Image Processing - Lesson 4

Introduction to Fourier Transform - Linear Systems

- Linear Systems
- Definitions \& Properties
- Shift Invariant Linear Systems
- Linear Systems and Convolutions
- Linear Systems and sinusoids
- Complex Numbers and Complex Exponentials
- Linear Systems - Frequency Response

Linear Systems

- A linear system T gets an input $\mathrm{f}(\mathrm{t})$ and produces an output $\mathrm{g}(\mathrm{t})$:

- In the discrete caes:
- input: f[n], $n=0,1,2, \ldots$
- output: $\mathrm{g}[\mathrm{n}], \quad \mathrm{n}=0,1,2, \ldots$

$$
\mathrm{g}[n]=T[\mathrm{f}(n)]
$$

Linear System Properties

- A linear system must satisfy two conditions:
- Homogeneity: $\quad T\{a f[n]\}=a T\{f[n]\}$
- Additivity: $\quad T\left\{f_{1}[n]+f_{2}[n]\right\}=T\left\{f_{1}[n]\right\}+T\left\{f_{2}[n]\right\}$

Homogeneity

Linear System - Example

Contrast change by grayscale stretching around 0 :

$$
\mathrm{T}\{\mathrm{f}(\mathrm{x})\}=\mathrm{af}(\mathrm{x})
$$

- Homogeneity:

$$
\mathrm{T}\{\operatorname{bf}(\mathrm{x})\}=\operatorname{abf}(\mathrm{x})=\operatorname{baf}(\mathrm{x})=\mathrm{bT}\{\mathrm{f}(\mathrm{x})\}
$$

- Additivity:

$$
\begin{aligned}
\mathrm{T}\left\{\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})\right\} & =\mathrm{a}\left(\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})\right) \\
& =\mathrm{af}_{1}(\mathrm{x})+\mathrm{af}_{2}(\mathrm{x}) \\
& =\mathrm{T}\left\{\mathrm{f}_{1}(\mathrm{x})\right\}+\mathrm{T}\left\{\mathrm{f}_{2}(\mathrm{x})\right\}
\end{aligned}
$$

Linear System - Example

- Convolution:

$$
\mathrm{T}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f} * \mathrm{a}
$$

- Homogeneity:

$$
\mathrm{T}\{\mathrm{bf}(\mathrm{x})\}=(\mathrm{bf}) * \mathrm{a}=\mathrm{b}(\mathrm{f} * \mathrm{a})=\mathrm{bT}\{\mathrm{f}(\mathrm{x})\}
$$

- Additivity:

$$
\begin{aligned}
\mathrm{T}\left\{\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})\right\} & =\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right) * \mathrm{a} \\
& =\mathrm{f}_{1} * \mathrm{a}+\mathrm{f}_{2} * \mathrm{a} \\
& =\mathrm{T}\left\{\mathrm{f}_{1}(\mathrm{x})\right\}+\mathrm{T}\left\{\mathrm{f}_{2}(\mathrm{x})\right\}
\end{aligned}
$$

Shift-Invariant Linear System

- Assume T is a linear system satisfying

$$
g(t)=T\{f(t)\}
$$

- T is a shift-invariant linear system iff:

$$
g\left(t-t_{0}\right)=T\left\{f\left(t-t_{0}\right)\right\}
$$

Shift Invariant

Shift-Invariant Linear System - Example

- Contrast change by grayscale stretching around 0 :

$$
\mathrm{T}\{\mathrm{f}(\mathrm{x})\}=\mathrm{af}(\mathrm{x})=\mathrm{g}(\mathrm{x})
$$

- Shift Invariant:

$$
\mathrm{T}\left\{\mathrm{f}\left(\mathrm{x}-\mathrm{x}_{0}\right)\right\}=\mathrm{af}\left(\mathrm{x}-\mathrm{x}_{0}\right)=\mathrm{g}\left(\mathrm{x}-\mathrm{x}_{0}\right)
$$

- Convolution:

$$
\mathrm{T}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{x}) * \mathrm{a}=\mathrm{g}(\mathrm{x})
$$

- Shift Invariant:

$$
\begin{gathered}
T\left\{f\left(x-x_{0}\right)\right\}=f\left(x-x_{0}\right)^{*} a \\
=\sum_{i} f\left(i-x_{0}\right) a(x-i)=\sum_{j} f(j) a\left(x-j-x_{0}\right) \\
=g\left(x-x_{0}\right)
\end{gathered}
$$

Matrix Multiplication as a

 Linear System- Assume f is an input vector and T is a matrix multiplying f :

$$
\mathrm{g}=\mathrm{Tf}
$$

- g is an output vector.
- Claim: A matrix multiplication is a linear system:

> - Homogeneity $\quad \mathrm{T}(\mathrm{af})=\mathrm{aTf}$
> - Additivity $\quad \mathrm{T}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)=\mathrm{Tf}_{1}+\mathrm{Tf}_{2}$

- Note that a matrix multiplication is not necessarily shift-invariant.

Impulse Sequence

- An impulse signal is defined as follows:

$$
\mathrm{d}[\mathrm{n}-\mathrm{k}]=\left\{\begin{array}{lll}
0 & \text { where } & \mathrm{n} \neq \mathrm{k} \\
1 & \text { where } & \mathrm{n}=\mathrm{k}
\end{array}\right.
$$

- Any signal can be represented as a linear sum of scales and shifted impulses:

$$
f[n]=\sum_{j=-\infty}^{\infty} f[j] \delta[n-j]
$$

Shift-Invariant Linear System is a Convolution

Proof:

- f[n] input sequence
- $g[n]$ output sequence
- $\mathrm{h}[\mathrm{n}]$ the system impulse response:

$$
\mathrm{h}[\mathrm{n}]=\mathrm{T}\{\delta[\mathrm{n}]\}
$$

$g[n]=T\{f[n]\}=T\left\{\sum_{j=\infty}^{\infty} f[j] \delta[n-j]\right\}$
$=\sum_{j=-\infty}^{\infty} f[j] T\{\delta[n-j]\}$ (from linearity)
$=\sum_{j=-\infty}^{\infty} f[j] h[n-j] \quad$ (from shift-inariancce)
$=f * h$

The output is a sum of scaled and shifted copies of impulse responses.

Convolution as a Matrix Multiplication

- The convolution (wrap around):

$$
\left[\begin{array}{llllll}
1 & 2 & 0 & 0 & -1 & -2
\end{array}\right] \times\left[\begin{array}{lllllll}
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
6 & 5 & 2 & -3 & -8 & -2
\end{array}\right]
$$

can be represented as a matrix multiplication:

Circulant Matrix

$$
\left[\begin{array}{llllll}
2 & 3 & 0 & 0 & 0 & 1 \\
1 & 2 & 3 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 \\
3 & 0 & 0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
0 \\
0 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
6 \\
5 \\
2 \\
-3 \\
-8 \\
-2
\end{array}\right]
$$

- The matrix rows are flipped and shifted copies of the impulse response.
- The matrix columns are shifted copies of the impulse response.

Convolution Properties

- Commutative:

$$
T_{1} * T_{2} * f=T_{2} * T_{1} * f
$$

- Only shift-invariant systems are commutative.
- Only circulant matrices are commutative.
- Associative:

$$
\left(T_{1} * T_{2}\right) * f=T_{1} *\left(T_{2} * f\right)
$$

- Any linear system is associative.
- Distributive:

$$
\begin{gathered}
\left(T_{1}+T_{2}\right) * f=T_{1} * f+T_{2} * f \\
\text { and } T *\left(f_{1}+f_{2}\right)=T * f_{1}+T * f_{2}
\end{gathered}
$$

- Any linear system is distributive.

Complex Numbers

Imaginary

The Complex Plane

- Two kind of representations for a point (a, b) in the complex plane
- The Cartesian representation:

$$
Z=a+b i \quad \text { where } \quad i^{2}=-1
$$

- The Polar representation:

$$
Z=\operatorname{Re}^{i \theta \quad \text { (Complex exponential) }}
$$

- Conversions:

- Polar to Cartesian: $\mathrm{Re}^{i \theta}=R \cos (\theta)+i R \sin (\theta)$
- Cartesian to Polar $a+b i=\sqrt{a^{2}+b^{2}} e^{i \tan ^{-1}(b / a)}$
- Conjugate of Z is Z^{*} :
- Cartesian rep. $(a+i b)^{*}=a-i b$
- Polar rep. $\quad\left(\operatorname{Re}^{i \theta}\right)^{*}=\operatorname{Re}^{-i \theta}$

Algebraic operations:

- addition/subtraction:

$$
(a+i b)+(c+i d)=(a+c)+i(b+d)
$$

- multiplication:

$$
\begin{aligned}
& (a+i b)(c+i d)=(a c-b d)+i(b c+a d) \\
& A e^{i a} B e^{i B}=A B e^{i(a+B)}
\end{aligned}
$$

- Norm:

$$
\begin{gathered}
\|\mathrm{a}+\mathrm{ib}\|^{2}=(\mathrm{a}+\mathrm{ib})^{*}(\mathrm{a}+\mathrm{ib})=\mathrm{a}^{2}+\mathrm{b}^{2} \\
\left\|\operatorname{Re}^{i \theta}\right\|^{2}=\left(\operatorname{Re}^{i \theta}\right)^{*} \operatorname{Re}^{i \theta}=\operatorname{Re}^{-i \theta} \operatorname{Re}^{i \theta}=R^{2}
\end{gathered}
$$

The (Co-) Sinusoid

- The (Co-)Sinusoid as complex exponential:

$$
\begin{aligned}
& \cos (x)=\frac{e^{i x}+e^{-i x}}{2} \\
& \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
\end{aligned}
$$

Or
$\cos (x)=\operatorname{Real}\left(e^{i x}\right)$
$\sin (x)=\operatorname{Imag}\left(e^{i x}\right)$

The (Co-) Siriusoid- function

 $\sin (2 \pi \omega x)$

- The wavelength of $\sin (2 \pi \omega x)$ is $\frac{1}{\omega}$.
- The frequency is ω.
- Changing Amplitude: $A \sin (2 \pi \omega x)$

- Changing Phase:

$$
A \sin (2 \pi \omega x+\varphi)
$$

Scaling and shifting can be represented as a multiplication with $A e^{i \varphi}$
$A \sin (2 \pi \omega x+\varphi)=\operatorname{Imag}\left(A e^{i \varphi} e^{i 2 \pi \omega x}\right)$

Frequency Analysis

- If a function $f(x)$ can be expressed as a linear sum of scaled and shifted sinusoids:

$$
f(x)=\sum F(\omega) e^{i 2 \pi \omega x}
$$

ω
it is possible to predict the system response to $f(x)$:

$$
g(x)=T\{f(x)\}=\sum_{\omega} H(\omega) F(\omega) e^{i 2 \pi \omega x}
$$

The Fourier Transform:
It is possible to express any signal as a sum of shifted and scaled sinusoids at different frequencies.

$$
f(x)=\sum F(\omega) e^{i 2 \pi \omega x}
$$

Or

$$
f(x)=\int_{\omega} F(\omega) e^{i 2 \pi \omega x} d \omega
$$

Every function equals a sum of scaled and shifted Sines

$3 \sin (x)$

$+1 \sin (3 x)$

$+$
$0.8 \sin (5 x)$

$$
\cdots m m
$$

$+$
$0.4 \sin (7 x)$ MON

Linear System Logic

space/time Method

Frequency Method

Express as

sum of scaled and shifted sinusoids

Calculate the response to each sinusoid

Express as
sum of scaled
and shifted
sinusoids

1
Calculate the
response to
each sinusoid

Sum the sinusoidal responses to determine the output

Input Signal

Express as sum of scaled and shifted impulses

Calculate the response to each impulse

Sum the impulse responses to determine the output

$$
G(\omega)=F(\omega) H(\omega) \quad g(x)=f(x) * h(x)
$$

