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Chapter 1
Clustering for Monitoring Distributed Data
Streams

Maria Barouti, Daniel Keren, Jacob Kogan and Yaakov Malinovsky

abstract Monitoring data streams in a distributed system is a challenging prob-
lem with profound applications. The task of feature selection (e.g., by monitoring
the information gain of various features) is an example of an application that re-
quires special techniques to avoid a very high communication overhead when per-
formed using straightforward centralized algorithms.

Motivated by recent contributions based on geometric ideas, we present an al-
ternative approach that combines system theory techniques and clustering. The pro-
posed approach enables monitoring values of an arbitrary threshold function over
distributed data streams through a set of constraints applied independently on each
stream and/or clusters of streams. The clusters are designed to evolve in time and to
adapt themselves to the data stream. A correct choice of clusters yields a reduction
in communication load. Unlike many clustering algorithms that attempt to collect
together similar data items, monitoring requires clusters with dissimilar vectors can-
celing each other as much as possible. In particular, sub–clusters of a good cluster
do not have to be good. This novel type of clustering dictated by the problem at
hand requires development of new algorithms and/or modification of the existing
ones, and the chapter is a step in this direction.

We report experiments on real-world data with a newly devised clustering al-
gorithm. The experiments detect instances where communication between nodes is
required, and show that the clustering approach reduces communication load. We
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then propose an application of the well known clustering algorithms to the monitor-
ing problem.

1.1 Introduction

In many emerging applications one needs to process a continuous stream of data in
real time. Sensor networks [21], network monitoring [17], and real–time analysis of
financial data [30], [31] are examples of such applications. Monitoring queries are a
particular class of queries in the context of data streams. Previous work in this area
deals with monitoring simple aggregates [17], or term frequency occurrence in a set
of distributed streams [27]. The current contribution is motivated by results recently
reported in [22], [23] where a more general type of monitoring query is described
as follows:

Let S � �
s1 �
	�	
	
� sn � be a set of data streams collected at n nodes N � �

n1 �
	�	
	
� nn � .
Let v1  t � ��	
	�	�� vn  t � be d-dimensional, real-valued, time varying vectors derived
from the streams. For a function f : Rd � R we would like to monitor the in-
equality

f
�

v1  t ��� 	�	
	 � vn  t �
n ��� 0 (1.1)

while minimizing communication between the nodes. Often the threshold might
be a constant r other than 0. In what follows, for notational convenience, we shall
always consider the inequality f � 0, and when one is interested in monitoring the
inequality f � r we will modify the threshold function and consider g � f � r, so that
the inequality g � 0 yields f � r. In e.g. [22, 19, 20, 11] a few real-life applications
of this monitoring problem are described; see also Section 1.2 here.

The difference between monitoring problems involving linear and non-linear
functions f is discussed and illustrated by a simple example involving a quadratic
function f in [22]. The example demonstrates that, for a non-linear f , it is often
very difficult to determine from the values of f at the nodes whether its value eval-
uated at the average vector is above the threshold or not. The present chapter deals
with the information gain function (see Section 1.2 for details), and rather than
focus on the values of f we consider the location of the vectors vi  t � relative to
the boundary of the the subset of Rd where f is positive. We denote this set by
Z �  f � � �

v : f  v � � 0 � , and state (1.1) as

v  t � � v1  t ��� 	
	�	 � vn  t �
n � Z �  f � 	 (1.2)

thus, the functional monitoring problem is transformed to the monitoring of a geo-
metric condition. As a simple illustration, consider the case of three scalar functions
v1  t � , v2  t � and v3  t � , and the identity function f (i.e. f  x � � x). We would like to
monitor the inequality
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v � t ��� v1 � t ��� v2 � t ��� v3 � t �
3 � 0

while keeping the nodes silent as long as possible. One strategy is to verify the initial

inequality v � t0 ��� v1 � t0 ��� v2 � t0 ��� v3 � t0 �
3 � 0 and to keep the nodes silent while 

vi � t �"! vi � t0 �  $# δ � v � t0 �&% t ' t0 % i � 1 % 2 % 3 (
The first time t when one of the functions, say v1 � t � , crosses the boundary of the
local constraint, i.e.

 
v1 � t �"! v1 � t0 �  ' δ the nodes communicate, t1 is set to be t, the

mean v � t1 � is computed, the local constraint δ is updated and made available to the
nodes. The nodes are kept silent as long as the inequalities 

vi � t �)! vi � t1 �  �# δ % t ' t1 % i � 1 % 2 % 3
hold. This type of monitoring was suggested in [25] for a variety of vector norms.
The numerical experiments conducted in [25] with the dataset described in Subsec-
tion 1.5.1 show that:

1. The number of time instances the mean violates � 1 ( 1 � is a small fraction (
#

1%)
of the number of time instances when the local constraint is violated at the nodes.

2. The lion’s share of communications (about 75%) is required because of a single
node violation of the local constraint δ .

3. The smallest number of communications is required when one uses the l1 norm.

We note that if, for example, the local constraint is violated at n1, i.e.
 
v1 � t ��!

v1 � t0 �  ' δ , and at the same time

v1 � t �)! v1 � t0 �*�+!-, v2 � t �)! v2 � t0 �/.0%
while

 
v3 � t �1! v3 � t0 �  2# δ then

 
v � t �1! v � t0 �  2# δ , f � v � t �
� � 0, and update of the mean

can be avoided. Separate monitoring of the two node cluster 3 n1 % n2 4 would require
communication involving two nodes only, and could reduce communication load.
We aim to extend this idea to the general case – involving many nodes, arbitrary
functions, and high-dimensional data.

Clustering in general is a difficult problem, and many clustering problems are
known to be NP-complete [10]. Unlike standard clustering that attempts to collect
together similar data items [4], we are seeking clusters with dissimilar data items,
which cancel out each other as much as possible. While sub-clusters of a “classical”
good cluster are usually good, this may not be the case when a cluster contains
dissimilar objects. These observations indicate that a straightforward application of
common clustering methods to our problem is not possible.

A basic attempt to cluster nodes was suggested in [26] with results reported for
the dataset presented in Subsection 1.5.1. Clustering together just two nodes re-
ported in [26] reduces communication by about 10%.

In this chapter we advance clustering approach to monitoring. The main contri-
bution of this work is twofold:
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1. We suggest a specific clustering strategy applicable to a variety of vector norms,
and report the communication reduction achieved when the proposed strategy is
applied with l1, l2, and l∞ norms.

2. We suggest an application of well known clustering algorithms to monitoring.

The chapter is organized as follows. In Section 1.2 we present a relevant Text Mining
application. Section 1.3 provides motivation for node clustering. A specific imple-
mentation of node clustering is presented in Section 1.4. Experimental results are
reported in Section 1.5. In Section 1.6 we discuss a possible application of classical
clustering algorithms to monitoring. Section 1.7 concludes the chapter and indicates
new research directions. Appendix 1 summarizes some useful properties of the first
and second moments. Appendix 2 details the accounting of message transmission.

In the next section we provide a Text Mining related example that leads to a non
linear threshold function f .

1.2 Text Mining application

Let T be a textual database (for example a collection of mail or news items). We
denote the size of the set T by 5T 5 . We will be concerned with two subsets of T:

1. R–the set of “relevant” texts (e.g. texts not labeled as ”spam”),
2. F–the set of texts that contain a “feature” (word or term for example).

We denote complements of the sets by R, F respectively (i.e. R 6 R 7 F 6 F 7 T),
and consider the relative size of the four sets F 8 R, F 8 R, F 8 R, and F 8 R as
follows:

x11 9 T :;7 5F 8 R 55T 5=< x12 9 T :;7 5F 8 R 55T 5=<
x21 9 T :;7 5F 8 R 55T 5 < x22 9 T :;7 5F 8 R 55T 5=> (1.3)

Note that
0 ? xi j ? 1 < and x11 @ x12 @ x21 @ x22 7 1 > (1.4)

The function f is defined on the simplex (i.e. xi j A 0, ∑xi j 7 1), and given by

∑
i B j xi j log C xi j9 xi1 @ xi2 : 9 x1 j @ x2 j :�DE< (1.5)

where logx 7 log2 x throughout the chapter. It is well-known that (1.5) provides the
information gain for the “feature” (see e.g. [2]).

As an example, we consider n agents installed on n different servers, and a stream
of texts arriving at the servers. Let Th 7�F th1 < >�>
> < thw G be the last w texts received at

the hth server, with T 7 nH
h I 1

Th. Note that
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xi j J T K*L n

∑
h M 1 NTh NNT N xi j J Th KPO

i.e., entries of the global contingency table Q xi j J T K&R are the weighted average of the
local contingency tables Q xi j J Th KSR , h L 1 O�T
T�T�O n.

To check that the given “feature” is sufficiently informative with respect to the
target relevance label r, one may want to monitor the inequality

f J x11 J T K&O x12 J T KPO x21 J T KPO x22 J T K
KVU r W 0 (1.6)

with f given by J 1 T 5 K while minimizing communication between the servers.
We next provide arguments in support of clustering for monitoring distributed

data streams.

1.3 Monitoring threshold functions through clustering:
motivation

In what follows we denote a norm of a vector v by X v X . While the experiments
reported in this chapter have been conducted with l1, l2, and l∞ norms, the proposed
monitoring and node clustering procedures can be applied with any norm. We shall
identify a specific norm used when needed. For a vector set X L�Q x1 O�T
T�T
O xm RZY Rd

we denote the arithmetic mean
x1 [ T
T�T [ xm

m
of the set by µµµ J X K . With slight abuse

of notations the central second moment
m

∑
i M 1

J xi U µµµ J X K�K T J xi U µµµ J X K�K is denoted by

σ2 J X K . The zero set Q v : v \ Rd O f J v K*L 0 R of a function f is denoted by Z f .
Our aim is to monitor data streams with as little communication as possible over

a sequence of discrete time instances that we shall denote by t. The time instances
that require communication between nodes are denoted by ti, i L 0 O 1 O 2 O�T
T�T . The
approach suggested in this chapter builds on the monitoring strategy involving no
clustering proposed in [25] and briefly described as follows:

Algorithm 1.3.1 Monitoring Threshold Function] A node is designated as a root r.] The root sets i L 0.] Until end of stream

1. The root sends a request to each node n for the vectors vn J ti K . The nodes
respond to the root. The root computes the distance δ between the mean
1
n ∑

n ^ N
vn J ti K and the zero set Z f of the function f . The root transmits δ to

each node.
2. do for each n \ N

If N_N vn J t K)U vn J ti K N_N�` δ
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the node n is silent
else

n notifies the root about the violation of its local constraint δ
the root sets i a i b 1
go to Step 1.

endifc Stop

An application of the above procedure to data streams generated from the Reuters
Corpus RCV1–V2 (see Section 1.5 for detailed description of the data and experi-
ments) leads to 4006 time instances in which the local constraints are violated, and
the root is updated. Results presented in Table 1.1 show that in 3034 out of 4006

Table 1.1 number of local constraint violations simultaneously by k nodes, r d 0 e 0025, l2 norm,
the feature is “bosnia”

# of nodes violators 1 2 3 4 5 6 7 8 9 10

# of violation instances 3034 620 162 70 38 26 34 17 5 0

time instances, communications with the root are triggered by constraint violations
at exactly one node.

The results immediately suggest to cluster nodes to further reduce communica-
tion load. Each cluster will be equipped with a “coordinator” c (one of the cluster’s
nodes). If a cluster node n violates its local constraint at time t, then the coordinator
collects vectors vn f t gVh vn f ti g from all the nodes in the cluster, computes the mean
of the vectors, and checks whether the mean violates the coordinator constraint δ
(at this point, node and coordinator constraints are identical, see Section 1.4 for dis-
cussion pertaining to constraints). We shall follow [22] and refer to this step as “the
balancing process.” If the coordinator constraint is violated, the coordinator alerts
the root, and the mean of the entire dataset is recomputed by the root (for detailed
description of the procedure see Section 1.4).

For the problem at hand we would like to partition the set of nodes N into k
clusters Π aji π1 k�l
l�l�k πk m so that

N a kn
i o 1

πi k and πi p π j a /0 if i qa j l
We denote the size of πi by r πi r . If for each cluster πi one has

1r πi r"sssss sssss ∑n t πi u vn f t g)h vn f t j g/v sssss sssss
w δ k

then, due to convexity of any norm, one has
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n y N

vn z t {)| 1
n ∑

n y N
vn z t j { xxxxx xxxxx�} k

∑
i ~ 1 � πi �n � 1

� πi �
xxxxx xxxxx ∑n y πi � vn z t {)| vn z t j {�� xxxxx xxxxx ��� δ �

Hence the “new” mean
1
n ∑

n y N
vn z t { belongs to Z � z f { if the “old” mean

1
n ∑

n y N
vn z t j {

belongs to this set. We therefore may attempt to define the quality of a k cluster
partition Π as

Q z Π {;� max
i � 1

� πi �
xxxxx xxxxx ∑n y πi � vn z t {)| vn z t j {/� xxxxx xxxxx���� i � 1 � �
��� � k � (1.7)

Our aim is to identify k and a k cluster partition Π o that minimizes z 1 � 7 { . The
monitoring problem requires to assign nodes � ni1 � ���
� � nik � to the same cluster π so
that the total average change within cluster πxxxxx xxxxx 1

� π � ∑n y π � vn z t {)| vn z t j {/� xxxxx xxxxx for t � t j

is minimized, i.e., nodes with different variations vn z t {1| vn z t j { that cancel out each
other as much as possible are assigned to the same cluster.

A standard clustering problem is often described as “. . . finding and describing
cohesive or homogeneous chunks in data, the clusters” (see e.g. [4]). Unlike classical
clustering procedures, this one needs to combine “dissimilar” nodes together.

The proposed partition quality Q z Π { (see z 1 � 7 {�{ generates three immediate prob-
lems:

1. Since the arithmetic mean a of a finite set of real numbers � a1 � ���
� � ak � satisfies

min � a1 � �
��� � ak � } a } max � a1 � �
��� � ak �
the single cluster partition always minimizes Q z Π { . Considering the entire set
of nodes as a single cluster with its own coordinator that communicates with the
root introduces an additional unnecessary “bureaucracy” layer that only increases
communications. We seek a trade-off which yields clusters with ”good” sizes
(this is rigorously defined in Section 1.4).

2. Computation of Q z Π { involves future values vn z t { , which are not available at
time t j when the clustering is performed.

3. Since the communication overhead of the balancing process is proportional to the
size of a cluster, the individual clusters’ sizes should affect the clustering quality
q z π { .

In the next section we address these problems.
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1.4 Monitoring threshold functions through clustering:
implementation

We argue that in addition to the average magnitude of the variations vn � t �V� vn � t j �
inside the cluster π , the cluster’s size also affects the frequency of updates, and, as a
result, the communication load. We therefore define the quality of the cluster π by

q � π ��� 1�
π
������� ����� ∑n � π � vn � t �)� vn � t j �/� ����� ������� α

�
π
���

(1.8)

where α is a nonnegative scalar parameter. The quality of the partition Π ��
π1
�� 
 � ��

πk ¡ is defined by

Q � Π �*� max
i ��¢ 1 £ ¤ ¤ ¤ £ k ¥ q � πi � � (1.9)

When α � 0 the partition that minimizes Q � Π � is a single cluster partition (that we
would like to avoid). When max

n �� �� vn � t �)� vn � t j � �� ���¦ α the optimal partition is made
up of n singleton clusters. In this chapter we focus on

0 § α § max
n � N �� �� vn � t �"� vn � t j � �� ��   (1.10)

The constant α depends on t and t j, and below we show how to avoid this depen-
dence.

Computation of Q � Π � required for the clustering procedure is described below.
In order to compute Q � Π � at time t j one needs to know vn � t � at a future time t ¨ t j
which is not available. While the future behavior is not known, we shall use past
values of vn � t � for prediction. For each node n we build “history” vectors hn � t j �
defined as follows:

1. hn � t0 �*� 0
2. if (hn � t j � is already available)

hn � t j © 1 ��� hn � t j �
for t increasing from t j to t j © 1 do

hn � t j © 1 �*� 1
2

hn � t j © 1 � � � vn � t �)� vn � t j ���
The vectors hn � t j � accumulate the history of changes, with older changes assigned
smaller weights. We shall use the vectors

�
hn � t j � ¡ to generate a node partition at

time t j. We note that normalization of the vector set that should be clustered does
not change the induced optimal partitioning of the nodes. When the vector set is
normalized by the magnitude of the longest vector in the set, the range for α con-
veniently shrinks to � 0 � 1 � . In what follows we set h � max

n � N

�ª�
hn � t j � �_� , assume that

h ¨ 0, and describe a “greedy” clustering procedure for the normalized vector set�
a1
�� 
 � ��

an ¡ � ai � 1
h

hni � t j � � i � 1
�
 � 
 
�

n
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We start with the n cluster partition Π n (each cluster is a singleton). We set k « n
and loop the following procedure until the number of clusters reduces to k « 2.

Algorithm 1.4.1 (Incremental Clustering)¬ Set k « n.¬ do until k  2:

1. in partition Π k identify cluster π j of maximal quality, i.e.,

q ® π j ¯±° q ® πi ¯ i ²« j ³
2. identify cluster πi so that the merger of πi with π j produces a cluster of small-

est possible quality, i.e.,

q ´ π j µ πi ¶�· q ´ π j µ πl ¶¹¸ l ²« j ¸
where cluster’s quality is defined by ® 1 ³ 8 ¯ .

3. Build partition Π k º 1 by merging clusters π j and πi.
4. Set k « k » 1.
5. go to Step 1.¬ Stop.

The final partition is selected from the n » 1 partitions ¼ Π 2 ¸ ³
³�³ ¸ Π n ½ as the one that
minimizes Q.

Note that node constraints δ do not have to be equal (see Algorithm 1.4.2, Step 2).
Taking into account the distribution of the data streams at each node can further
reduce communication. We illustrate this statement by a simple example involving
two nodes. If, for example, there is reason to believe that the inequality

2 ¾ v1 ® t ¯ » v1 ® ti ¯ ¾ · ¾ v2 ® t ¯ » v2 ® ti ¯ ¾ (1.11)

always holds, then the number of node violations may be reduced by imposing node
dependent constraints¾ v1 ® t ¯ » v1 ® ti ¯ ¾À¿ δ1 « 2

3
δ ¸ and ¾ v2 ® t ¯ » v2 ® ti ¯ ¾À¿ δ2 « 4

3
δ

so that the wider varying stream at the second node enjoys larger “freedom” of
change, while the inequalityÁÁÁÁ ÁÁÁÁ v1 ® t ¯�Â v2 ® t ¯

2
» v1 ® ti ¯�Â v2 ® ti ¯

2

ÁÁÁÁ ÁÁÁÁ ¿ δ1 Â δ2

2
« δ

holds true. Assigning “weighted” local constraints requires information provided
by ® 1 ³ 11 ¯ . With no additional assumptions about the stream data distribution this
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information is not available. Unlike [24] we refrain from making assumptions re-
garding the underlying data distributions; instead, we estimate the weights through
past values vn Ã t Ä , n Å N.

At the initial time t0 all nodes report their vectors vn Ã t0 Ä to the root, the root
computes the average, and the the distance δ Ã r Ä from the average to the boundary
of Z Æ Ã f Ä . At this point we define δ Ã n Ä*Ç δ Ã r Ä , for each n Å N.

We now focus on a particular node n. Consider first m time instances t1 È t2 È
É�É�É
È tm

and the vector set
V Ên ÇjË v Ên Ã t1 Ä È
É�É�É�È v Ên Ã tm ÄSÌ È

where

v Ên Ã tm Ä*Ç vn Ã tm Ä È v Ên Ã tm Í 1 Ä�Ç 1
2

vn Ã tm Í 1 Ä È*É�É�É�È v Ên Ã t1 Ä�Ç 1
2m Í 1 vn Ã t1 Ä É

The node constraint δ Ã n Ä introduced below depends on the arithmetic mean
µµµ Ã V Ên Ä and the central second moment

σ2 Ã V Ên Ä�Ç m

∑
i Î 0 Ï v Ên Ã ti Ä)Ð µ Ã V Ên Ä�Ñ T Ï v Ên Ã ti Ä)Ð µ Ã V Ên Ä�Ñ

of the node n. We denote µ Ã V Ên Ä by µn, and σ 2 Ã V Ên Ä by σ 2
n . Since ÒÒ ÒÒ v Ên Ã t i Ä)Ð µn ÒÒ ÒÒ�ÓÔ

m Ð 1
m

σ2
n , i Ç 1 È
É�É�É
È m (see Appendix 1) we define

Wn Ã tm Ä�Ç Wn ÇÖÕªÕ µµµn ÕªÕØ× Ô
m Ð 1

m
σ2

n
É

We note that although the bound

Ô
m Ð 1

m
σ2

n may be very conservative, the same

conservative criterion is applied uniformly to every node.

If at time tm the root constraint δ Ã r Ä is updated, each node n broadcastsWn Ã tm ÄVÇ Wn
to the root, the root computesW Ç ∑

n Ù N
Wn, and transmits the updated δ Ã n ÄÚÇ wnδ Ã r Ä

where wn Ç n Û Wn

W Ã so that ∑
n Ù N

wn Ç n Ä back to node n. For a coordinator c of a

node cluster π the constraint δ Ã c Ä*Ç 1Õ π Õ ∑n Ù π
δ Ã n Ä .

Algorithm 1.4.2 Monitoring Threshold Function with ClusteringÜ A node is designated as a root r.Ü The root sets i Ç 0.Ü Until end of stream

1. The root sends a request to each node n for the vectors vn Ã ti Ä . The nodes
respond to the root. The root computes the distance δ between the mean
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1
n ∑

n Ý N
vn Þ ti ß and the zero set Z f of the function f . The root transmits δ to

each node.
2. set t à ti

do
set violation à 0 á t à t â 1
for each n ã N

If äªä vn Þ t ß)å vn Þ ti ß ä_ä$æ δ
violation++

endif
while (violation=0)

3. set i à i â 1, and ti à t
4. violator node n notifies the root about the violation of its local constraint δ
5. The root requests vectors vn Þ ti ß and weights Wn Þ ti ß .

The root forms a partition Π à+ç π1 á�è
è�è�á πk é and sends node and coordinator
constraints δ Þ n ß and δ Þ c ß to nodes and coordinators.

6. do for each π ã Π
do for each n ã π

If δ Þ n ßëê ä_ä vn Þ t ß)å vn Þ ti ß äªä
If δ Þ c ßìê 1ä π ä�ííííí ííííí ∑n Ý π

vn Þ t ß)å ∑
n Ý π

vn Þ ti ß ííííí ííííínotify root about coordinator violation
goto Step 3

endif
endifî Stop

Node constraints δ Þ n ß based on the first moment only are introduced in [8]. In the
next section we provide monitoring results for node constraints based on the first
and second moments, and compare the results with those reported in [8] as well as
monitoring with no clustering reported in [25].

1.5 Experimental Results

This section presents few experimental results of monitoring with clustering. Mon-
itoring algorithms are always applied to the data considered in [22] which is de-
scribed next.
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1.5.1 Data

The data streams analyzed in this section are generated from the Reuters Corpus
RCV1–V21. The data consists of 781 ï 265 tokenized documents with document ID
ranging from 2651 to 810596. We simulate n streams by arranging the feature vec-
tors in ascending order with respect to document ID, and selecting feature vectors
for the stream in the round-robin fashion.

Each document in the Reuters Corpus RCV1–V2 is labeled as belonging to one
or more categories. We label a vector as “relevant” if it belongs to the “CORPO-
RATE/INDUSTRIAL” (“CCAT”) category, and “spam” otherwise. Following [22]
we focus on three features: “bosnia,” “ipo,” and “febru.” Each experiment was per-
formed with 10 nodes, where each node holds a sliding window containing the last
6,700 documents it received.

First we use 67 ï 000 documents to generate initial sliding windows. The remaining
714 ï 265 documents are used to generate datastreams, hence the selected feature
information gain is computed 714 ï 265 times. Based on all the documents contained
in the sliding window at each one of the 714 ï 266 time instances we compute and
graph 714 ï 266 information gain values for the feature “bosnia” (see Figure 1.1). For
the experiments described below, the threshold value r is predefined, and the goal
is to monitor the inequality f ð v ñóò r ô 0 while minimizing communication between
the nodes. We also assume that new texts arrive simultaneously at each node. We
define a broadcast as one time transmission of information between different nodes.

1.5.2 Monitoring with Incremental Clustering

The previous work [8] reported monitoring results obtained with the incremental
clustering algorithm (Algorithm 1.4.1) with weights Wn õ÷ö µµµn ö only. We shall call
this implementation of the algorithm “first moment incremental clustering” (FMIC).

The clustering algorithm with weights Wn õùø_ø µµµn ø_ø�úüû m ý 1
m σ2

n introduced in this
chapter will be referred to as the “second moment incremental clustering” (SMIC).
In this section we report and compare results generated by the algorithms for the
threshold r õ 0 þ 0025 and α õ 0 þ 05 ï 0 þ 10 ï
þ�þ
þ/ï 0 þ 95.

The best result with respect to α obtained by an application of FMIC to the feature
“febru,” is presented in Table 1.2. The clustering approach in this case is particularly
successful – coordinators’ constraints are not violated, and the root mean updates
are decreased significantly as compares, for example, to results reported in [25].

The corresponding results generated by SMIC are provided in Table 1.3. Results in

1 http://leon.bottou.org/projects/sgd
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Table 1.2 Number of root and coordinator mean computations, and total broadcasts for feature
“febru” with threshold r ÿ 0 � 0025 and the “first moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.70 1431 0 38665

l2 0.80 1317 0 35597

l∞ 0.65 1409 0 38093

Table 1.3 show a significant decrease in the number of broadcasts as compared to
results in Table 1.2.

Next we turn to the features “ipo” and “bosnia.” In both cases we run monitoring
with FMIC and SMIC, allowing α � 0 � 05 � 0 � 10 ��������� 0 � 95, and report results with
the lowest number of broadcasts. The results obtained for “ipo” with FMIC are
presented in Table 1.4. Application of SMIC leads to results provided in Table 1.4.
The tables demonstrates significant inside cluster activity, and a significant decrease
in broadcasts due to the second moment.

0 1 2 3 4 5 6 7 8

x 105

0

1

2

3

4

5

6

7

8
x 10−3 bosnia

iterations

IG

Fig. 1.1 information gain values for the feature “bosnia”
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Table 1.3 Number of root and coordinator mean computations, and total broadcasts for feature
“febru” with threshold r � 0 � 0025 and the “second moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.85 883 0 23859

l2 0.75 833 0 22509

l∞ 0.75 854 0 23076

Table 1.4 Number of root and coordinator mean computations, and total broadcasts for feature
“ipo” with threshold r � 0 � 0025 and the “first moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.15 5455 829 217925

l2 0.10 7414 1782 296276

l∞ 0.10 9768 2346 366300

Table 1.5 Number of root and coordinator mean computations, and total broadcasts for feature
“ipo” with threshold r � 0 � 0025 and the “second moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.50 4585 121 127345

l2 0.35 6304 421 180536

l∞ 0.30 8405 842 240455

Finally we turn to the feature “bosnia.” Monitoring procedure presented in [25] and
involving no clustering produced results collected in Table 1.6. Application of FMIC
to monitoring this feature information gain reported in [8] was described as the “less
successful.” FMIC leads to a slight decrease in the number of broadcasts in case of

Table 1.6 Number of mean computations, and broadcasts, for feature “bosnia” with threshold
r � 0 � 0025, no clustering

norm mean updates broadcasts

l1 3053 79378

l2 4006 104156

l∞ 3801 98826
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the l2 and l∞ norms (see Table 1.7). In case of the l1 norm, the number of broadcasts
increases. The second moment clustering further significantly reduces the number

Table 1.7 Number of root and coordinator mean computations, and total broadcasts for feature
“bosnia” with threshold r 	 0 
 0025 and the “first moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.65 3290 2 89128

l2 0.55 3502 7 97602

l∞ 0.60 3338 2 91306

of broadcasts, see Table 1.8. In the next section we briefly recall a number of well

Table 1.8 Number of root and coordinator mean computations, and total broadcasts for feature
“bosnia” with threshold r 	 0 
 0025 and the “second moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.65 1749 8 47717

l2 0.75 1940 4 52510

l∞ 0.65 1756 8 47958

known clustering algorithms, and indicate how those can be used for monitoring
data streams.

1.6 Conventional Clustering Algorithms

This Section briefly reviews a number of classical clustering algorithms we propose
to use for node clustering. The algorithms are:

1. Principal Direction Divisive Partitioning (PDDP), [9];
2. batch k � means (see e.g. [29], [18]),
3. incremental k � means (e.g. [5], [1]),
4. the combination of batch and incremental k � means [5], and [6].

An application of k � means requires an initial partition of the data. While a number
of initialization methods for the k � means clustering algorithm are available in the
literature (see e.g. recent survey [12]) we focus on PDDP which is briefly described
next.
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1.6.1 PDDP

A good partitioning of a vector set into a number of subsets is a difficult problem
even in the case when the required number of subsets is only two. There is, how-
ever, an exception. When the dimension of the vector space is one, i.e. one has to
deal with a scalar set, the problem is relatively easy. While real–life data is rarely
one dimensional, a least squares one dimensional approximation can be constructed
and used to cluster a multidimensional vector set. The Principal Direction Divisive
Partitioning algorithm briefly recalled below does just that. In the reminder of this
section we demote by

�
a
�

the l2 norm of a vector a.
For a vector a and a line l in Rd denote by Pl  a � the orthogonal projection of a

on l. For a set of vectors ����� a1 ��������� am � and a line l in Rd denote by Pl  ��� the
set of projections � Pl  a1 � ��������� Pl  am � � . For a fixed vector set � the quantity

m

∑
i � 1

���
ai � Pl  ai � ��� 2

depends on the line l. A line that minimizes this quantity (and provides the best
least squares fit for the set � ) defines a principal direction. This line passes through
the arithmetic mean µµµ � µµµ  ��� of the vector set � , and its direction vector is an
eigenvector of the matrix BBT that corresponds to the maximal eigenvalue. Here
B ��� a1 ��������� am � � µeT , and e is a vector of ones (for details see e.g. [3]).

A basic step of the Principal Direction Divisive Partitioning algorithm (PDDP)
is the following:

1. Given a set of vectors � in Rd determine the one dimensional line l that provides
the “best” approximation to � .

2. Project � onto l, and denote the projection of the set � by � (note that � is
just a set of scalars). Denote the projection of a vector a by p.

3. Partition � into two subsets � 1 and � 2.
4. Generate the induced partition � � 1 � � 2 � of � as follows:� 1 �!� a : p "#� 1 � � and � 2 �!� a : p "$� 2 � (1.12)

The algorithm divides the entire collection into two clusters by using the principal
direction. Each of these two clusters will be divided into two sub-clusters using the
same process recursively. The subdivision of a cluster is stopped when the cluster
satisfies a certain “quality” criterion (such as, for example, cluster size, number of
clusters, or cluster quality).

Implementation of the algorithm requires computation of the largest eigenvalue
of the symmetric matrix BBT . In many cases this task may not be performed an-
alytically. While in the text mining application described in Section 1.2 the space
dimension d � 4 one of the coordinates is an affine function of three others (see 1 � 4 ��� . We now consider the case when each d dimensional data vector a can be
written as
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a % &
b
Cb ' d (*)

where b + Rd1 , d + Rd2 , d1 ' d2 % d, and C is an d2 , d1 matrix. For a vector set- %/. b1 )�0�0�0�) bm 1 one has µµµ 243�56% &
µµµ 2 - 5
Cµµµ 2 - 57' d ( . We now turn to the matrix

BBT . Denoting bi 8 µµµ 2 - 5 by vi we obtain

B % &
v1 0�0�0 vm
Cv1 0�0�0 Cvm ( % &

I
C (:9 v1 0�0�0 vm ; ) where I is the d1 , d1 identity matrix 0

Since rank B < d1 one has rank BBT < d1, and the number of nonzero eigenvectors
of BBT does not exceed d1. For our text mining application d1 % 3, and the nonzero
eigenvalues can be obtained by solving a cubic equation, i.e., the eigenvector for
BBT corresponding to the largest eigenvalue can be obtained just by solving a system
of linear equations.

PDDP by itself generates good clustering results. Those could be further im-
proved by applying k 8 means clustering to partitions generated by PDDP (see e.g.
[3]). Next we briefly recall a number of versions of k 8 means.

1.6.2 Batch k = means

A work horse of clustering mentioned already in [29] and most often attributed to
[18] batch k 8 means is by far most popular clustering algorithm. The algorithm is
scalable, and easy to implement. The algorithm is centered around the concept of
“centroid”–the best vector representative for a vector set introduced below (see [15],
[16]).

For a set of vectors 3>%?. a1 )�0�0�0�) am 1A@ Rn, and a “distance” function d 2 x ) a 5
define a centroid c % c 2B3�5 of the set 3 as a solution of the minimization problem

c % argmin C ∑
a DFE d 2 x ) a 5 ) x +:GIH 0 (1.13)

We call d a “distance” function because even in the classical implementation of
k 8 means d 2 x ) a 5J%LK x 8 a K 2

2, the square of the l2 norm, that fails to be a distance
function (the triangle inequality does not hold). Further, k 8 means works with a wide
class of functions called Bregman divergences and failing to be distances (Kullback–
Leibler divergence is one of them, see [7]).

The quality of the set 3 is denoted by q 243�5 and is defined by

q 2M3�5N% ∑
a DFE d 2 c ) a 5 ) where c % c 243�5 (1.14)

(we set q 2 /0 5O% 0 for convenience). Let Π %P. π1 )�0�0�0�) πk 1 be a partition of 3 , i.e.
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i

πi RTSLU and πi V π j R /0 if i WR j X
We define the quality of the partition Π by

Q Y Π Z R q Y π1 Z7[\X�X�X�[ q Y πk Z]X (1.15)

We aim to find a partition Π min R�^ πmin
1 U X�X�X U πmin

k _ that minimizes the value of the
objective function Q. The problem is known to be NP–hard, and we are looking for
algorithms that generate “reasonable” solutions. It is easy to see that centroids and
partitions are associated as follows:

1. Given a partition Π RT^ π1 U X�X�X U πk _ of the set S one can define the corresponding
centroids ^ c Y π1 Z U X�X�X U c Y πk Z _ by:

c Y πi Z R argmin ` ∑
a a πi

d Y x U a Z U x bdc\efX (1.16)

2. For a set of k “centroids” ^ c1 U X�X�X U ck _ one can define a partition Π Rg^ π1 U X�X�X U πk _
of the set S by:

πi R!^ a : a b S?U d Y ci U a Zih d Y cl U a Z for each l R 1 U X�X�X U k _ (1.17)

(we break ties arbitrarily). Note that, in general, c Y πi Z6WR ci.

The classical batch k–means algorithm is a procedure that iterates between the two
steps described above to generate a partition Π j from a partition Π .

While 0 h Q Y Π j Zih Q Y Π Z and the process described above converges, it rarely
converges to the global minimum. Even in a simple scalar case SkR�^ 0 U 2 U 3 _ , and
the initial partition Π l 0 m Ron π l 0 m1 U π l 0 m2 p where π l 0 m1 R/^ 0 U 2 _ , and π l 0 m2 Rq^ 3 _ an

application of batch k r means to Π l 0 m does not change the partition, and misses a
better partition Π l 1 m Rsn π l 1 m1 U π l 1 m2 p with π l 1 m1 R!^ 0 _ , and π l 1 m2 R!^ 2 U 3 _ . The reason
for this phenomenon along with a possible remedy is suggested in [13]. Before the
relevant material is briefly recalled in the next section we remark that an application
of PDDP to the scalar dataset S generates partition Π l 1 m . This observation suggests
to use PDDP to generate initial partitions to k r means like algorithms.

1.6.3 Incremental k t means

The failure of batch k r means to discover a better partition Π l 1 m stems from a simple
fact that Step 2 of the procedure ignores change of centroids due to data-vectors’
movement governed by Y 1 X 17 Z . A way to accurately account for the centroid change
is to allow a single data-vector movement during one iteration of the algorithm. This
version of k r means is described, for example, in the classical manuscript [1].



1 Clustering for Monitoring Distributed Data Streams 19

While more accurate, incremental k u means changes cluster affiliation of only
one vector per iteration. As compared to batch k u means the algorithm requires
many more iterations to converge, hence is time consuming. We next discuss a
“merger” of two algorithms.

1.6.4 Batch k v means followed by incremental k v means

While more accurate incremental k u means is not as fast as the batch algorithm. To
benefit from speed of the batch algorithm and accuracy of the incremental k u means
a number of contributions suggested to “merge” both algorithms as follows:

1. run batch k u means until it stops.
2. run one iteration of incremental k u means
3. if the iteration incremental k u means changed the partition

goto Step 1
else

Stop.

All numerical computations associated with Step 2 of the algorithm have been al-
ready performed in Step 1. The improvement over batch k u means comes, there-
fore, at virtually no additional computational expense [14]. The possibility of the
“merger” was first indicated, perhaps, in [6], and formally introduced in [6]. Later
the “merger” was independently rediscovered by many other authors2. Sequential
application

PDDP uxw batch k u means uxw incremental k u means

generates good tight clusters. Next we describe how these tight clusters can be used
for node clustering.

1.6.5 Node Clustering with Classical Clustering Algorithms

To simplify the exposition we first consider a two cluster y π1 z π2 { partition problem
for a given set of n vectors |~}/y a1 z�������z an {�� Rd . We are seeking a partition
Π }!y π1 z π2 { so that |�} π1 � π2 z π1 � π2 } /0

and the partition Π quality Q � Π � given by

Q � Π �O} max ������� ����� 1�
π1

� ∑
a � π1

a ����� ����� z ����� ����� 1�
π2

� ∑
a � π2

a ����� �����
�

2 confirming the old adage that “success has many parents while failure is an orphan.”
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is minimized. Due to convexity of any norm one has����� ����� 1� ��� ∑
a �F� a

����� �����7� ����� ����� � π1
�� �/� 1�

π1
� ∑

a � π1

a � �
π2

�� �/� 1�
π2

� ∑
a � π2

a

����� ������ �
π1

�� �/� ����� ����� 1�
π1

� ∑
a � π1

a

����� ����� � �
π2

�� �q� ����� ����� 1�
π2

� ∑
a � π2

a

����� ������ �
π1

�� �/� Q � Π �7� �
π2

�� �q� Q � Π � � Q � Π ���
This inequality shows that the norm of the mean is a lower bound for Q � Π � . We
next show how to build an optimal partition for a special particular case of the data
set.

Assume that n � 2m, and the vector set
�

consists of two identical copies of m
vectors, i.e. � �P� a1 � ����� � am � a1 � ����� � am � �
If πo

1 � πo
2 �P� a1 � ����� � am � , then

�
πo

1
� � �

πo
2
� � 1

2
� �q�

, and

max �� � 1�
πo

1
� ������ ������ ∑a � πo

1

a

������ ������ � 1�
πo

2
� ������ ������ ∑a � πo

2

a

������ ������B  ¡¢ � ����� ����� 1� �q� ∑
a � � a

����� ����� �
i.e., � πo

1 � πo
2 � is an optimal partition.

This observation motivates the following two cluster Π �£� π1 � π2 � partition strat-
egy:

1. Apply any clustering algorithm to the dataset
�

to generate clusters of size 2.
2. Select one vector from each cluster generated and assign selected vectors to clus-

ter π1.
3. Assign remaining vectors to cluster π2.

Generalization of this strategy to a k cluster partition and full description of the
algorithm is beyond the scope of this chapter and will be provided elsewhere.

1.7 Conclusions

In this chapter we consider application of clustering to monitoring data streams in a
distributed system. Unlike standard clustering algorithms that aiming at collections
of similar data items into same clusters, monitoring requires clusters with dissimilar
vectors canceling each other as much as possible. A straightforward application of
a standard clustering algorithm is, therefore, not possible.
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We devise a specific clustering strategy that yields a reduction in communi-
cation load. The proposed clustering depends on a scalar parameter α , and may
be too slow for applications involving systems with large number of nodes. De-
pendence of the number of broadcasts on α is not understood at this point and
should be further investigated. Figure 1.2 shows the number of broadcasts for 18
values α ¤ 0 ¥ 05 ¦ 0 ¥ 10 ¦�¥�¥�¥�¦ 0 ¥ 95. The smallest number of broadcasts corresponds
to α ¤ 0 ¥ 30 (as reported in Table 1.5). Next we run monitoring for 98 values of
α ¤ 0 ¥ 01 ¦ 0 ¥ 02 ¦�¥�¥�¥�¦ 0 ¥ 99 (see Figure 1.3). This time the smallest number of broad-
casts corresponds to α ¤ 0 ¥ 16. Zooming in does not indicate any particularly useful
property of the function.

Each recomputation of δ (the distance from the mean
1
n ∑

n § N
vn ¨ ti © and the zero set

Z f of the function f ) triggers recomputations of node constraints δ ¨ n © . This chapter
uses the first and second moments to recompute node constraints. We plan to con-
sider additional statistical metrics such as, for example, median for node constraints
computations.

A possible applications of classical clustering algorithms is an additional re-
search direction that may lead to scalable clustering procedures. While the experi-
mental results demonstrate than communication savings may depend on the choice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.4

2.45

2.5

2.55

2.6

2.65
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

Fig. 1.2 l∞ norm, α ª 0 « 05 ¬ 0 « 10 ¬B«4«B«¬ 0 « 95 vs. broadcasts, for feature “ipo”
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of a norm or a “distance” function many of the proposed clustering algorithms can
be applied with Bregman divergences [28].
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Appendix 1: First and Second Moments

In what follows we consider the auxiliary problem: ”Let X be a vector set of size m
with mean µµµ and variance γ ® 0. How far away from µµµ a vector x ¯ X can get?”
The answer to this question is provided below. To simplify the exposition we first
assume µµµ ° 0.

Let ±³² m ´ γ µ be a family of sets X °I¶ x1 ´�·�·�·�´ xm ¸º¹ Rd with µµµ ² X µx° 0, and σ 2 ² X µ»°
m

∑
i ¼ 1

² xi ½ µµµ ² X µ�µ T ² xi ½ µµµ ² X µ�µO° γ ¾ 0. In this section ¿�¿ x ¿�¿ stands for ¿À¿ x ¿�¿ 2. For each

X ¯Á±Â² m ´ γ µ define r ² X µ and R ² γ µ as follows:

r ² X µN° max
x Ã X Ä x Ä ´ R ² γ µN° sup

X ÃÆÅÈÇ m É γ Ê r ² X µ]·
In what follows we describe sets Xγ ¯Ë±Â² m ´ γ µ that maximize r, and the function
R ² γ µ .
Lemma 1.1. The function R ² γ µ is a homogeneous function of degree

1
2

. For each

positive scalar c one has R ² cγ µO° c
1
2 R ² γ µ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.38

2.4

2.42

2.44

2.46

2.48

2.5
x 105 α vs. broadcasts

α

br
oa

dc
as

ts
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Proof. Note that for a positive scalars t and s one has

tR Ð γ ÑOÒ tr Ó Xγ Ô Ò r Ó tXγ ÔÖÕ r × Xγt2 Ø Ò R Ð γt2 Ñ�Ù
and

sR Ð γt2 ÑNÒ sr Ð Xγt2 ÑNÒ r Ð sXγt2 Ñ Õ r Ð Xγt2s2 ÑOÒ R Ð γt2s2 Ñ�Ú
In particular when ts Ò 1 one has

R Ð γ Ñ Õ t Û 1R Ð γt2 Ñ]Ù and R Ð γt2 Ñ Õ s Û 1R Ð γ Ñ�Ú
This shows that for positive t one has tR Ð γ ÑÜÒ R Ð γt2 Ñ and completes the proof. ÝÞ
Lemma 1.2. Let u ß Xγ be such that à u àáÒ r Ð Xγ ÑOÒ R Ð γ Ñ . For each x ß Xγ there is
a scalar c such that x Ò cu.

Proof. We assume now that the claim is false. Without any loss of generality
we assume that à u àâÒ 1. Let ã x1 Ù�Ú�Ú�Ú�Ù xk ä be all nonzero vectors in Xγ so that

u Ð uT xi ÑæåÒ xi, i Ò 1 Ù�Ú�Ú�Ú�Ù k. The vectors xi ç u Ð uT xi ÑAåÒ 0,
k

∑
i è 1 é xi ç u Ð uT xi ÑëêìÒ 0,

and
m

∑
i è 1

u Ð uT xi ÑOÒ 0. Consider now the vector set X íîÒ!ã x í1 Ù�Ú�Ú�Ú�Ù x ím ä where

x íi Ò 1
2 ï xi ç u Ð uT xi Ñ�ð ñ u Ð uT xi Ñ]Ù i Ò 1 Ù�Ú�Ú�Ú�Ù k Ù and x íi Ò xi Ù i Ò k ñ 1 Ù�Ú�Ú�ÚòÙ m Ú

We note that µµµ Ð X í ÑNÒ 0, and σ 2 Ð X í ÑNÒ γ í7ó γ . Due to Lemma 1.1 one has

1 Ò r Ð X í Ñ Õ R Ð γ í Ñ ó R Ð γ ÑNÒ 1 Ú
This contradiction completes the proof.

Lemma 1.3. Let u ß Xγ be such that à u à6Ò r Ð Xγ ÑNÒ R Ð γ Ñ . For each x ß Xγ , x åÒ u
there is a scalar c Õ 0 such that x Ò cu.

Proof. First note that there is at least one x ß Xγ such that x Ò cu with c ó 0. We
denote this c by c Û . Assume that the statement of the lemma is false. Then there
is 0 ó c ô Õ 1 such that c ô u ß Xγ . Let ε õ 0 be so small that c ô ç ε õ 0, and
c Û ñ ε õ 0. Define X í by substituting the vectors c ô u and c Û u by Ð c ô ç ε Ñ u andÐ c Û ñ ε Ñ u correspondingly, and keeping the other m ç 2 vectors unchanged. We
note that µµµ Ð X í ÑOÒ 0, and σ 2 Ð X í ÑNÒ γ íöó γ . Due to Lemma 1.1 one hasà u àáÒ r Ð X í Ñ Õ R Ð γ í Ñ ó R Ð γ ÑNÒ£à u àîÚ
This contradiction completes the proof.

Lemma 1.4. Let u ß Xγ be such that à u à÷Ò r Ð Xγ ÑøÒ R Ð γ Ñ . If x ß Xγ and x åÒ u, then

x Ò ç 1
m ç 1

u.
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Proof. Assume the opposite, i.e., there are x1 ù c1u, and x2 ù c2u such that c1 ú
c2 û 0. Let X ü be a vector set obtained from Xγ by substituting c1u by ý c1 þ ε ÿ u,
c2u by ý c2 � ε ÿ u, and keeping the other vectors unchanged. Note that µµµ ý X ü ÿ ù 0,
and

σ2 ý Xγ ÿ þ σ2 ý X ü ÿ ù 2ε ý c2 þ c1 þ ε ÿ��
We note that for a small positive ε one has σ 2 ý Xγ ÿ�� σ2 ý X ü�ÿ . Due to Lemma 1.1
one has �

u
� ù r ý X ü ÿ û R ý γ ü ÿ ú R ý γ ÿ ù �

u
� �

This contradiction completes the proof.

The next statement summarizes the above results.

Theorem 1.1. If X ù�� x1 � �	�
� � xm �� Rd with µµµ ý X ÿ ù µµµ, and σ 2 ý X ÿ ù γ � 0, then�
xi þ µµµ

�
2 û m þ 1

m
γ �

Further,
�
xm þ µµµ

�
2 ù m þ 1

m
γ if and only if

x1 ù �	�
� ù xm � 1 ù µµµ þ 1
m þ 1

�
xm þ µµµ ���

We now establish connection between first and second moments for two sets of d
dimensional vectors X ù�� x1 � �	�
� � xm � and X ü ù�� x ü1 � �	�
� � x üm � x üm � 1 � where 2x üi ù xi,
i ù 1 � �	�
� � m.

µ ý X ü ÿ ù m
m � 1

�
1
2

µ ý X ÿ�� � 1
m � 1

x üm � 1

σ2 � X ü�� ù 1
4

σ2 ý X ÿ � m
m � 1

�
x üm � 1 þ 1

2
µ ý X ÿ � T �

x üm � 1 þ 1
2

µ ý X ÿ � �
Appendix 2: Broadcast Count

Transmission of a double precision real number is defined as a message in [25]. In
this chapter, in addition to real numbers typically representing vector coordinates,
integer values such as node ID and node “reporting order” should also be transmit-
ted. Transmission of node IDs is needed, for example, to allow the root to cluster
nodes. To minimize communication load nodes in smaller clusters report violations
of node constraints first, and the reporting order is assigned and communicated to
nodes by the root that knows all cluster sizes.

Since every vector v associated with a node belongs to a simplex, it is repre-
sented by a real number not exceeding 1. We may use the integer part of these real
numbers for transmission of integers. There is a variety of coding and compression
techniques that can be used to transmit a set of real numbers as a single real. The
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discussion of these methods is beyond the scope of this chapter. In order to be able
to compare different monitoring techniques we shall count a number of broadcasts,
where by a broadcast we mean a single communication between two nodes. As an
illustration, below we compute the number of broadcasts needed for one iteration of
Algorithm 1.3.1 triggered by violation of a node constraint (note that the commu-
nication scheme below is different from the one suggested in Algorithm 1.3.1). We
first assume that the violator node n is different from the root.

1. The violator node n notifies all other nodes (except the root) about the violation
(n � 2 broadcasts).

2. Each node n broadcasts its vector vn to the root (n � 1 broadcasts).
3. The root recomputes δ � r � and sends it to each node (n � 1 broadcasts).

This leads to 3 � n � 1 ��� 1 broadcasts. If the violator node n is the root itself, the
number of broadcasts becomes 3 � n � 1 � (at step 1 above the root has to make n � 1
broadcasts).

Next we turn to monitoring with clustering. The monitoring procedure starts with
each node n sending its initial vector vn � t0 � to the root r (that requires n � 1 broad-

casts). The root computes the mean
1
n ∑

n
vn � t0 � of the initial vectors, computes δ � r � ,

and broadcasts δ � r � to each node (n � 1 broadcasts). After exchanging

2 � n � 1 � (1.18)

broadcasts the monitoring proceeds with each node being a singleton cluster.

1. As long as the inequality�
vn � t � � vn � t0 � �"! δ � r � holds true for each node n

the nodes are silent. At the first time instance t when the inequality is violated
for at least one node n, the following actions are triggered:

a. the node n (if the node itself is not the root) broadcasts its ID and vector vn � t �
to the root (1 broadcast),

b. the root issues n � 2 requests for ID and vn � t � to the other nodes (n � 2 broad-
casts),

c. n � 2 nodes report their IDs and vn � t � vectors to the root (n � 2 � broadcasts),

This brings the number of broadcasts to 2n � 3. If the violating node is the root,
then this number is 2n � 2. To simplify the computations we select the largest
number 2n � 2.
At this step, and keeping in mind � 1 # 18 � , the total number of broadcasts needed
to be exchanged is

2 � n � 1 �%$ 2n � 2 & 4 � n � 1 �'# (1.19)

2. Next the root recomputes δ � r � , clusters nodes, and broadcasts to each node (n �
1 broadcasts) its updated local constraint δ � n � , the ID of its coordinator, and
the reporting order. If a node is also a coordinator, then IDs of its nodes, and
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coordinator reporting order are provided to the coordinator by the root. Keeping
in mind ( 1 ) 19 * , the total number of broadcasts right after the first root mean
update and first clustering is

5 ( n + 1 *') (1.20)

Clusters are now formed, and we shall count the number of broadcasts needed to be
exchanged for each of the three types of possible violations at time t assuming that
clusters are formed last time at time tk, k , 0 - 1 -	)
)	) .
1. A node constraint is violated in a singleton cluster.

a. the violating node n reports its ID, vn ( t * , Wn, and the history vector hn to the
root (1 broadcasts),

b. the root requests all other n + 2 nodes to provide their input (ID’s, vn ( t * vec-
tors, Wn weights, and history vectors h, total of n + 2 broadcasts),

c. the n + 2 nodes report ID’s, vn ( t * vectors, Wn weights, and history vectors h
to the root ( ( n + 2 * broadcasts),

d. the root recomputes the constraint δ ( r * , node constraints δ ( n * , and reports to
each node its coordinator ID, δ ( n * , and the node “reporting order.” Cluster
coordinators also receive IDs of the nodes in their respective clusters (n + 1
broadcasts).

This leads to 3 ( n + 1 *.+ 1 broadcasts if the violating node is not the root, and
3 ( n + 1 * broadcasts if the violation is at the root. To compute the broadcasts we
use the larger number

3 ( n + 1 *') (1.21)

2. A node constraint is violated in a non singleton cluster π with coordinator c.

a. the violator n reports its ID, ∆n , vn ( t */+ vn ( tk * , and δn to the coordinator c
(1 broadcast),

b. the coordinator c sends request for ∆n vectors and node constraints δn for all
nodes in its cluster π other then n and itself ( 0 π 01+ 2 broadcasts)

c. the nodes broadcast their vectors ∆ and constraints δ to the coordinator (total
of (	0 π 01+ 2 * broadcasts). The total comes to 2 0 π 02+ 3, and this number is 2 0 π 03+
2 when the violating node is the coordinator.

The total of broadcasts needed is:

2 0 π 01+ 2 ) (1.22)

3. A coordinator constraint is violated. First we assume the coordinator c is not the
root:

a. the coordinator c of cluster π broadcasts requests to all nodes (except itself
and the root) to provide the root with their IDs, vectors vn ( t * , weights W , and
history vectors h (n + 2 broadcasts).

b. n + 1 nodes (n + 2 nodes requested by the coordinator and the coordinator
itself) send the requested information to the root (n + 1 broadcasts).
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c. the root recomputes δ 4 r 5 , clusters nodes and provides each node with updated
local constraint δ 4 n 5 , the new cluster affiliation (i.e. ID of a new coordinator),
and the node “reporting order.” Coordinators are also provided with the IDs
of their nodes (total of n 6 1 broadcasts).

This brings the number of broadcasts to 3 4 n 6 1 5�6 1. If c is the root, then this
number is 3 4 n 6 1 5 , and this is the number we use to compute broadcasts

3 4 n 6 1 5'7 (1.23)
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5. Späth, H.: Cluster Analysis Algorithms for Data Reduction and Classification of Objects.

Ellis Horwood Ltd., (1980)
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