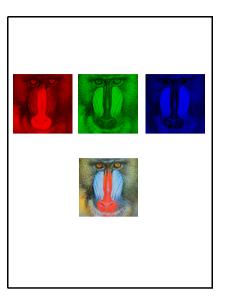
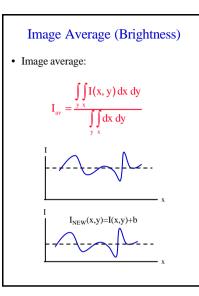

What is an Image?

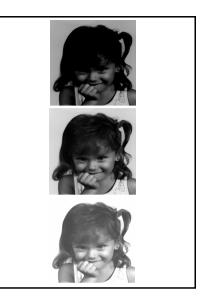

• An image is a projection of a 3D scene into a 2D *projection plane*.

• An image can be defined as a 2 variable function I(x,y), where for each position (x,y) in the projection plane, I(x,y) defines the light intensity at this point.

Image Values

• Image Intensity -


- Light energy emitted from a unit area in the image.
- Device dependence.


• Image Brightness -

- The subjective appearance of a unit area in the image.
- Context dependence.
- Subjective.

• Image Gray-Level -

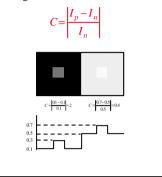
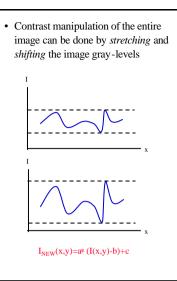
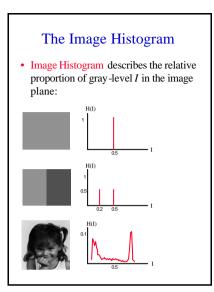

- The relative intensity at each unit area.
- Between the lowest intensity (Black value) and the highest intensity (White value).
- Typical: In the range of [0,1] or [0,255]

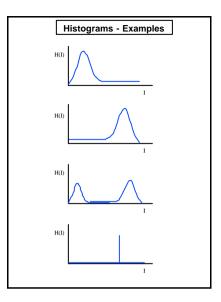
Image Contrast

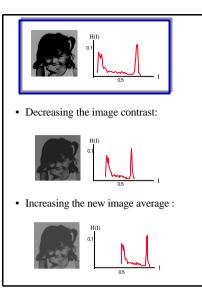
• The contrast at an image point denotes the (relative) difference between the intensity of the point and the intensity of its neighborhood:

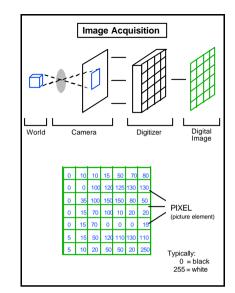
- The contrast definition of the entire image is ambiguous.
- In general it is said that the image contrast is high if the image gray-levels fill the entire range.

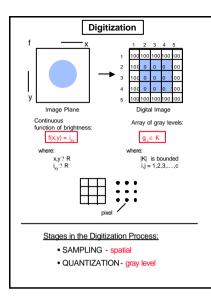


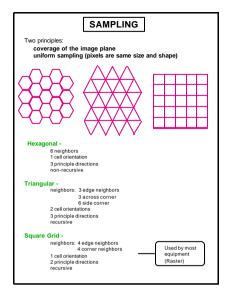


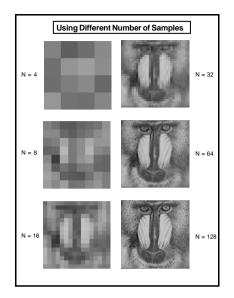


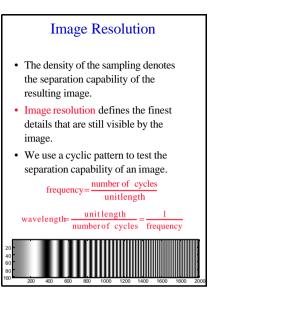

Low contrast

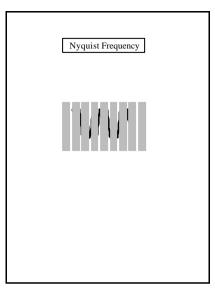

High contrast

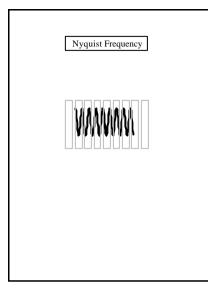




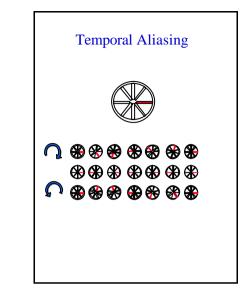


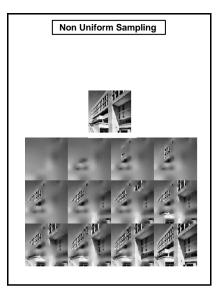


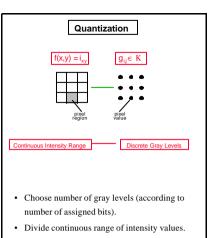


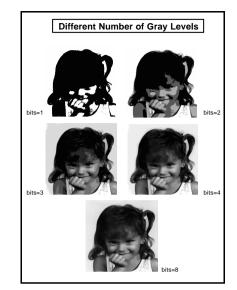


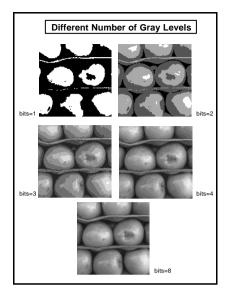
				(Gra	iys	ca	le	Im	ag	e					
			136						IC							
	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	
y = 41 42 43 44 45 46 47 48 49 50 52 52 53 55 55	206 201 216 221 209 204 214 209 208 207 208 207 208 204 200	196 207 206 206 214 212 205 209 210 205 209 210 205 206 203	203 192 211 224 213 215 214 205 211 209 203 199	197 201 193 194 199 208 207 205 203 199 209 209 209 209 236	217 197 195 188	210 213 207 197 193 190 180 196 186 194 194 203 197	207 156 208 220 204 191 172 187 174 183 183 183 188 183	56 69 57 56 173 214 188 196 185 177 187 185 190	64 63 65 69 63 64 60 86 149 209 187 183 183 173	239 221 196	75 122	63	54 53 49 97 55 55 52 61 58 58 57 57	62 58 56 49 52 60 45 93 51 60 64	58 50 61 106 48 55 56 48 55 56 60 66 63	

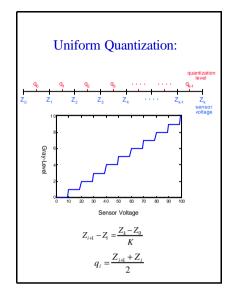


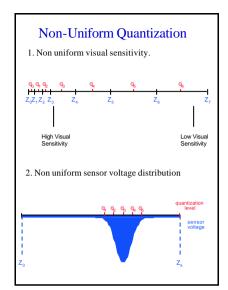


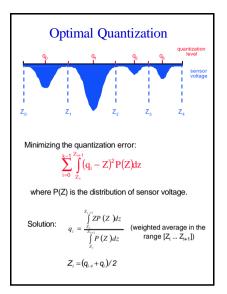


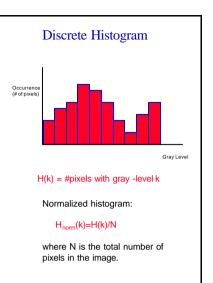


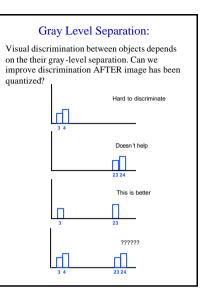

Sampling Density • Nyquist Rule: Given a sampling at intervals equal to d then one may recover cyclic patterns of wavelength > 2d. (Shannon-Whittaker-Kotelnikov theorem). • Aliasing: If the pattern wavelength isless than 2d erroneous patterns may be produced. 1D Example: $\sqrt{2\pi}$ <



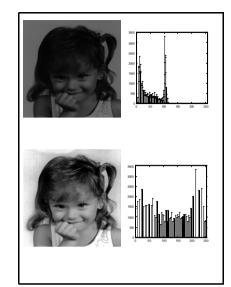


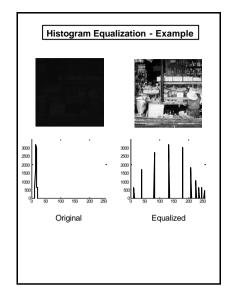


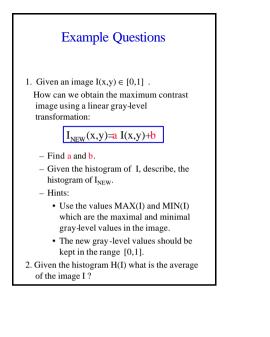




Histogram Equalization


- For a better visual discrimination we would like to re-assign gray-levels with maximal uniformity.
- Define a gray-level transformation


 $\hat{g} = T(g)$


such that:

- The histogram according to $\widehat{\mathbf{g}}\;$ is as flat as possible.
- The order of Gray-levels is maintained.
- The histogram bars are not fragmented.
- For example:

$$T(g) = \frac{H(0) + H(1) + \dots + H(g)}{N} \cdot 255$$

 In the following cyclic pattern the frequency in the X direction is 20 cycles/length.
– What is the wavelength of this pattern in the X direction?
– What is the frequency and wavelength of this pattern in the Y direction?
 What is the frequency and wavelength (for X and Y) of this pattern after rotating it by 30 degrees clockwise?