignment of auxin concentration sites,
while maintaining equality of concentration magnitude, induces asymmetric bifurcation points along the main vein. (D) Misalignment of auxin sites, together
with unequal auxin concentration, induces asymmetry in the length of the secondary veins as well as asymmetric bifurcation points along the main vein.
(E) Extreme asymmetry in auxin concentration may completely prevent bifurcation and growth of a secondary vein, creating unpaired secondary veins. Pairing
of secondary veins may or may not resume in lower lobes.

hydathod sites and concentration of free auxin (see Fig. 3)
which determines the order and coordination of the developing
veins.

5. Asymmetric affects in leaf vein structure during leaf
growth

Our aim is to develop a measure of symmetry of the bifur-
cating structure of mature leaf veins. However, this asymme-
try developmentally originated during the early stages of the
leaf growth. Thus, we attempt to quantify the asymmetry in-
troduced during the developmental stages of leaf growth based
on the above described growth model. Although many factors
and chemical substances are involved in the growth process,
we simplify the model by considering only the affects on the

vein structure of the asymmetries in concentration of auxin in
the leaf margin.1

Consider the following cases of deviation from perfect sym-
metry based on the growth model (Fig. 3):

(1) Asymmetry in the auxin concentration in the stipules dur-
ing the very early growth stages (Fig. 2A) and/or at the tip
of the primordium (Fig. 2B). This asymmetry affects the

1 It would be more efficient and reasonable to measure the concentration
of auxin itself and the arising asymmetries therein during the growth stages.
However, this is impractical in large leaf samples due to physical, technical,
and biological limitations. Thus, we are restricted to measuring the affects
of asymmetric auxin concentration as expressed in the final vein structure of
the mature leaf.
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acropetal growth of the mid-vein and induces an asymmet-
ric or non-linear main vein. See Fig. 3A.

(2) Asymmetric concentration of free auxin along the leaf mar-
gin affects differentiation of secondary veins, which in
turn induces asymmetric veins. We consider the following
cases:

(a) Asymmetry is expressed in the magnitude of the free
auxin concentration while maintaining symmetry of
concentration site (hydathod) position along the leaf
margin. This induces asymmetry in the length of
the secondary veins. See Fig. 3B.

(b) Asymmetry is expressed in misalignment of auxin
concentration sites, while maintaining equality of
concentration magnitude. This induces asymmetric
bifurcation points along the main vein. See Fig. 3C.

(c) Asymmetry is expressed in free auxin concentra-
tion in both concentration site position along the
leaf margin and in magnitude concentration. This
induces secondary vein growth in asymmetric bi-
furcation points along the main vein, as well as
asymmetry in length of these secondary veins.
See Fig. 3D.

(3) Extreme asymmetry is expressed in the free auxin con-
centration site position and magnitude so as to produce
no partnering secondary vein. Free auxin concentration
points and magnitude may (or may not) recover to pro-
duce paired secondary veins in lower lobes of the leaf.
This has the affect of creating a ‘missing’ secondary vein.
See Fig. 3E.

6. Methods

6.1. Measuring symmetry of bifurcating structures

Given the growth model and the above described affects
of asymmetry on the leaf vein structure, we define a class of
bifurcating structures which generalizes the realizable struc-
tures manifested by the growth model. These structures are
assumed to consist of a central main vein which is viewed
as the symmetry axis, from which secondary veins bifurcate
on both sides. Variations in this structure include differences
in the number of secondary veins, their bifurcation points
along the main vein, their lengths and their curvature. We
concentrate on planar bifurcating structures representing veins
of leaves. Fig. 6A shows a specimen with the vein structure
marked.

Guided by the underlying biological processes, we define the
measure of symmetry of a structure as the minimal amount of
energy required to deform it into a symmetric structure. When
measuring the symmetry of these structures, deformations are
restricted to those consistent within the structure class. For clar-
ity, we initially assume all veins are linear. Specifically, we
assume the main vein is linear and serves as the symmetry
axis. We also assume all secondary veins are linear and create
a constant bifurcation angle with the main vein. We later ex-
tend the structure class and our approach to deal with curved
veins.

In the following, we propose two approaches to quantify the
asymmetry expressed in the leaf vein structures:

(1) LoA is based on evaluating the amount of deformation re-
quired to symmetrize the structure by applying a sequence
of allowable elementary deformations.

(2) GoA is based on evaluating the amount of deformation re-
quired to symmetrize the structure by applying translation
of all structure points at once.

Details of the two approaches are given in the following
sections.

6.2. Measuring symmetry of bifurcating structures—LoA

Given a bifurcating structure such as a leaf vein structure,
we find the minimum energy deformation which transforms
it into a symmetric structure. Deformations consist of a series
of permissible ‘elementary’ deformations. We restrict the ‘el-
ementary’ deformations to three types of actions, motivated
by the biological growth model of leaves (see Ref. [38] and
Section 5):

(1) Insertion (deletion)—an additional secondary vein is added
(deleted).

(2) Translation—a secondary vein is translated along the main
vein.

(3) Elongation (contraction)—length of a secondary vein is
changed.

Fig. 4 demonstrates these ‘elementary’ deformations. Any se-
quence of these elementary deformations maintains the struc-
ture within the class of bifurcating structures as defined in
Section 3. Every elementary action is associated with a cost
function which represents the energy required to perform the
action. The energy of deforming a structure accumulates the
cost of performing each ‘elementary’ deformation. The mea-
sure of symmetry of a structure is the cost of the minimum
energy deformation that transforms the original structure into
a symmetric structure.

We additionally impose a constraint inherent in the growth
model [38], in which elementary deformations are applied such
that the order of the secondary veins on either side of the main
vein is preserved (i.e., there is no crossover when pairing left
and right veins). This constraint is consistent with the growth
model in which the secondary veins are created in the order in
which free auxin concentration is created, which in turn is from
the tip of the leaf and then sequentially along the leaf margin
(see Section 4).

To find the minimum energy deformation, we represent the
problem as a string matching problem [39]. For a given spec-
imen the main vein is segmented into a large finite number of
sections. The segmented vein is mapped into two vectors, the
length of which is equal to the number of segments. The vec-
tors describe the left and right bifurcating structure by assign-
ing ‘0’ to an entry if there is no secondary vein bifurcating out
of the vein segment corresponding to that entry. A positive real
value is assigned to the entry if there is such a bifurcation and
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InsertionOriginal Translation Elongation

Fig. 4. Elementary deformations allowed in the LoA symmetry measure evaluation.
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Fig. 5. Mapping a leaf structure into two vectors. The main vein of the leaf is
segmented into a finite number of sections and mapped into two vectors. The
vectors describe the left and the right bifurcating structure by assigning ‘0’
to an entry if there is no secondary vein bifurcating out of the vein segment
corresponding to that entry. A positive real value is assigned to the entry if
there is such a bifurcation and the assigned value equals the length of the
secondary vein.

the assigned value equals the length of the secondary vein. An
example is shown in Fig. 5.

Finding the minimum energy deformation of the bifurcating
structure is equivalent to finding the minimum cost of trans-
forming one vector into the other, using allowed ‘elementary’
deformations. We solve this modified string matching problem
using Dynamic Programming [39] as follows.

Let i = 1 . . . n enumerate the secondary veins on one side
of the main vein (w.l.o.g. we assume the left side) and let
j = 1 . . . m be the enumeration of the secondary veins on the
other side (Fig. 5). Denote by Ci,j the cost of the minimal

energy deformation of the sub-structure consisting of the main
vein and the first i secondary veins on the left and the first j
secondary veins on the right.

The value of Ci,j is given by one of the following possibili-
ties:

1. Pair the left vein i with the right vein j. Thus Ci,j equals
Ci−1,j−1 plus the cost of translating veins i and j so that
their positions align and the cost of equalizing the length
of veins i and j.

2. Insert a new left vein as a pair for vein j. Thus Ci,j equals
Ci,j−1 plus the cost of inserting a new vein of length and
position equal to vein j.

3. Insert a new right vein as a pair for vein i. Thus Ci,j equals
Ci,j−1 plus the cost of inserting a new vein of length and
position equal to vein i.

It is easily shown that this recursive definition implies that
Cn,m is indeed an optimal solution which minimizes the cost
function while observing the order constraint defined above.
Calculating Ci,j requires calculating the costs of solving the
sub-problems Ci−1,j−1, Ci,j−1 and Ci−1,j , thus, the dynamic
programming approach solves for the optimal solution in a
bottom-up approach initialized with C0,0 = 0.

We start by defining the cost of the three elementary defor-
mations:

COE(l, lnew) = E0 ∗ |l − lnew|,
COT(l, d) = T0 ∗ l ∗ d,

COI(l) = I0 ∗ l,

where COE is the cost of elongating or shortening a vein of
original length l to new length lnew. The cost of length change
is invariant to the type of change (i.e., elongation or shorten-
ing). This cost function attempts to evaluate the asymmetry in
free auxin concentration magnitude in the growing leaf which
induces secondary veins of different lengths (see Section 5, and
Fig. 3B). It is assumed that asymmetry increases with increase
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in concentration magnitude difference, which in turn increases
the difference in length of paired veins.

COT is the cost of translating a vein of length l by a distance
of d units. The cost of length change is invariant to the direc-
tion of translation. This cost function attempts to evaluate the
asymmetry in the free auxin concentration magnitude and po-
sition along the leaf margin which induces secondary veins of
different lengths at different bifurcation points along the main
vein (see Section 5, and Fig. 3D). The assumption is that asym-
metry is larger, the greater the difference in concentration posi-
tion and the greater the difference in concentration magnitude.
Thus the COT is dependent on both length l and distance d.

COI is the cost of insertion of a vein of length l. The cost
is invariant to the position of the vein along the main vein and
to the side (left/right) in which insertion is performed. Cost of
insertion is equal to cost of deletion, thus the latter is not used
in the algorithm. This cost function attempts to evaluate the
asymmetry in free auxin concentration when there is a missing
concentration site which in turn implies a missing secondary
vein (see Section 5, and Fig. 3E). Assumption is that asymmetry
increases with increase in magnitude of the paired concentration
site. Thus the COI is dependent on length l.

E0,I0 and T0 are scalar weights determining the relative af-
fects of each elementary deformation. Their values were set
according to the biological growth model [38]. Since COI and
COE both relate to quantification of asymmetry in concentra-
tion magnitude of paired sites, we assume that I0 = E0. COT
quantifies asymmetry in both concentration magnitude and site
positioning of paired sites, thus we have that T0 serves as a
balancing weight between the magnitude and positioning pa-
rameters. Typically I0 > T0.

Using these cost functions for elementary deformations, we
define the following cost functions used in the algorithm:

COPi,j = COT(min(length(i), length(j)), abs(pos(i)

− pos(j))) + COE(length(i), length(j)),

COIi = COI(length(i)),

where COP is the cost of pairing left vein i with right vein j.
The cost consists of translating one of the veins towards the
other and changing the length of one vein to that of the other.
Since COT depends on the length of the vein, minimum cost is
obtained when the shorter of the two veins is translated.

COIi is the cost of inserting a new vein to be paired with
vein i.

We now define the recursive cost function Ci,j as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci,j= min(Ci−1,j−1+COPi,j , Ci−1,j+COIj , Ci,j−1+COIi ),

Ci,0 =
i∑

k=1
COIk,

C0,j =
j∑

k=1
COIk,

C0,0 = 0.

The dynamic programming algorithm outputs the cost of the
optimal solution Cn,m, which is defined as the measure of sym-
metry of the original bifurcating structure. In addition to the
symmetry value, the sequence of elementary deformations used

Fig. 6. Measuring asymmetry with the Local Approach (LoA). (A) Veins of
the leaf are marked. (B) The resulting symmetric structure (produced by the
local approach method). LoA = 1.6048.
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Fig. 7. Representation of bifurcating structure used in the global approach.
(A) The bifurcating structure is viewed as a collection of points interconnected
by segments. (B) Points Pk and Qk on paired veins have been matched.
(C) A new vein is inserted as points P1 and P2 (matching Q1 and Q2)
which are the endpoints of the new vein. Points P1, P2 and Q2 coincide.

to obtain the optimal solution is run and a symmetrized version
of the original structure is thus obtained.

To bound the run-time of the algorithm, observe that for
i, j �2 each value of Ci,j depends only on the values of
Ci−1,j−1, Ci,j−1 and Ci−1,j . Therefore, computing Cn,m, re-
quires the computation of all Ci,j for i�n and j �m giving a
total run-time of O(mn).

We note that in order to obtain invariance to overall scale we
normalize the original structures to have a norm of 1 prior to
computing the symmetry distance.

Fig. 6A shows an example of a leaf with marked veins. The
main vein is marked with a solid line and is considered as the
symmetry axis of the structure. The secondary veins are marked
with dashed lines. The resulting symmetric vein structure and
the symmetry value are calculated according to the local ap-
proach and are shown in Fig. 6B.
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Fig. 8. Computing the CSM using the folding–unfolding method [37] applied to a pair of secondary veins, each represented by two points. (A) Original
bifurcating structure with matching points marked. (B) Fold—Vein Q is reflected across the symmetry axis obtaining the folded points Q̃1 and Q̃2.
(C) Average—The folded points are averaged with their matching points obtaining the points P̂1 and P̂2. (D) Unfold—The average points are reflected back
across the symmetry axis obtaining the unfolded points Q̂1 and Q̂2. The CSM value is the average distance squared between the original points and the
corresponding unfolded points: 1

4 [(P1 − P̂1)2 + (P2 − P̂2)2 + (Q1 − Q̂1)2 + (Q2 − Q̂2)2]. The unfolded points form a symmetric configuration that is ‘closest’
to the original in terms of the average mean squared distance.

6.3. Measuring symmetry of bifurcating structures—GoA

Rather than separating into elementary deformations, this ap-
proach measures the amount of deformation required globally.
This measure of symmetry is based on early work on Contin-
uous Symmetry Measures (CSM) [37]. In these studies, sym-
metry is evaluated by estimating the energy (work) required
to deform a non-symmetric configuration into a perfectly sym-
metric one.

In Refs. [6,7] symmetry of molecules was measured using
the CSM approach, by allowing deformations that preserve the
topology of the original structures. In this paper we allow de-
formations that do not necessarily preserve topological con-
nectivity but that are consistent with biological models of the
source structures (in our case veins of leaves). Specifically, in
the case of our class of bifurcating structures, the main vein
is constrained to form the symmetry axis, the secondary veins
are constrained to bifurcate from the main vein, and secondary
veins originating from two different bifurcation points along
the main vein may deform so as to bifurcate at a common point.

In this approach, the bifurcating structure is viewed as a
collection of points interconnected by segments (see Fig. 7A).
The approach requires matching pairs of points to be deformed
into symmetric pairs. In the case of our bifurcating structures,
this pairing of points reduces to pairing of secondary veins.
Fig. 7B shows an example where points on paired veins have
been matched (point Pk matches point Qk). In the case of a
‘missing’ secondary vein, an insertion of a new zero length
vein is required which is marked as two endpoints located at
the bifurcation point. Fig. 7C shows the paired points in such
a case, where P1 and P2 are the endpoints of the new vein
inserted as a match for Q1 and Q2, respectively. Since a pairing
of the veins is required, the dynamic programming approach
described in Section 6.2 can be exploited here as well. The cost
function used in this case is based on the CSM:

COPi,j = CSM(pointsonvein(i), pointsonvein(j)),

COIi = CSM(pointsonvein(i), pointsonNullvein(i)),

where COP is the cost of pairing left vein i with right vein
j. COIi is the cost of inserting a new vein to be paired with
vein i.

Given a paired set of veins (whether two existing veins or an
inserted missing vein), the CSM of the pair of veins is computed
by averaging the CSM value of each pair of matching points
on these two veins.

CSM(Pr , Qr) = 1
4 [(Px − Qx)

2 + (Py − Qy)
2],

where (Px, Py) are the 2D coordinates of point P and
(Qx, Qy) are the 2D coordinates of point Q that has been
reflected across the symmetry axis [37]. The computation of
the CSM value can be visualized using the folding–unfolding
method [37], as shown in Fig. 8. The symmetric bifurcating
structure closest to the original is given as a byproduct of the
CSM method (Fig. 8D).

Note that the CSM approach constrains the secondary vein
end points along the main vein to remain positioned along
the main vein. The approach allows veins to change length,
translate bifurcation point and add additional veins to the
structure. Thus the deformation applied by the CSM (and the
folding–unfolding method) maintains the structure within the
bifurcating structure class defined earlier.

As can be easily noticed the CSM calculations (and
the folding–unfolding method) can be applied to all the
veins simultaneously. It inherently involves both transla-
tion and elongation operations, hence the ‘globality’ of the
approach.

As in the local approach, in order to obtain invariance to
overall scale we normalize the original structures to have a
norm of 1 prior to computing the symmetry distance.

Fig. 9A demonstrates an example of a leaf with marked veins.
The main vein is marked with a solid line and is considered
the symmetry axis of the structure. The secondary veins are
marked with dashed lines. The resulting symmetric vein struc-
ture and the symmetry value are calculated according to the
global approach and are shown in Fig. 9B.
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Fig. 9. Measuring symmetry using the global approach (GoA). (A) Veins of
the leaf are marked. (B) The resulting symmetric structure. GoA = 0.59086.
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Fig. 10. Evaluating the CSM for curved bifurcating structures. The veins
are sampled with a large (constant) number of points per vein. The CSM is
calculated for each pair of matching points. (A) Secondary veins are sampled
and matched. (B) A curved main vein is sampled by many points. Each point
is considered as two aligned points that form a matching pair.

6.4. Extending the approach to curved bifurcating structures

The CSM approach extends naturally to deal with curved
veins (both main vein and secondary veins). Rather than sam-
pling only the endpoints of the vein, a larger (constant) num-
ber of sampling points are distributed along each vein (e.g., at
equal distances). The points are paired as above and the CSM
is computed for each pair (Fig. 10).

Note that for calculating the CSM and deforming the struc-
ture in the case of a curved main vein, points are sampled along
the main vein such that each point is considered as a pair of
matched points that are aligned (Fig. 10B).

Fig. 11A demonstrates an example of a leaf with marked
veins. The main vein is marked with a solid line and is consid-
ered the symmetry axis of the structure. The secondary veins
are marked with dashed lines. The resulting symmetric vein

Fig. 11. Measuring symmetry using the extended Global Approach. (A) Veins
of the leaf are marked. (B) The resulting symmetric structure. GoA=0.64319.

structure and the symmetry value are calculated according to
the extended global approach and shown in Fig. 11B.

7. Results

7.1. Consistency of performance

To test the performance of both the local and global methods
we tested the algorithms on synthetic examples for which we
systematically varied structure characteristics. Figs. 12 and 13
show synthetic examples from these tests:

1. Changing the distance along the main vein between paired
veins (top row).

2. Changing the length of one of the paired veins (middle row).
3. Changing the number of unpaired veins (bottom row).

These figures show the consistency of both the local and global
approach methods. Asymmetry measured by both these meth-
ods monotonically increases when these structure parameters
vary and the system becomes less symmetric.

7.2. Experiments

The symmetry measure developed for bifurcating structures
was exploited as part of an ongoing evolutionary study on stress,
biodiversity evolution (reviews in Refs. [40–42]) and develop-
mental stability (FA) [43,44] in the ‘Evolution Canyon’ (EC),
lower Nahal Oren, mount Carmel, Israel (32◦43′N; 34◦58′E).
The opposite slopes of the canyon display remarkable physical
and biotic contrasts at the microscale. Although located only a
few hundred meters apart and sharing the same macroclimatic
zone, similar rock and soil, the microclimatic conditions on the
slopes vary dramatically; affecting the biology of organisms at
all levels. The south-facing slopes (SFS) may receive as much
as up to 200–800% more solar radiation than the north-facing
slopes (NFS). Consequences of higher radiation include higher
temperature, higher luminance and lower humidity [45]. Thus,
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LoA = 2.983LoA = 1.936 LoA = 0 LoA = 1.936 

LoA = 0.836 LoA = 0.668LoA = 0 LoA = 0.487 

LoA = 2.9545 LoA = 2.022LoA = 0LoA = 2.022

LoA = 2.983

LoA = 2.9545

LoA = 0.8945 

Fig. 12. Consistency of the Local Approach (LoA) under systematic changes in structure characteristics. 1. Changing the distance along the main vein between
paired veins (top row). 2. Changing the length of one of the paired veins (middle row). 3. Changing the number of unpaired veins (bottom row).

the ‘African’ like SFS has a more xeric environment, that is,
warmer, drier and a more variable microclimate, than the mesic
‘European’ like NFS slope.

In our experiment we focus on Quercus calliprinos, which
is the most common local tree. Its large population on the NFS
demands more mesic conditions and lower temperature than
those appearing on the SFS, although a small population does
exist on this slope [45].

We analyzed 201 Q. calliprinos leaves, 101 from the NFS
and 100 from the SFS. Ten leaves were sampled from 10 dif-
ferent trees in each one of the slopes. Sampling was conducted
on a single day in February 2004. Leaves were scanned, and
the middle vein and secondary veins, were marked in the dig-
ital image. In this work we show that the symmetry measure
of bifurcating structures applied to the veins of leaves shows
the deviation from perfect symmetry as caused by the devia-
tion from normal environmental conditions. This correlation is

shown using classification. We show that classifying a novel
specimen based on both local and global measures improves
classification of the specimen to its correct environment over
classification based on classic, well-known symmetry measures
[12,14,46].

7.2.1. Building the classifier
We build a classifier that discriminates between samples of

the SFS and the NFS of the canyon. The classifier is based on
the support vector machine classifier (SVM) [47]. The SVM is a
tool for classifying data into two sets. The SVM consists of two
phases: the training phase and the testing phase. In the training
phase the SVM receives a large number of samples belonging
to each of the two groups (the quantity of samples from the
two sets need not be equal). Each sample is represented by a
feature vector. The classifier builds a rule of distinction between
the two sets based on the feature vectors of these examples.
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GoA = 0.4310 GoA = 0.4297GoA = 0.3216GoA = 0GoA = 0.2461

GoA = 2.0286 GoA = 2.0286GoA = 1.0143GoA = 0GoA = 1.0143

GoA = 1.42 GoA = 1.42GoA = 0.721GoA = 0GoA = 0.721

Fig. 13. Consistency of the Global Approach (GoA) under systematic changes in structure characteristics. 1. Changing the distance along the main vein between
paired veins (top row). 2. Changing the length of one of the paired veins (middle row). 3. Changing the number of unpaired veins (bottom row).
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Fig. 14. Comparing classification performance using different measures of
symmetry. Our local approach (LoA) and global approach (GoA), are shown
in comparison to classic symmetry measures of Leary [48] (FA11), Strobeck
[12] (FA17), and Klingenberg [14] (FA18). Hundred and one leaves from the
‘European’ NFS and 100 leaves from the ‘African’ SFS were used in our
tests. Each test was run 500 times. Error bars represent standard deviation.
One can easily see that both our measures improve separation ability. The
Local Approach improves classification by 16.25% and the Global Approach
improves classification by 19%.

The rule might be based on a linear model, a quadratic model,
etc. In the testing phase the SVM classifier receives a novel
specimen and grades its association with one of the two sets
based on the rule of distinction determined in the training
phase.

Due to the small number of examples we adopted the
V-fold cross validation method for testing the quality of clas-
sification [48]. This method allows increasing the number of
samples by combining the various subsets of existing data.
Thus, different, randomly chosen subsets of the SFS and
NFS samples were used for training the SVM. Samples not
included in these subsets were then used as test cases to
evaluate classification. This process was repeated 500 times
with different subsets of the same size. The classifier was
trained and then tested using various combinations of the fol-
lowing features (see review and comparison of these features
in Ref. [12]):

(1) LoA—Our symmetry value based on the local approach.
(2) GoA—Our symmetry value based on the global approach.
(3) FA11 index of Leary et al. [46]. Sums over differences of

traits between left and right sides of an individual.
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Fig. 15. Visualizing the separation capabilities of the classic symmetry measure of Klingenberg (FA18) vs that of our Global Symmetry (GoA). Every point in
the diagram represents a single specimen. ‘European’ NFS specimens are marked by blue dots. ‘African’ SFS specimens are marked by red crosses. Statistical
distributions of the symmetry values are shown below and beside the plot. It is easily seen that the GoA measure provides a higher separation between the
two classes compared to FA18. In the latter case the mean of the ‘European’ NFS and the mean of the ‘African’ SFS are almost congruent and are both of
large variance. Whereas the means as well as the variance of the ‘European’ NFS and ‘African’ SFS distributions of GoA values differ significantly and allow
better separation.

(4) FA17 index of Strobeck [12]. Averages over the traits of
the logarithms of differences between left and right sides
of an individual.

(5) FA18 index of Klingenberg [14]. Sums differences be-
tween coordinates of landmarks of left and right sides of
an individual.

The percentage of correct classifications was determined in
each case. The weights used for the LoA computation (Sec-
tion 6.2) were optimal weights for this classification and were
determined using a gradient descent approach. The parameters
used were T0 = 1, I0 = E0 = 154. The GoA approach does not
rely on any parameters.

In all our experiments we used the SVM with linear kernels.

7.3. Classification results

Average results of classification using the global approach
measure, the local approach method, FA11, FA17, and FA18
measures separately are shown in Fig. 14. Classification using
combinations of these measures can be found in Appendix A.
Comparing to three well-known biological multi-trait symme-
try measures [46,12,14] one can easily see that both our meth-
ods improve the separation performance of the classification.
The local approach improves by around 16% and the global ap-
proach improves by around 19%. Combining the local approach
and the global approach methods does not yield improvement

over classification based on each measure separately. Fig. 15
visualizes the difference in separation ability between the clas-
sic symmetry measure of Klingenberg (FA18) and our Global
Measure (GoA).

8. Conclusion

We proposed a measure of symmetry for bifurcating struc-
tures, namely leaf veins, which is based on biological growth
models. It is based on geometric as well as topological prop-
erties of the structures. The measure quantifies the amount of
energy required to deform the structure into a perfectly sym-
metric one. Deformation is restricted to ‘elementary’ actions
which are in accord with biological growth models.

We introduce two computational schemes to calculate the
symmetry measure, and show the consistency of the measure
with various deformations as well as its effectiveness in both
classifying leaves taken from plants growing under different
stress conditions and comparing it with other leading methods.
The obtained results show clearly that our measures which are
based on the minimum energetic path underlying biological
mechanisms yield better separation ability.
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Appendix A.

Table 1 shows the classification results using all combina-
tions of the five symmetry measures described in Section 7.2.1.

The combinations are denoted as 5-bit notation vectors. The
entries in the vector represent (left to right): The Local Measure
(LoA), the Global Measure (GoA), FA11, FA17 and FA18. The
measures used in a specific classification test are marked by 1
in the appropriate entry of the notation vector. (For example,
[01011] represents the combination of measures: GoA, FA17
and FA18).

Table 2 shows the classification results using all combina-
tions of the Local approach measure, Global approach measure
and Palmer’s measure of single traits (FA2) [12].

The combinations are denoted as 3-bit notation vectors. The
entries in the vector represent (left to right): The Local Measure
(LoA), the Global Measure (GoA) and FA2. The measures used
in a specific classification test are marked by 1 in the appropriate
entry of the notation vector. (For example, [011] represents the
combination of measures: GoA and FA2).

Table 1
Classification results using combinations of symmetry measures (multiple
traits)

Notation vector Percent correct classification Standard deviation

[1 0 0 0 0] 72.2281 2.4554
[0 1 0 0 0] 72.6945 2.4356
[0 0 1 0 0] 60.8674 2.4905
[0 0 0 1 0] 62.1324 2.994
[0 0 0 0 1] 59.4894 2.6497
[1 1 0 0 0] 71.0776 2.7538
[1 0 1 0 0] 70.6603 2.7755
[1 0 0 1 0] 72.215 2.7912
[1 0 0 0 1] 71.8239 2.7068
[0 1 1 0 0] 71.9385 2.5984
[0 1 0 1 0] 73.4097 2.8403
[0 1 0 0 1] 72.7011 2.8266
[0 0 1 1 0] 61.2781 2.96
[0 0 1 0 1] 62.4646 3.3084
[0 0 0 1 1] 62.3337 3.0934
[1 1 1 0 0] 70.9418 2.5011
[1 1 0 1 0] 71.9401 2.9759
[1 1 0 0 1] 70.9827 2.7126
[1 0 1 1 0] 71.0826 3.2259
[1 0 1 0 1] 71.166 2.8006
[1 0 0 1 1] 71.3526 2.8711
[0 1 1 1 0] 72.8222 2.9978
[0 1 1 0 1] 71.9074 2.9112
[0 1 0 1 1] 72.6455 3.0683
[0 0 1 1 1] 61.6938 3.1126
[1 1 1 1 0] 71.8992 2.8541
[1 1 1 0 1] 71.4164 2.8167
[1 1 0 1 1] 71.2969 2.9311
[1 0 1 1 1] 71.1562 3.1334
[0 1 1 1 1] 72.2789 3.1606
[1 1 1 1 1] 71.909 2.8004

Table 2
Classification results using combinations of symmetry measures (single traits)

Notation vector Percent correct classification Standard deviation

[1 0 0] 72.2281 2.4554
[0 1 0] 72.6945 2.4356
[0 0 1] 70.8887 2.4562
[1 0 1] 74.2721 2.5994
[0 1 1] 75.1731 2.6363
[1 1 1] 74.9448 2.5755

One can see that in the case of single traits both our measures,
LoA and GoA, do improve separation by 4.77% and 6.04%
correspondingly.
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