Image Enhancement - Frequency Domain

- Low Pass Filter
- High Pass Filter
- Band pass Filter
- Blurring
- Sharpening

Convolution Theorem

Frequency Bands

Image

Fourier Spectrum

Percentage of image power enclosed in circles (small to large) :

90, 95, 98, 99, 99.5, 99.9

Blurring - Ideal Low pass Filter

(d)

The Ringing Problem

 $G(u,v) = F(u,v) \bullet H(u,v)$ Convolution Theorm g(x,y) = f(x,y) * h(x,y)

H(u,v) - Butterworth Filter

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

$$\mathsf{D}(\mathsf{u},\mathsf{v}) = \sqrt{\mathsf{u}_2 + \mathsf{v}_2}$$

Softer Blurring + no Ringing

Blurring - Butterworth Lowpass Filter

(d)

Low Pass Filtering - Image Smoothing

Original - 4 level Quantized Image

Smoothed Image

Original Noisy Image

Smoothed Image

Blurring in the Spatial Domain:

Averaging = convolution with

= point multiplication of the transform with sinc

 $\frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Gaussian Averaging = convolution with
$$\begin{array}{c|c} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array}$$

= point multiplication of the transform with a gaussian.

Image Sharpening - High Pass Filter

H(u,v) - Ideal Filter

$$H(u,v) = \begin{cases} 0 & D(u,v) \le D_0 \\ 1 & D(u,v) > D_0 \end{cases}$$

$$D(u,v) = \sqrt{u^2 + v^2}$$
$$D_0 = \text{cut-off frequency}$$

H(u,v) - Butterworth Filter

$$H(u,v) = \frac{1}{1 + (D_0/D(u,v))^{2n}}$$

$$\mathsf{D}(\mathsf{u},\mathsf{v}) = \sqrt{\mathsf{u}_2 + \mathsf{v}_2}$$

High Pass Filtering

Original

High Pass Filtered

High Frequency Emphasis

Emphasize High Frequency. Maintain Low frequencies and Mean.

$$\mathsf{H}'(\mathsf{u},\mathsf{v})=\mathsf{K}_0+\mathsf{H}(\mathsf{u},\mathsf{v})$$

(Typically $K_0 = 1$)

High Frequency Emphasis - Example

Original

High Frequency Emphasis

Original

High Frequency Emphasis

High Pass Filtering - Examples

Original

High pass Butterworth Filter

High Frequency Emphasis

High Frequency Emphasis + Histogram Equalization

Band Pass Filtering

$$H(u,v) = \begin{cases} 0 & D(u,v) \le D_0 - \frac{w}{2} \\ 1 & D_0 - \frac{w}{2} \le D(u,v) \le D_0 + \frac{w}{2} \\ 0 & D(u,v) > D_0 + \frac{w}{2} \end{cases}$$
$$D(u,v) = \sqrt{u^2 + v^2}$$
$$D_0 = \text{cut-off frequency}$$
$$w = \text{band width}$$

Local Frequency Filtering

$$H(u,v) = \begin{cases} 1 & D_1(u,v) \le D_0 \text{ or } D_2(u,v) \le D_0 \\ 0 & \text{otherwise} \end{cases}$$

$$D_{1}(u,v) = \sqrt{(u-u_{0})^{2} + (v-v_{0})^{2}}$$
$$D_{2}(u,v) = \sqrt{(u+u_{0})^{2} + (v+v_{0})^{2}}$$

 $D_0 = \text{local frequency radius}$ $u_0, v_0 = \text{local frequency coordinates}$

$$D_{1}(u,v) = \sqrt{(u-u_{0})^{2} + (v-v_{0})^{2}}$$
$$D_{2}(u,v) = \sqrt{(u+u_{0})^{2} + (v+v_{0})^{2}}$$

 $D_0 = \text{local frequency radius}$ $u_0, v_0 = \text{local frequency coordinates}$

Band Reject Filter - Example

Fourier Spectrum

Band Reject Filter

Local Reject Filter - Example

Original Noisy image

Fourier Spectrum

Local Reject Filter

Image Enhancement

Homomorphic Filtering

Reflectance Model:

Illumination	i(x,y)
Surface Reflectance	r(x,y)
Brightness	$f(x,y) = i(x,y) \bullet r(x,y)$

Assumptions:

Illumination changes "slowly" across scene \implies Illumination \approx low frequencies.

Surface reflections change "sharply" across scene \implies reflectance \approx high frequencies.

Reflectance

Brightness

Goal: repress the low frequencies associated with I(x,y). However:

 $\mathbf{f}(\mathbf{i}(\mathbf{x},\mathbf{y}) \bullet \mathbf{r}(\mathbf{x},\mathbf{y})) \neq \mathbf{f}(\mathbf{i}(\mathbf{x},\mathbf{y})) \bullet \mathbf{f}(\mathbf{r}(\mathbf{x},\mathbf{y}))$

Perform:

$$\begin{aligned} z(x,y) &= & \text{log}(f(x,y)) \\ &= & \text{log}(i(x,y) \bullet (r(x,y)) = & \text{log}(i(x,y)) + & \text{log}(r(x,y)) \end{aligned}$$

Homomorphic Filtering:

Homomorphic Filtering

Original

Filtered

Computerized Tomography

Reconstruction from projections

Interpolations Method:

Interpolate (linear, quadratic etc) in the frequency space to obtain all values in F(u,v). Perform **Inverse Fourier Transform** to obtain the image f(x,y).

Reconstruction from Projections - Example

Back Projection Reconstruction

g(x) is Back Projected along the line of projection. The value of g(x) is added to the existing values at each point which were obtained from other back projections.

Note: a blurred version of the original is obtained. (for example consider a single point object is back projected into a blurred delta).

Back Projection Reconstruction - Example

Filtered Back Projection - Example

180 views