Image Processing - Lesson 2

Binary Images (Part I)

- Threshold
- Binary Image - Definition
- Connected Components
- Chain Code
- Edge Following

Grayscale Image
Binary Image

Thresholding

Threshold

Thresholding a Grayscale Image

Original Image

Threshold too low

Binary Image

Threshold too high

FMRI - Example

Original Image

Threshold = 71

Threshold $=80$

Threshold = 88

Segmentation using Thresholding

Original

Histogram

Threshold $=50$

Threshold $=75$

Original

Threshold = 21

(Edgar Rubin 1915)

Connected Components

Neighborhoods:

4-neighbor metric

8-neighbor metric

Connected Components:

$S=$ the set of object pixels
S is a Connected Component if for each pixel pair $\left(x_{1}, y_{1}\right) \in S$ and $\left(\mathrm{X}_{2}, \mathrm{y}_{2}\right) \in \mathrm{S}$ there is a path passing through X -neighbors in S. $(X=4,8)$.

S may contain several connected components.

1 connected component-8

3 connected components-4

8-neighborhood:
1 object connected component
1 background connected component
4-neighborhood:
2 background connected components
4 object connected components

Always choose different neighborhood metrics for objects and backgrounds.

Chain Code

Each direction is assigned a code:

$$
3
$$

4-neighbor

4-neighbor:

8-neighbor

			\bullet	\bullet		
			\bullet		\bullet	
		\bullet			\bullet	
		\bullet			\bullet	
	\bullet				\bullet	
		\bullet		\bullet		
					\bullet	

8-neighbor:

Marking the Connected Components

Connected Component Algorithm: Two passes over the image.

Pass 1:

Scan the image pixels from left to right and from top to bottom. For every pixel P of value 1 (an object pixel), test top and left neighbors (4-neighbor metric).

- If 2 of the neighbors are 0 : assign a new mark to P.
- If 1 of the neighbors isn't 0 : assign the neighbor's mark to P.
- If 2 of the neighbors are not 0 : assign the left neighbor's mark to P

Pass 2 :

Divide all marks to equivalence classes (marks of neighboring pixels are considered equivalent).
Replace each mark with the number of its equivalence class.

Connected Components - Example

Original Binary image

Pass 1:

		1	1				
1	1	1	1		1	1	1

		1	1				
2	2	2	2		3	3	3

Pass 2:

		1	1				
1	1	1	1		2	2	2

Equivalence Class number

Original mark

1,2
3

Connected Components - Example II

Original Binary image

Pass 1:

			1				
		2	2		3	3	
	4	4	4	4	4		

			1				
		1	1		1	1	
	1	1	1	1	1		

Equivalence Class number

Original mark
1,2,3,4

Edges

$$
\begin{aligned}
& C=\text { connected component of object } S . \\
& D=\text { connected component of } \bar{S} .
\end{aligned}
$$

The D-Edge of $C=$ the set of all pixels in C that have a neighboring pixel in D . (neighboring-8 if C is 4-connected neighboring-4 if C is 8 -connected).

Example:

(4-neighbor)

The Edge of C for background D.

The Edge of C for hole D.

Distances

Two grid point: $\quad P=(x, y) \quad$ and $\quad Q=(u, v)$

Euclidean Distance

$$
d_{e}(P, Q)=\sqrt{(x-u)^{2}+(y-v)^{2}}
$$

City Block Distance

$$
d_{4}(P, Q)=|x-u|+|y-v|
$$

Chessboard Distance

$$
d_{8}(P, Q)=\max (|x-u|,|y-v|)
$$

$$
\begin{aligned}
& d_{e}=7.6 \\
& d_{8}=7 \\
& d_{4}=10
\end{aligned}
$$

$d_{e} d_{8} d_{4}$ are all metrics:

1. Distance metric: $\quad d(P, Q) \geq 0$
2. Positive:

$$
\begin{aligned}
& d(P, Q)=0 \text { iff } P=Q \\
& d(P, Q)=d(Q, P)
\end{aligned}
$$

4. Triangular inequality: $d(P, Q) \leq d(P, R)+d(R, Q)$

All pixels at equal d_{4} distance form a "diamond" :

All pixels at equal d_{8} distance form a "square" :

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

All pixels at equal d_{e} distance form a "circle" :

2-Pass Distance Algorithm

For each pixel calculate the d_{4} or d_{8} distance from a pixel in set S.
2 passes:
Pass 1: scan image left-to-right and top-to-bottom
Pass 2: scan image right-to-left and bottom-to-top.
For each pixel P mark as follows:

Pass 1: consider all neighbors of P that have been scanned $N_{1}=\square$

$$
d^{\prime}(P, S)= \begin{cases}0 & \text { if } P \in S \\ \min \left\{d^{\prime}(Q, S)\right\}+1 & \text { if } P \notin S \\ Q \in N_{1} & \end{cases}
$$

Pass 2: consider all neighbors of P that have been scanned $N_{2}=\square$

$$
d^{\prime \prime}(P, S)=\min _{Q \in N_{2}}\left\{d^{\prime}(P, S), d^{\prime \prime}(Q, S)+1\right\}
$$

Example measuring d_{4} :

1	0	0	0	0	1	2	3	0	1	2	1
0	0	0	1	1	2	3	0	1	2	1	0
0	0	0	0	2	3	4	1	2	3	2	1

S is marked as $1 \quad$ Pass 1: d' $(P, S) \quad$ Pass 2: d" (P, S)

Skeletons

Consider all edge pixels of an object as the group S.

The pixels whose distance is a local maxima are the Skeleton of the object.

The Skeleton can be used as a shape descriptor.

MAT = Medial Axis Transform

Grass fire technique (Blum, 1993)

Skeletons - Example

Sensitivity to contour changes:

Distance Map

Skeleton

