
Face Recognition: Eigenfaces and

Fisherfaces



Face recognition: once you’ve 

detected and cropped a face, try to 

recognize it

Detection Recognition “Sally”



Face recognition: overview
• Typical scenario: few examples per face, 

identify or verify test example

• What’s hard: changes in expression, 

lighting, age, occlusion, viewpoint

• Basic approaches (all nearest neighbor)

1. Project into a new subspace

2. Measure face features



Typical face recognition scenarios

• Verification: a person is claiming a particular 
identity; verify whether that is true
– E.g., security

• Closed-world identification: assign a face to one 
person from among a known set

• General identification: assign a face to a known 
person or to “unknown”



What makes face recognition hard?

Expression



What makes face recognition hard?

Lighting



What makes face recognition hard?

Occlusion



What makes face recognition hard?

Viewpoint



Simple idea for face recognition

1. Treat face image as a vector of intensities

2. Recognize face by nearest neighbor in database
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The space of all face images
• When viewed as vectors of pixel values, face images are 

extremely high-dimensional

– 100x100 image = 10,000 dimensions

– Slow and lots of storage

• But very few 10,000-dimensional vectors are valid face 

images

• We want to effectively model the subspace of face images



The space of all face images

• Idea: construct a low-dimensional linear subspace 

that best explains the variation in the set of face 

images



Linear subspaces

Consider the variation along direction v

among all of the orange points:

What unit vector v minimizes var?

What unit vector v maximizes var?

Solution: v1 is eigenvector of A with largest eigenvalue

v2 is eigenvector of A with smallest eigenvalue

Note: there’s an error, the 

expression in the sum should 

be squared



Principal component analysis (PCA)

• Suppose each data point is N-dimensional

– Same procedure applies:

– The eigenvectors of A define a new coordinate system

• eigenvector with largest eigenvalue captures the most variation among training 

vectors x

• eigenvector with smallest eigenvalue has least variation

– We can compress the data by only using the top few eigenvectors

• corresponds to choosing a “linear subspace”
– represent points on a line, plane, or “hyper-plane”

• these eigenvectors are known as the principal components



The space of faces

• An image is a point in a high dimensional space

– An N x M image is a point in RNM

– We can define vectors in this space as we did in the 2D case

+=



Dimensionality reduction

• The set of faces is a “subspace” of the set of images

– Suppose it is K dimensional

– We can find the best subspace using PCA

– This is like fitting a “hyper-plane” to the set of faces

• spanned by vectors v1, v2, ..., vK

• any face 



Eigenfaces

• PCA extracts the eigenvectors of A

– Gives a set of vectors v1, v2, v3, ...

– Each one of these vectors is a direction in face space

• what do these look like?



Visualization of eigenfaces
Principal component (eigenvector) uk
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Projecting onto the eigenfaces

• The eigenfaces v1, ..., vK span the space of faces

– A face is converted to eigenface coordinates by





Recognition with eigenfaces
• Algorithm

1. Process the image database (set of images with labels)

• Run PCA—compute eigenfaces

• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients

3. Detect if x is a face

4. If it is a face, who is it?

• Find closest labeled face in database

• nearest-neighbor in K-dimensional space



Choosing the dimension K

K NMi = 

eigenvalues

• How many eigenfaces to use?

• Look at the decay of the eigenvalues

– the eigenvalue tells you the amount of 

variance “in the direction” of that eigenface

– ignore eigenfaces with low variance



PCA

• General dimensionality reduction technique

• Preserves most of variance with a much more 

compact representation

– Lower storage requirements (eigenvectors + a few 

numbers per face)

– Faster matching



Limitations
• The direction of maximum variance is not 

always good for classification



A more discriminative subspace: FLD

• Fisher Linear Discriminants � “Fisher Faces”

• PCA preserves maximum variance

• FLD preserves discrimination

– Find projection that maximizes scatter between 

classes and minimizes scatter within classes

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997



Illustration of the Projection

Poor Projection

x1

x2

x1

x2

� Using two classes as example:

Good



Comparing with PCA



Variables

• N Sample images: 

• c classes:

• Average of each class: 

• Average of all data:
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Scatter Matrices

• Scatter of class i: ( )( )Tik
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• Within class scatter:

• Between class scatter:



Illustration
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Within class scatter
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Mathematical Formulation

• After projection

– Between class scatter

– Within class scatter

• Objective

• Solution: Generalized Eigenvectors

• Rank of Wopt is limited

– Rank(SB) <= |C|-1

– Rank(SW) <= N-C
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Illustration
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Recognition with FLD
• Use PCA to reduce dimensions to N-C

• Compute within-class and between-class 

scatter matrices for PCA coefficients

• Solve generalized eigenvector problem

• Project to FLD subspace (c-1 dimensions)

• Classify by nearest neighbor
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Note: x in step 2 refers to PCA coef; x in 

step 4 refers to original data



Results: Eigenface vs. Fisherface

• Variation in Facial Expression, Eyewear, and Lighting

• Input: 160 images of 16 people

• Train: 159 images

• Test: 1 image

With 
glasses

Without 
glasses

3 Lighting 
conditions

5 expressions

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997



Eigenfaces vs. Fisherfaces

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997


