Image Enhancement
- Image Enhancement - Spatial Domain
 - Smoothing filter
 - Median filter
- Convolution
 - 1D Discrete
 - 1D Continuous
 - 2D Discrete
 - 2D Continuous
- Sharpening filter

Salt & Pepper Noise

Neighborhood Averaging

\[
g(x,y) = \frac{1}{M} \sum_{(n,m) \in S} f(n,m)
\]

\(S = \) neighborhood of pixel \((x,y)\)
\(M = \) number of pixels in neighborhood \(S\)

Neighborhoods:
- 3 x 3
- 5 x 5
Neighborhood Averaging - Example

3 x 3 Average 5 x 5 Average 7 x 7 Average Median

Convolution

\[(A \ast B)(x) = \sum A(i)B(x-i) \]

Example:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccc}
3 & 2 & 1 & 1 \\
2 & 3 & 4 & 5 \\
\end{array}
\]

What happens near the edges?

Option 1: Zero padding

Option 2: Wrap around

Option 3: Reflection
Why one image is reflected in the convolution:

With reflection:

\[\begin{array}{cccccc} 0 & 0 & 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{array} \]

Without reflection:

\[\begin{array}{cccccc} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{array} \]

Reflection is needed so that convolution is commutative:
\[A \ast B = B \ast A \]

Convolution - Continuous Case

\[(f \ast g)(x) = \int f(a)g(x-a) \, da \]

Convolution - 2 Dimensions

\[(A \ast B)(x,y) = \sum_{i} \sum_{j} A(i,j) B(x-i, y-j) \]

Convolution - 2D Continuous Case:
\[(f \ast g)(x,y) = \iint f(a,b) g(x-a, y-b) \, da \, db \]
Grayscale Convolution - Example

A \ast B

Convolution Properties

- Complexity:
 - Assume \(A \) is \(n \times n \) and \(B \) is \(k \times k \) then
 \(A \ast B \) takes \(O(nk^2) \) operations.
 - \(A \ast B = B \ast A \)
 - \((A \ast B) \ast C = A \ast (B \ast C) \)
 - If \(B \) and \(C \) are \(k \times k \) then
 \((A \ast B) \ast C \) takes \(O(2nk^2) \) operations.
 - However \(A \ast (B \ast C) \) takes \(O(k^4 + nk^2) \) operations, which is faster if \(k \ll n \).
- Separability
 - In some cases it is possible to decompose \(B \) \((k \times k) \) into \(B = C \ast D \) where \(C \) is \(1 \times k \) and \(D \) is \(k \times 1 \).
 - In such a case \(A \ast B \) takes \(O(nk^2) \) while \((A \ast C) \ast D \) takes \(O(2nk) \).

\[
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix} \ast
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix} =
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

Mask Constraints

- Image Average
 - In order to preserve the overall average of \(A \), the sum of \(B \)'s elements should equal 1

\[
\begin{bmatrix}
A & B
\end{bmatrix}
\]

If \(W_1 + W_2 + W_3 = 1 \) then \(Av(A) = Av(A \ast B) \)

\[
\delta(x,y) = \begin{cases}
1 & \text{if } x = x_0 \text{ and } y = y_0 \\
0 & \text{otherwise}
\end{cases}
\]

\[
A(x,y) \ast \delta(x-x_0, y-y_0) = A(x-x_0, y-y_0)
\]
Convolution Masks - Example: The Delta Kernel

\[A(x,y) \ast \delta(x-x_0, y-y_0) = A(x-x_0, y-y_0) \]

\[\delta(x-x_0, y-y_0) = \begin{cases} 1 & \text{if } x=x_0 \text{ and } y=y_0 \\ 0 & \text{otherwise} \end{cases} \]

\[A(x,y) = A(x,y) \]

Grayscale Smoothing

Grayscale averaging = convolution with:

\[
\begin{array}{cccccc}
1/25 & 1/25 & 1/25 & 1/25 & 1/25 \\
1/25 & 1/25 & 1/25 & 1/25 & 1/25 \\
1/25 & 1/25 & 1/25 & 1/25 & 1/25 \\
1/25 & 1/25 & 1/25 & 1/25 & 1/25 \\
1/25 & 1/25 & 1/25 & 1/25 & 1/25 \\
\end{array}
\]

\[
\begin{array}{cccc}
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
\end{array}
\]

"Soft" Averaging: Convolution with a Gaussian

Discrete case:

\[
\begin{array}{cccc}
1/8 & 2/8 & 1/8 \\
2/8 & 4/8 & 2/8 \\
1/8 & 2/8 & 1/8 \\
\end{array}
\]

A separable kernel

Normal vs Gaussian Grayscale Smoothing

Original

Noisy image

3 X 3 Average

3 X 3 Gaussian Average

5 X 5 Average

5 X 5 Gaussian Average

7 X 7 Average

7 X 7 Gaussian Average
Median Filtering

\[S = \text{neighborhood of pixel (x,y)} \]

New value at (x,y) = \text{median} \{ f(k(x,y)) \}
\((x, y) \in S \)

\[10, 10, 20, 20, 25, 25, 30, 30, 250 \]

\[\text{median} \]

Median + Average: average the k central values.

\[10, 10, 20, 20, 25, 25, 30, 30, 250 \]

\[24 \]

\[\text{median} \]

\[(x, y) \in S \]

Median vs Average Filtering

- 3 X 3 Average
- 5 X 5 Average
- 7 X 7 Average
- Median

Multiple Median Filtering

- Median x 2
- Median x 4
- Median x 6
- Median x 8
- Median x 7

- Salt & Pepper Noise
- Large Noise
<table>
<thead>
<tr>
<th>Original</th>
<th>Salt & Pepper Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Filter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original</th>
<th>Salt & Pepper Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Filter</td>
<td></td>
</tr>
<tr>
<td>Oriented Median Filter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salt & Pepper Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x4 Average</td>
</tr>
</tbody>
</table>
Oriented Filtering - Example

Directional Smoothing

Define oriented masks:

\[V_\theta \]

Choose neighborhood with smallest variance and replace pixel value with the average of that neighborhood.

Directional Smoothing - Example
Directional Smoothing - Example

Original + Noise 3x3 Average

Directional Smoothing (2x5, 5x2, diagonalx2)

Sharpening

- A sharpening filter is applied in order to enhance edges and fine details (high frequency) in an image:
 - Assume A^*G is a smoothing filtering.
 - $A^*(\delta - G)$ contains the fine details of the image.
 - $A^*(1+\lambda(\delta - G)) = A^*S(\lambda)$ amplifies fine details in the image.
 - The parameter λ controls the amount of amplification.

$$G = \begin{pmatrix}
0 & \frac{1}{\pi} & 0 \\
\frac{1}{\pi} & \frac{1}{\pi} & \frac{1}{\pi} \\
0 & \frac{1}{\pi} & 0
\end{pmatrix}$$

$$S(\lambda) = \begin{pmatrix}
0 & -\frac{1}{\pi} & 0 \\
-\frac{1}{\pi} & \frac{1}{\pi} & -\frac{1}{\pi} \\
0 & -\frac{1}{\pi} & 0
\end{pmatrix}$$

Ringing effect in edge enhancement

How can we enhance such an image?

Solution: Image Representation

\[
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
3 & 5 & 7 & 2 \\
0 & 3 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}
\]

\[
\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\]

Frequency Domain

Map of "Sizes and Orientations"

Evaluating an Image in terms of "Sizes":

- Large
- Small
- Thin & Horizontal
- Vertical