
Image Processing - Lesson 4

• Linear Systems

• Definitions & Properties

• Shift Invariant Linear Systems

• Linear Systems and Convolutions

• Linear Systems and sinusoids

• Complex Numbers and Complex Exponentials

• Linear Systems - Frequency Response

Introduction to Fourier 
Transform - Linear Systems



Linear Systems

• A linear system T gets an input f(t)
and produces an output g(t): 

• In the discrete caes:
– input :  f[n] ,    n = 0,1,2,…
– output: g[n] ,    n = 0,1,2,…

Tf(t) g(t)
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Linear System Properties

• A linear system must satisfy two conditions:

– Homogeneity:  

– Additivity:
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Linear System - Example

• Contrast change by grayscale stretching 
around 0:

– Homogeneity:  

– Additivity:

T{bf(x)} = abf(x) = baf(x) = bT{f(x)}

T{f(x)} = af(x)

T{f1(x)+f2(x)} = a(f1(x)+f2(x)) 
= af1(x)+af2(x)
= T{f1(x)}+ T{f2(x)}



Linear System - Example

• Convolution:

– Homogeneity:  

– Additivity:

T{bf(x)} = (bf)*a = b(f*a) = bT{f(x)}

T{f(x)} = f*a

T{f1(x)+f2(x)} = (f1+f2)*a 
= f1*a+f2*a
= T{f1(x)}+ T{f2(x)}



Shift-Invariant Linear 
System

• Assume T is a linear system satisfying

• T is a shift-invariant linear system iff:
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Shift-Invariant Linear 
System - Example

• Contrast change by grayscale 
stretching around 0:

– Shift Invariant:

• Convolution:

– Shift Invariant:

T{f(x-x0)} = af(x-x0) =g(x-x0)

T{f(x)} = af(x) = g(x)

T{f(x-x0)} = f(x-x0)*a 

T{f(x)} = f(x)*a =g(x)
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Matrix Multiplication as a 
Linear System

• Assume f is an input vector and T is a 
matrix multiplying f:

• g is an output vector. 
• Claim: A matrix multiplication is a 

linear system:

– Homogeneity
– Additivity

• Note that a matrix multiplication is 
not necessarily shift-invariant.
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Impulse Sequence

• An impulse signal is defined as 
follows:

• Any signal can be represented as a 
linear sum of scales and shifted 
impulses:
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Shift-Invariant Linear 
System is a Convolution

Proof: 
– f[n] input sequence
– g[n] output sequence
– h[n] the system impulse response: 

h[n]=T{δ[n]}
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The output is a sum of scaled and shifted 
copies of impulse responses.



Convolution as a Matrix 
Multiplication

• The convolution (wrap around):

can be represented as a matrix multiplication:

– The matrix rows are flipped and shifted 
copies of the impulse response.

– The matrix columns are shifted copies 
of the impulse response.
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Convolution Properties

• Commutative:

– Only shift-invariant systems are commutative.
– Only circulant matrices are commutative.

• Associative:

– Any linear system is associative.

• Distributive:

– Any linear system is distributive.

fTTfTT ∗∗=∗∗ 1221

( ) ( )fTTfTT ∗∗=∗∗ 2121

( )
( ) 2121

2121

fTfTffTand
fTfTfTT
∗+∗=+∗

∗+∗=∗+



Complex Numbers 

The Complex Plane

Real

Imaginary

(a,b)

a

b

• Two kind of representations for a point 
(a,b) in the complex plane

– The Cartesian representation:
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– The Polar representation:
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• Conversions:

– Polar  to Cartesian:

– Cartesian to Polar
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• Conjugate of  Z  is  Z*:

– Cartesian rep.

– Polar rep.
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Algebraic operations:

• addition/subtraction: 

• multiplication:

• Norm:      
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• The (Co-)Sinusoid as complex exponential:
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– The wavelength of                     is       .

– The frequency is     .
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The (Co-) Sinusoid- function
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– Changing Amplitude:

– Changing Phase:

x
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Scaling and shifting can be represented as a 
multiplication with ϕiAe



Frequency Analysis
• If a function f(x) can be expressed as a 

linear sum of scaled and shifted sinusoids:

it is possible to predict the system 
response to f(x):

• The Fourier Transform:
It is possible to express any signal as a 
sum of shifted and scaled sinusoids at 
different frequencies.
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3 sin(x) 

+ 1 sin(3x) 

+ 0.8 sin(5x) 

+ 0.4 sin(7x) 

= 

Every function equals a sum of scaled and shifted Sines
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Linear System Logic

Input Signal

Express as 
sum of scaled 

and shifted 
impulses

Express as 
sum of scaled 

and shifted 
sinusoids

Calculate the 
response to 

each impulse

Calculate the 
response to 

each sinusoid

Sum the 
impulse 

responses to 
determine the 

output

Sum the 
sinusoidal 

responses to 
determine the 

output

Frequency 
Method

space/time 
Method
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