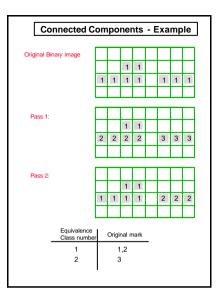


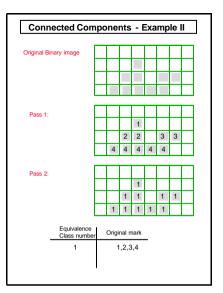
Marking the Connected Components

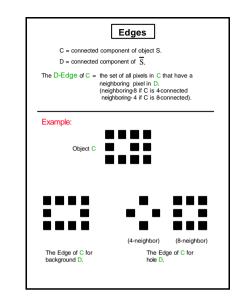
Connected Component Algorithm: Two passes over the image.

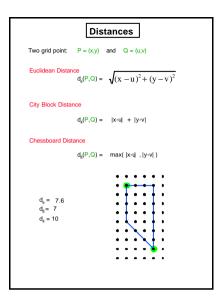
Pass 1:

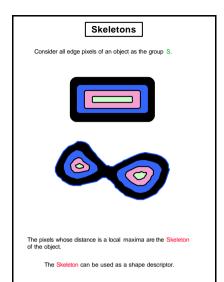
Scan the image pixels from left to right and from top to bottom. For every pixel P of value 1 (an object pixel), test top and left neighbors (4- neighbor metric).

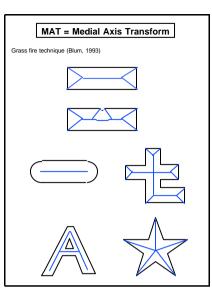

- If 2 of the neighbors are 0: assign a new mark to P.
- If 1 of the neighbors isn't 0: assign the neighbor's mark to P.
- . If 2 of the neighbors are not 0: assign the left neighbor's mark to P.

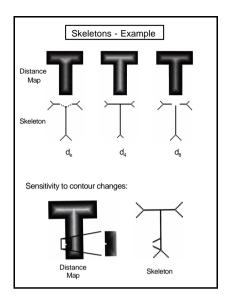

Pass 2:


Divide all marks to equivalence classes (marks of neighboring pixels are considered equivalent).


Replace each mark with the number of its equivalence class.







d _e d ₈ d₄ are all metrics :	
1. Distance metric:	$d(P,Q) \ge 0$
2. Positive:	d(P,Q) = 0 iff P=Q
3. Symmetric:	d(P,Q) = d(Q,P)
Triangular inequality:	$d(P,Q) \leq \ d(P,R) + d(R,Q)$
All pixels at equal d ₄ distan All pixels at equal d ₉ distan 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ce form a "diamond" : 2 2 2 2 2 1 1 2 1 0 2 2 2 2 2 2

2-Pass Distance Algorithm	
For each pixel calculate the $\operatorname{d_4}$ or $\operatorname{d_8}$ distance from a pixel in set S.	
2 passes: Pass 1: scan image left-to-right and top-to-bottom Pass 2: scan image right-to-left and bottom-to-top.	
For each pixel P mark as follows:	
Pass 1: consider all neighbors of P that have been scanned $N_{I} = \square$	
$d'(P,S) = \begin{cases} 0 & \text{if } P \in S \\ \min \{d'(Q,S)\}+1 & \text{if } P \notin S \\ Q \in N_1 \end{cases}$	
Pass 2: consider all neighbors of P that have been scanned $N_2 = \square$	
$\begin{array}{l} d''(P,S) = \min \left\{ d'(P,S) \ , \ d'(Q,S){+}1 \right\} \\ Q \in N_2 \end{array}$	
Example measuring d ₄ :	
1000 0123 0121	
0 0 0 1 1 2 3 0 1 2 1 0	
0 0 0 0 2 3 4 1 2 3 2 1	
S is marked as 1 Pass 1: d(P,S) Pass 2: d'(P,S)	

