Face Recognition: Eigenfaces and
Fisherfaces



Face recognition: once you’ve
detected and cropped a face, try to
recognize it

“Sally”




Face recognition: overview

* Typical scenario: few examples per face,
identify or verify test example

 What’s hard: changes in expression,
lighting, age, occlusion, viewpoint
* Basic approaches (all nearest neighbor)

1. Project into a new subspace
2. Measure face features



Typical face recognition scenarios

e Verification: a person is claiming a particular
identity; verify whether that is true

— E.g., security

* Closed-world identification: assign a face to one
person from among a known set

* General identification: assign a face to a known
person or to “unknown”



What makes face recognition hard?

Expression
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What makes face recognition hard?

Lighting




What makes face recognition hard?

Occlusion
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What makes face recognition hard?

Viewpoint
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Simple idea for face recognition

1. Treat face image as a vector of intensities

B~

2. Recognize face by nearest neighbor in database
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The space of all face images

When viewed as vectors of pixel values, face images are
extremely high-dimensional

— 100x100 image = 10,000 dimensions

— Slow and lots of storage

But very few 10,000-dimensional vectors are valid face
images

We want to effectively model the subspace of face images
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The space of all face images

e |dea: construct a low-dimensional linear subspace
that best explains the variation in the set of face

Images

N Pixel value 2
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@ A face image
@® A (non-face) image



Linear subspaces
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R Note: there’s an error, the

var(v) = Y l(x=%)" - v||
= ZVT(X—K)(X—E)TV

_VT

be squared

A%

Y x-Dx-%)T

= vIAv where A = d (x—x)(x— %) T
X

Solution: v, is eigenvector of A with /argest eigenvalue
Vv, is eigenvector of A with smallest eigenvalue

expression in the sum should



Principal component analysis (PCA)

e Suppose each data point is N-dimensional
— Same procedure applies:

var(v) = Y lx-x)" v

= vIAv where A = d (x—x)(x - %) T
X

— The eigenvectors of A define a new coordinate system

e eigenvector with largest eigenvalue captures the most variation among training
vectors X

e eigenvector with smallest eigenvalue has least variation
— We can compress the data by only using the top few eigenvectors

. 1 »”
e corresponds to choosing a "linear subspace
— represent points on a line, plane, or “hyper-plane”

* these eigenvectors are known as the principal components



The space of faces

>

* Animageis a pointin a high dimensional space
— An N x M image is a point in RN\M
— We can define vectors in this space as we did in the 2D case



Dimensionality reduction

>

e The set of faces is a “subspace” of the set of images
— Suppose it is K dimensional
— We can find the best subspace using PCA
— This is like fitting a “hyper-plane” to the set of faces
* spanned by vectors v4, V,, ..., Vg

 anyface x~X -+ a1vy + aoveg + ... + ALV



Eigenfaces

* PCA extracts the eigenvectors of A
— Gives a set of vectors v4, V,, V3, ...

— Each one of these vectors is a direction in face space
* what do these look like?




Visualization of eigenfaces

Principal component (eigen
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Projecting onto the eigenfaces

* The eigenfaces vy, ..., Vg span the space of faces
— A face is converted to eigenface coordinates by

X-)((X—f)°V1, (X_X)°V27°'°7 (X_i)°VK)

XXX+t ajvy+a>veg + ...+ agvVKg \

a1vVy1y a2V azvyz a4vy4 agvVyg agVe a7Vy agvsy




Determine If the Image 1s a
Face at All

Y i ]
-+ original projection
s i
o A face, used for
ftraining
/
I The best

case: on
the subspace

2,3 Close enough

4.5 Too far — not
a face

Not a _face, not used for
fraining



Recognition with eigenfaces

 Algorithm

1. Process the image database (set of images with labels)
Run PCA—compute eigenfaces
Calculate the K coefficients for each image

2. Given a new image (to be recognized) X, calculate K coefficients

X%(alanM"vafK)

3. Detectif xis a face

||X — (X4t a1vy+aove+ ...+ CLKVK)H < threshold

4. |Ifitisaface, whoisit?

Find closest labeled face in database
nearest-neighbor in K-dimensional space



Choosing the dimension K

eigenvalues ).

1= K N.

* How many eigenfaces to use?
* Look at the decay of the eigenvalues

— the eigenvalue tells you the amount of
variance “in the direction” of that eigenface

— ignore eigenfaces with low variance



PCA

* General dimensionality reduction technique

* Preserves most of variance with a much more
compact representation

— Lower storage requirements (eigenvectors + a few
numbers per face)

— Faster matching



Limitations

e The direction of maximum variance is not
always good for classification



A more discriminative subspace: FLD

* Fisher Linear Discriminants = “Fisher Faces”
* PCA preserves maximum variance

* FLD preserves discrimination

— Find projection that maximizes scatter between
classes and minimizes scatter within classes

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997




lllustration of the Projection

¢ Using two classes as example:

X2 4

x1

Poor Projection

X2 4

AN

x1

Good



Comparing with PCA

/

feature 2

O 'class1 :
| * class2 :
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feature 1



Variables

N Sample images: (X5 5 Xy}
C classes: PRI
1
Average of each class: 4= 2%
i Xk€Xi
Average of all data: 1 N
H=—2X;



Scatter Matrices

« Scatter of class i: Si= 2 (o = o, — 1)

X €Xi

. Within class scatter:  Sv=2.5

. Between class scatter: S, =Y N,(u, —u)u, — 1)
=1



lllustration

S, =8, +8,

Within class scatter

X2 4

x1
S, >

Between class scatter




Mathematical Formulation

* After projection v, =W'x,
— Between class scatter §, =w's ,w
— Within class scatter S, =w's, w
* Objective

W, =argmax ——

* Solution: Generalized Elgenvectors
Sgw; =48, w; i=1,....m
* Rank of W, is limited
— Rank(Sg) <= |C|-1
— Rank(Sy,) <= N-C



lllustration
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Recognition with FLD

e Use PCA to reduce dimensions to N-C
W, =pca(X)

 Compute within-class and between-class
scatter matrices for PCA coefficiecnts

= (o~ )~y Sy =28 Sy=2 Nu—uNu—n)
XpEXi i=1 i=1
* Solve generalized eigenvector problem
WS, W B .
W 4y = arg max ——— S,w, =48, w, i=1,...,m
VoS, w)

* Project to FLD subspace (c-1 dimensions)
A T
x=W,, x
¢ ClaSSIfy by neareSt HEIgthr Note: x in step 2 refers to PCA coef; x in

step 4 refers to original data



Results: Eigenface vs. Fisherface

* Input: 160 images of 16 people

* Train: 159 images

* Test: 1 iImage
e Variation in Facial Expression, Eyewear, and Lighting
With Without 3 Lig.hTing 5 expressions
glasses  glasses conditions
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Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997




Eigenfaces vs. Fisherfaces
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Eigenface

Eigenface w/o first
three components

= Fisherface (7.3%)

PAMI 1997




