<u> Image Processing - Lesson 3</u>

Image Enhancement

- Image Enhancement Spatial Domain
 - Smoothing filter
 - Median filter
- Convolution
 - 1D Discrete
 - 1D Continuous
 - 2D Discrete
 - 2D Continuous
- Sharpening filter

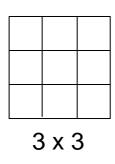
Salt & Pepper Noise

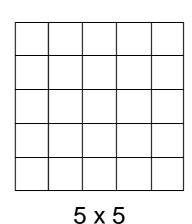
Neighborhood Averaging

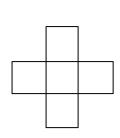
S = neighborhood of pixel (x,y)
M = number of pixels in neighborhood S

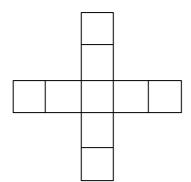
$$g(x,y) = (1/M) \sum_{(n,m) \in S} f(n,m)$$

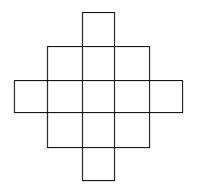
Neighborhoods:





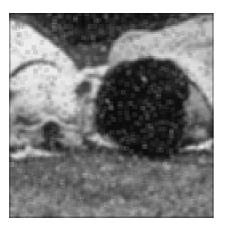




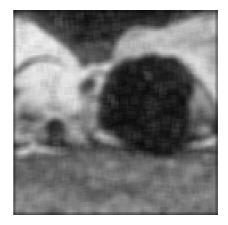


Neighborhood Averaging - Example

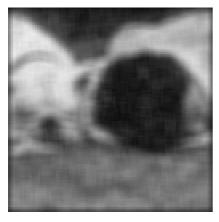
Salt & Pepper Noise



3 X 3 Average



5 X 5 Average



7 X 7 Average

Median

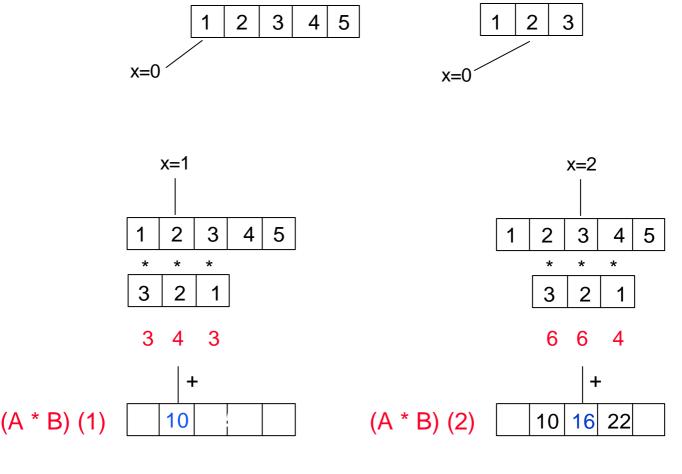
Convolution

A, B = images
B is typically smaller than A and is called the mask.

1 dimensional:

Example:

$$(A * B) (x) = \sum_{i} A(i)B(x-i)$$



What happens near the edges?

Convolution with 1 2 3

• Option 1: Zero padding

• Option 2: Wrap around

• Option 3: Reflection

Why one image is reflected in the convolution:

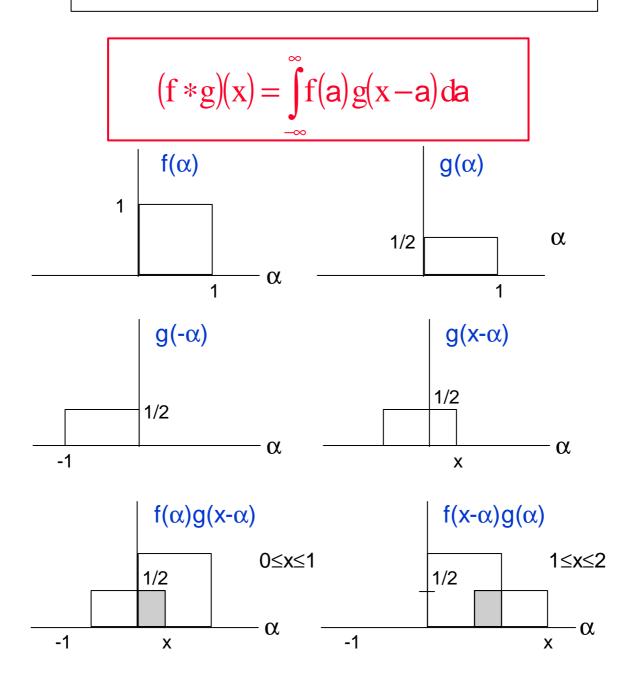
With reflection:

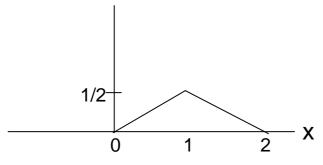
Without reflection:

Reflection is needed so that convolution is commutative:

$$A * B = B * A$$

Convolution - Continuous Case





Convolution - 2 Dimensions

$$(A * B) (x,y) = \sum_{i} \sum_{j} A(i,j) B(x-i,y-j)$$

10	5	20	20	20
10	5	20	20	20
10	5	20	20	20
10	5	20	20	20
10	5	20	20	20

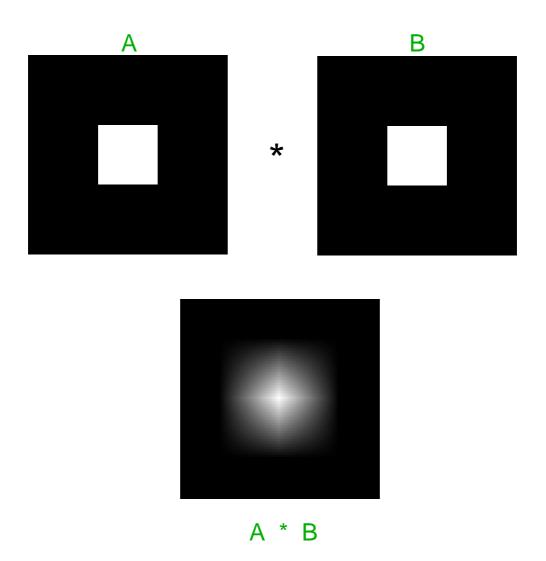
-10	5	-15	0	0
-10	15	-10	20	20
-10	15	-10	20	20
-10	15	-10	20	20
-10	15	-10	20	20

(zero padding)

Convolution - 2D Continuous Case:

$$(f * g)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,\beta) g(x-a,y-\beta) da d\beta$$

Grayscale Convolution - Example

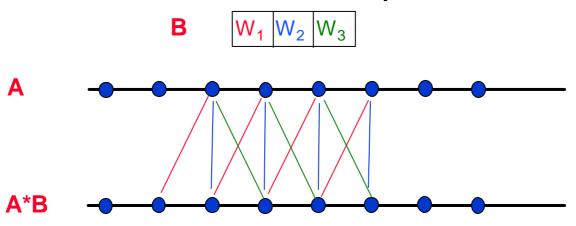


Convolution Properties

- Complexity:
 - Assume A is n x n and B is k x k then
 A*B takes O(n²k²) operations.
- A*B = B*A
- (A*B)*C = A*(B*C)
 - If B and C are k x k then
 (A*B)*C takes O(2n²k²) operations.
 However A*(B*C) takes O(k⁴+n²k²) operations, which is faster if k<<n .
- Separability
 - In some cases it is possible to decompose B (k x k) into B=C*D where C is 1 x k and D is k x 1.
 In such a case A*B takes O(n²k²) while (A*C)*D takes O(2n²k).

Mask Constraints

- Image Average
 - In order to preserve the overall average of A, the sum of B's elements should equal 1



If
$$W_1+W_2+W_3=1$$
 then $Av(A)=Av(A*B)$

$$d(x-x_0,y-y_0) = \begin{cases} 1 & if \ x=x_0 \ and \ y=y_0 \\ 0 & otherwise \end{cases}$$

d(x, y)

$$A(x,y)*\delta(x-x_0,y-y_0) = A(x-x_0,y-y_0)$$

Convolution Masks - Example: The Delta Kernel

$$A(x,y)^*\delta(x-x_0,y-y_0) = A(x-x_0,y-y_0)$$

$$d(x-x_0,y-y_0) = \begin{cases} 1 & if \ x=x_0 \ and \ y=y_0 \\ 0 & otherwise \end{cases}$$

$$A(x,y)^*\delta(x,y) = A(x,y)$$

d(x,y)

0	0	0
0	()	0
0	0	0

$$d(x-1,y-1)$$

0	0	1
0	0	0
0	0	0

1	2	3
4	5	6
7	8	9

*

$$d(x-1,y-1)$$

0	0	1
ð	9	0
0	0	0

$$\underline{d(x-1,y-1)} \qquad A(x-1,y-1)$$

0	4	5
0	7	8
0	0	0

(Zero padding)

$$\underline{A(x-1,y-1)}$$

(Wrap around)

Grayscale Smoothing

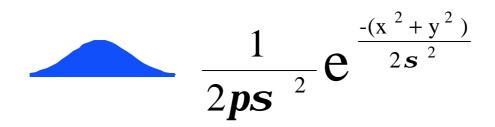
Grayscale averaging = convolution with:

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	
3 X 3			

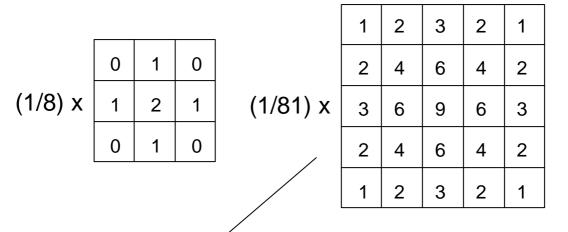
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

5 X 5

"Soft" Averaging: Convolution with a Gaussian

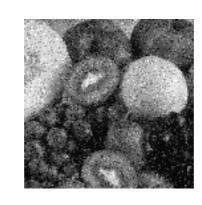


Discrete case:



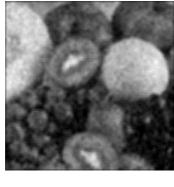
A seperable kernel

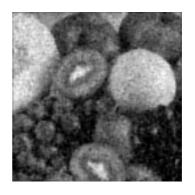
Normal vs Gaussian Grayscale Smoothing



Original Noisy image

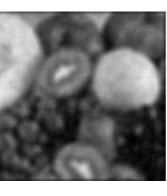


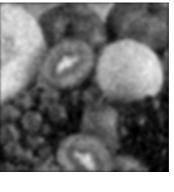




3 X 3 Gaussian Average

5 X 5 Average





5 X 5 Gaussian Average

7 X 7 Average

7 X 7 Gaussian Average

Median Filtering

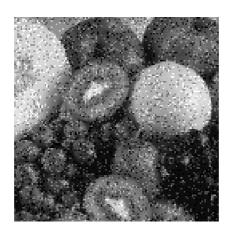
S = neighborhood of pixel (x,y)

New value at
$$(x,y) = median \{l(x,y)\}\$$

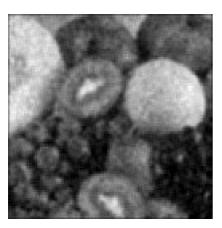
 $(x,y) \in S$

Median + Average: average the k central values.

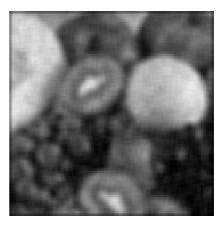
Median vs Average Filtering



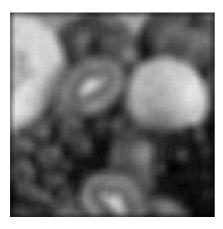
Salt & Pepper Noise



3 X 3 Average



5 X 5 Average



7 X 7 Average

Median

Multiple Median Filtering

Large Noise

Median

Median x 2

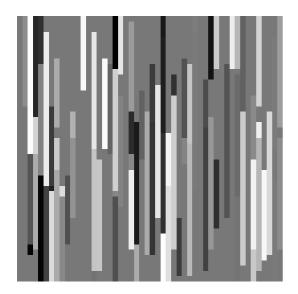
Median x 4

Median x 8

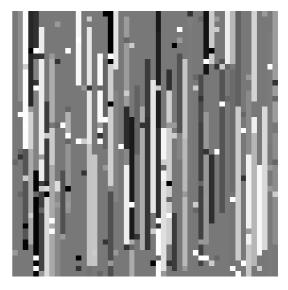
Median x 6

Median x 7

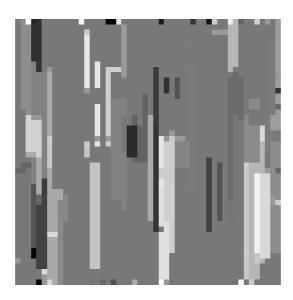
Median Filtering - Failure



Original

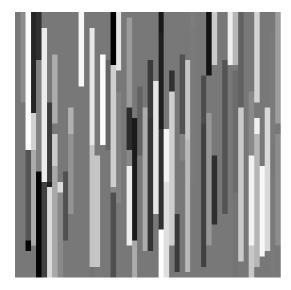


Salt & Pepper Noise

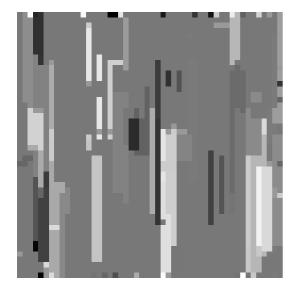


Median Filter

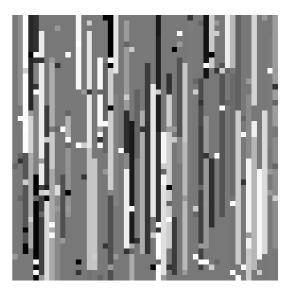
Oriented Median Filtering



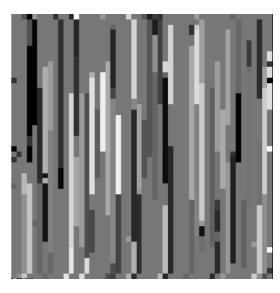
Original



Median Filter



Salt & Pepper Noise

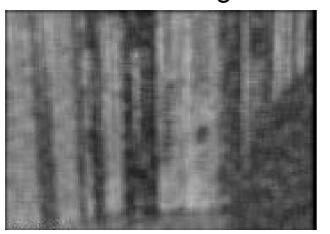


Oriented Median Filter

Oriented Filters

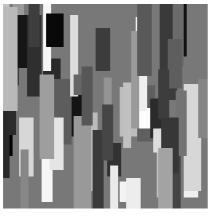
Salt & Pepper noise

4x4 Average

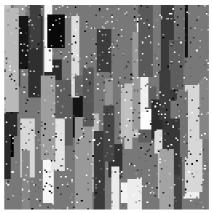


7x2 Average

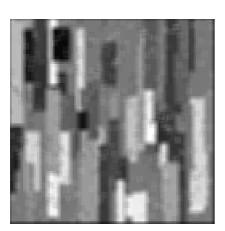
Oriented Filtering - Example



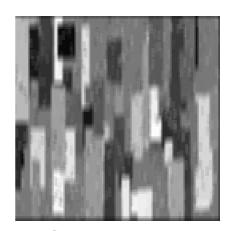
Original



Noisy Image



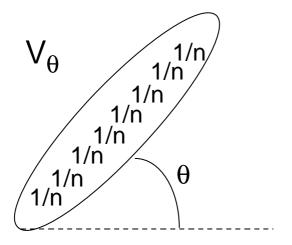
4x4 Average



Oriented 6x2 Average

Directional Smoothing

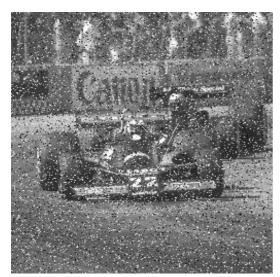
Define oriented masks:



Choose neighborhood with smallest variance and replace pixel value with the average of that neighborhood.

Directional Smoothing - Example

Original + Noise



3x3 Average

Directional Smoothing (2x5, 5x2, diagonalx2)

Directional Smoothing - Example

Original + Noise

3x3 Average

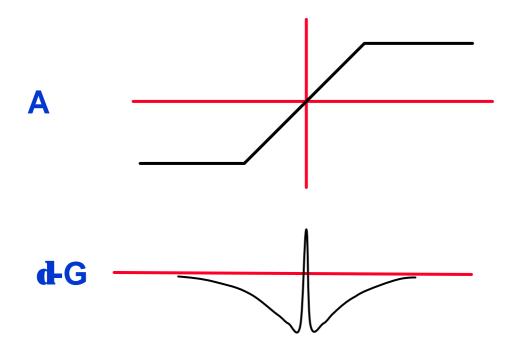
Directional Smoothing (2x5, 5x2, diagonalx2)

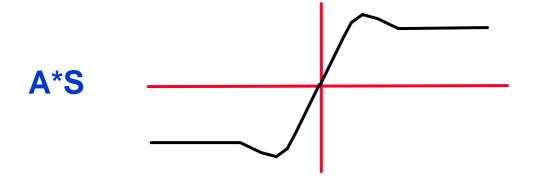
Sharpening

- A sharpening filter is applied in order to enhance edges and fine details (high frequency) in an image:
 - Assume A*G is a smoothing filtering.
 - $A^*(\delta G)$ contains the fine details of the image.
 - A+λA*(δ G) = A*($(1+\lambda)\delta-\lambda$ G)=A*S(λ) amplifies fine details in the image.
 - The parameter λ controls the amount of amplification.

$$\mathbf{G} = \begin{pmatrix} 0 & \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{2} & \frac{1}{8} \\ 0 & \frac{1}{8} & 0 \end{pmatrix} \quad \mathbf{S(1)} = \begin{pmatrix} 0 & -\frac{1}{8} & 0 \\ -\frac{1}{8} & \frac{3}{2} & -\frac{1}{8} \\ 0 & -\frac{1}{8} & 0 \end{pmatrix}$$

Ringing effect in edge enhancement

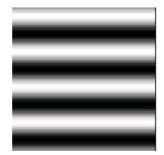


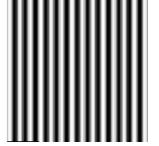


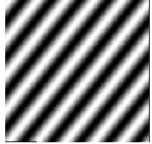
How can we enhance such an image?

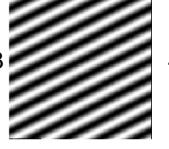
Solution: Image Representation

2	1	3
5	8	7
0	3	5



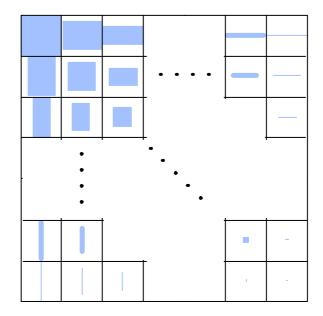






Frequency Domain

Map of "Sizes and Orientations"



Evaluating an Image in terms of "sizes":

