Image Processing - Lesson 2

Binary Images (Part I)

- Threshold
- Binary Image Definition
- Connected Components
- Chain Code
- Edge Following

Grayscale Image

Binary Image

Thresholding

Thresholding a Grayscale Image

Original Image

Binary Image

Threshold too low

Threshold too high

FMRI - Example

Original Image

Threshold = 80

Threshold = 71

Threshold = 88

Segmentation using Thresholding

Original

Histogram

Threshold = 50

Threshold = 75

Original

Histogram

Threshold = 21

Binary Image = Figure + Ground

(Edgar Rubin 1915)

Connected Components

Neighborhoods:

4-neighbor metric

8-neighbor metric

Connected Components:

S = the set of object pixels

S is a Connected Component if for each pixel pair $(x_1, y_1) \in S$ and $(x_2, y_2) \in S$ there is a path passing through X-neighbors in S. (X = 4.8).

S may contain several connected components.

- 1 connected component-8
- 3 connected components-4

8-neighborhood:

- 1 object connected component
- 1 background connected component

4-neighborhood:

- 2 background connected components
- 4 object connected components

Always choose different neighborhood metrics for objects and backgrounds.

Chain Code

Each direction is assigned a code:

4-neighbor

8-neighbor

Marking the Connected Components

Connected Component Algorithm: Two passes over the image.

Pass 1:

Scan the image pixels from left to right and from top to bottom. For every pixel P of value 1 (an object pixel), test top and left neighbors (4-neighbor metric).

- If 2 of the neighbors are 0: assign a new mark to P.
- If 1 of the neighbors isn't 0: assign the neighbor's mark to P.
- If 2 of the neighbors are not 0: assign the left neighbor's mark to P

Pass 2:

Divide all marks to equivalence classes (marks of neighboring pixels are considered equivalent).

Replace each mark with the number of its equivalence class.

Connected Components - Example

Original Binary image

Pass 1:

Pass 2:

Equivalence Class number	Original mark
1	1,2
2	3

Connected Components - Example II

Original Binary image

Pass 1:

Pass 2:

Equivalence Class number	Original mark
1	1,2,3,4

Edges

C = connected component of object S.

D = connected component of \bar{S} .

The D-Edge of C = the set of all pixels in C that have a neighboring pixel in D. (neighboring-8 if C is 4-connected neighboring-4 if C is 8-connected).

Example:

Object C

(4-neighbor)

(8-neighbor)

The Edge of C for background D.

The Edge of C for hole D.

Distances

Two grid point: P = (x,y) and Q = (u,v)

Euclidean Distance

$$d_e(P,Q) = \sqrt{(x-u)^2 + (y-v)^2}$$

City Block Distance

$$d_4(P,Q) = |x-u| + |y-v|$$

Chessboard Distance

$$d_8(P,Q) = max(|x-u|, |y-v|)$$

$$d_e = 7.6$$

 $d_8 = 7$
 $d_4 = 10$

d_e d₈ d₄ are all **metrics**:

- 1. Distance metric: $d(P,Q) \ge 0$
- 2. Positive: d(P,Q) = 0 iff P=Q
- 3. Symmetric: d(P,Q) = d(Q,P)
- 4. Triangular inequality: $d(P,Q) \le d(P,R) + d(R,Q)$

All pixels at equal d4 distance form a "diamond":

All pixels at equal d₈ distance form a "square":

All pixels at equal de distance form a "circle" :

2-Pass Distance Algorithm

For each pixel calculate the d_4 or d_8 distance from a pixel in set S.

2 passes:

Pass 1: scan image left-to-right and top-to-bottom Pass 2: scan image right-to-left and bottom-to-top.

For each pixel P mark as follows:

Pass 1: consider all neighbors of P that have been scanned $N_1 =$

$$d'(P,S) = \begin{cases} 0 & \text{if } P \in S \\ \min \{d'(Q,S)\}+1 & \text{if } P \notin S \\ Q \in N_1 \end{cases}$$

Pass 2: consider all neighbors of P that have been scanned $N_2 =$

$$d''(P,S) = \min \{d'(P,S), d''(Q,S)+1\}$$

$$Q \in N_2$$

Example measuring d₄:

 0
 1
 2
 3
 0
 1
 2
 1

 1
 2
 3
 0
 1
 2
 1
 0

 2
 3
 4
 1
 2
 3
 2
 1

 1 0 0 0 0 0 0 1 0 0 0 0

S is marked as 1 Pass 1: d'(P,S) Pass 2: d''(P,S)

Skeletons

Consider all edge pixels of an object as the group S.

The pixels whose distance is a local maxima are the Skeleton of the object.

The Skeleton can be used as a shape descriptor.

MAT = Medial Axis Transform

Grass fire technique (Blum, 1993)

Skeletons - Example

Sensitivity to contour changes:

