Support Vector Machines



SVM

Said to start in 1979 with Viadimir
Vapnik’s paper

Major developments throughout
1990’s

Elegant theory

= Has good generalization properties
Have been applied to diverse

problems very successfully in the last
10-15 years

One of the most important
developments in pattern recognition
In the last 10 years




Problem Definition

Consider a training set of n 1id samples
(Xl’yl)’(XZ’yZ)""’(Xn’yn)

where X; Is a vector of length m and
y. e {+1,-1} Is the class label for data point x;.

Find a separating hyperplane w-x+6 =0
corresponding to the decision function
f(x)=signw-x+ b)



Separating Hyperplanes

x(2) %

= which separating hyperplane should we choose?



Separating Hyperplanes

= Training data Is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= If we see new sample close to sample I, it is likely
to be on the wrong side of the hyperplane

x@ 1 a

" %@
= Poor generalization (performance on unseen data)



Separating Hyperplanes

= Hyperplane as far as possible from any sample

= New samples close to the old samples will be
classified correctly

= Good generalization



SVM

= |dea: maximize distance to the closest example

X (2) ]

> X(l)

smaller distance

= For the optimal hyperplane

x( -

larger distance

= distance to the closest negative example = distance to

the closest positive example



SVM: Linearly Separable Case

= SVM: maximize the margin
X(2) 4 .

= margin Is twice the absolute value of distance d of
the closest example to the separating hyperplane

= Better generalization (performance on test data)

= In practice
= and in theory



SVM: Linearly Separable Case

x(2) ¢

= Support vectors are the samples closest to the
separating hyperplane
= they are the most difficult patterns to classify

= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane



SVM: Formula for the Margin

x (2%

g(X) =wix +Db
absolute distance between X n
and the boundary g(x) =0
‘th+ b‘ "
] X

distance Is unchanged for hyperplane
9:(x)=ag (x)

‘awtx+ab‘ ‘th+b‘

jaw| wl

Let x; be an example closest to the boundary. Set
‘thi + b‘ =1

Now the largest margin hyperplane is unique



SVM: Formula for the Margin

= For uniqueness, set |w'x,+f=1 for any example
X; closest to the boundary

= now distance from closest sample x; to g(x) =0 Is

W W (@)

* Thus the margin Is

m

_Z
w]

(1)




SVM: Optimal Hyperplane

" _ 2
= Maximize margin M=—:
[wi

subject to constraints

Wix, +b>1 vy, =1

WX, +b<-1 y,=-1

= Can convert our problem to
J(w)= EHWH st Yi(W-X; +b)2

= J(w) Is a quadratic function, thus there Is a single
global minimum



Constrained Quadratic Programming

Primal Problem:
T ST
Minimize —HWH
2
subjectto YV, (W -X,+b)>1 VI

= Introduce Lagrange multipliers ¢; 20

associated with the constraints

= The solution to the primal problem is equivalent to
determining the saddle point of the function

1 n
L,=L(w,b )= EHWHZ -~ > a,(¥,(x; - w + b) - 1)
i=1



Solving Constrained QP

= At saddle point, Ly, has minimum requiring

oL,
ow

:W_Zaiyixi =0 = W:Zaiyixi
i i

oL, B
b Zi:a,.y,. =0




Primal-Dual

primal: Ly = - ay (¢ web) Y -
=1 =1

minimize L, with respect to w,b,
subjectto «;, =0

W = Zai Y. X, Zai y, =0 substitute

I 18, O
Dual. LD:iZ_;“i_EZZ“i“jyiijixj

i=1 j=1
maximize L with respect to a
subjectto a; 20, > ay, =0
i



Solving QP using dual problem

n l n n
maximize Lo(a)= Za/ ——ZZ%%YJ;X?X/

i=1 2 j=1

constrained to 2,20 Vi and ) ay, =0
i=1

" a={«ay,..., a,} are new variables, one for each sample
" | 5() can be optimized by quadratic programming

" | () formulated in terms of «
= |t depends on w and b indirectly



Threshold

= b can be determined from the optimal @ and
Karush-Kuhn-Tucker (KKT) conditions

a,.[y,.(W - X +b)—1]: 0, Vi

= ;>0 implies
y,w-x,+b)=1 = w-X,+b=y,

b=y, —-w-x,



Support Vectors

= For every sample I, one of the following must hold
" a=0
" g >0andy,(w xi+b-1)=0

" Many @, =0 = W= oYX sparse solution
i

= Samples with «; >0 are Support Vectors and they
are the closest to the separating hyperplane

= Optimal hyperplane is completely defined by support
vectors



More on dual problem

maximize L,(a)= ai—%z a0 Y, Y X X,

=1

constrained to >0 Vi and Y ay =0

" | (@) depends on the number of samples, not on
dimension of samples

= samples appear only through the dot products x;x

= This will become important when looking for a
nonlinear discriminant function, as we will see soon



SVM: Classification

= Given a new sample x, finds its label y
Y =sign(w - X + b)

1 W=Z;a,.y,.x,. duality

y = sign(} a,y %, -x + b)
i=1



SVM: Example

Class 1: [1,6], [1,10], [4,11]
Class 2: [5,2], [7,6], [10,4]

—
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SVM: Example
10/.
0.036 8
O._ support ] O
= Solution a= 0038 vectors —/? - ©

0.0764 | o
L O_

0.33

= find w using w = ZayX =(a.*xy) x [

since 4 >0, can find b using

Y1




SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

s X(2)
]

outliers

> X1

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance



SVM with slacks

= Use nonnegative “slack” variables &,,..., &, (one for
each sample)

= Change constraints from y,(w'x, +b)>1 v/ to
v,(Wix, +b)>1-¢ Vi

= & IS a measure of
deviation from the ideal

for sample | .

= £>1 samplei is on the wrong
side of the separating
hyperplane

= 0< & <1lsamplei ison the
right side of separating
hyperplane but within the
region of maximum margin




SVM with slacks
= Would like to minimize

1 n
J(W1§111§n)=EHWH 2+CZ§i
i=1
= constrainedto y,(w'x, +b)>1-& and & >0 Vi

= C >0is a constant which measures relative weight of the
first and second terms
= if Cis small, we allow a lot of samples not in ideal position

= if C is large, we want to have very few samples not in ideal
position



SVM with slacks

S &)= S W2

(1)

large C, few samples not in small C, alot of samples
ideal position not in ideal position



SVM with slacks— Dual Formulation

Zlai _%zzaiaiyiijij

i=1 j=1

maximize L,(a)

constrained to 0<a,<C Vi and Y a,y,=0
i=1

= find w using w=>) a,yX,
i=1

= solve for b using any 0 <¢; < C and a,-[y,-(w’x,. + b)—l] =0



Non Linear Mapping

= Cover's theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable

00—oo00 00
3 -2 012 3 5

= Lift to two dimensional space with ¢(x)=(x,x?)




Non Linear Mapping

= To solve a non linear classification problem with a
linear classifier

1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = wt ¢(x) +w,

PX)=(x,x?) ' O

W WO a
:3 -2 ‘0 1 2‘ 3 5 R /EX/
R R, R ® . :

=|n 2D, discriminant function is linear

(1) (1)
g([;(((Z):D = [Wl W2]|:;(((2)} +W,

=In 1D, discriminant function is not linear  g(x)=w,x +w,x? +w,



Non Linear Mapping: Another Example




Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to

deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization

= It can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality

2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

= Recall SVM optlmlzatlon
maximize Lo Za ——Zza-a-y-y,-x}'x,-

/1/1

= Note this optimization depends on samples x; only
through the dot product x;'x;

= If we lift x; to high dimensional space F using ¢(x),
need to compute high dimensional product ¢(x;)'¢(X;)

maximize L,( Za ——ZZaayy o(x,) olx;)

= The dimensionality of space F not necessarily
Important. May not even know the map @.



Kernel

= A function that returns the value of the dot product
between the images of the two arguments:

K(X,y)=o(x;) o(X;)
= Given a function K, it is possible to verify that it Is
a kernel.

maximize L Zn:a,—lznlzn:aayy

211/1

= Now we only need to compute K(x;,X;) instead of
o(X;) plX))
= ‘“kernel trick”: do not need to perform operations in high
dimensional space explicitly



Kernel Matrix

= (aka the Gram matrix):

K(1,1) |K(1,2) [|K(1,3) |.. K(1,m)

K(2,1) | K(Z,2) [|K(2,3) |... K(2,m)
K=

K(m, 1) | K(im.2) [K(m,3) |... K{m,m)

The central structure in kernel machines

Contains all necessary information for the learning
algorithm

= Fuses information about the data AND the kernel
Many interesting properties:

From www.support-vector.net



Mercer's Theorem

= The kernel matrix is Symmetric Positive Definite

= Any symmetric positive definite matrix can be
regarded as a kernel matrix, that is as an inner
product matrix in some space

Every (semi)positive definite, symmetric

function is a kernel: i.e. there exists a mapping ¢ such
that it is possible to write:

K(X,Y)=o(x) oly)

Positive definite I K(x,y)f(x)f(y)dxdy >0
Vfel,

From www.support-vector.net



Examples of Kernels

= Some common choices (both satisfying Mercer’s
condition):
= Polynomial kernel  K(x,,x, )=(x'x, +1)°

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
1
2

Ko x,)= e s = )

From www.support-vector.net



Example: Polynomial Kernels

X = (X11X2);

< = (21’22);

— 2 2
K(x,z)=(x,z)" =(x,2, + X,2,)* =
2.2 2.2 .
X[Z + X2, +2X,Z X,Z, =

(x2,x2 N2x,x,), (22,22 \22,2,)) =
(¢(x),4(2))

From www.support-vector.net



Example Polynomial Kernels

From www.support-vector.net



Example: the two spirals

= Separated by a hyperplane in feature space
(gaussian kernels)

From www.support-vector.net



Making Kernels

= The set of kernels Is closed under some
operations. If K, K’ are kernels, then:

= K+K’ Is a kernel

= cK'Is a kernel, if c>0

= aK+bK' Is a kernel, for a,b >0
= Etc etc efc......

= can make complex kernels from simple
ones: modularity !

From www.support-vector.net



Non Linear SVM Recepie

Start with data x,,...,X, which lives in feature space
of dimension d

Choose kernel K(x;,x;) corresponding to some
function ¢(x;) which takes sample x; to a higher

dimensional space
Find the largest margin linear discriminant function in

the higher dimensional space by using quadratic
orogramming package to solve:

n

maximize Lp(a)z Za" _%iiaiaiyiyjl((xi’xj)

i=1 i=1 j=1

constrainedto 0<a, <C Vi and Y a,y,=0
i=1




Non Linear SVM Recipe

= Weight vector w in the high dimensional space:

W = Zaiyi¢(xi)

= Linear discriminant function of largest margin in the
high dimensional space:

0(o(6)=w'olx) = Sariols j}om

= Non linear discriminant function in the original space:

9X)=[Za,-y,-¢ Jt¢(x > a,y,0' (x,)o(x)= Xizelsafny(Xf,X)

X;eS X;eS

= decideclass 1ifg (x) > 0, otherwise decide class 2



Non Linear SVM

=  Nonlinear discriminant function

g(X)z Z a; || £ K(Xi’x)

XiES

g (X ) _ Z weight of support | |F1 “invefrrsoemdi(s tt%nce”
vector X; support vector X;

most important
_training samples, 1 2
l.e. support vectors K(x;,x)= eXp(— 252 x; = x| j




Toy Example with a Gaussian Kernel




Higher Order Polynomials
Taken from Andrew Moore

Poly- d(X) Costto |Costif d(a)ip(b) |Costto |Cost if
nomial build H |d=100 build H | d=100
matrix matrix
tradition sneakily
ally
Quadratic | All d%/2 d?n2/4 | 2,500 n? (@b+1)> |dn?/2 |50n?
terms up to
degree 2
Cubic All d3/6 d®n2/12 |83,000 n? (@b+1)® |dn?/2 |50n?
terms up to
degree 3
Quartic | All d4/24 d*n2/48 |1,960,000 n? | (atb+1)* |dn?/2 |50 n>?
terms up to
degree 4

IS the number of samples, d is number of features




SVM Example: XOR Problem

Class 1: x, =[1,-1], X, = [-1,1]
Class 2: X, = [1,1], X, = [-1,-1] =

Use polynomial kernel of degree 2. o
= K(X;x) = (X 1%+ 1)?
= This kernel corresponds to mapping

¢(X)=[1 2x® 2x® Jax@x@ (x®Y (x(2>)2}

Need to maximize

constrainedto 0<e, Vi and o, +a,-a,—a, =0




SVM Example: XOR Problem

] 4
Can rewrite L ()=« —%atHa
i=1
= Hij = ZiZjK(Xi 1Xj) Where K(XI’XJ) — (XItXJ + 1)2

9 1 -1 —1]
. |1 9 -1 -1
-1 -1 1 9

Take derivative with respect to ¢ and setitto O

; 1] [ 9 1 -1 -1
1| | 1 9 -1 -1

a@=|1-|_1 1 9 "1]e=0
1] |-1-1 1 9

Solution to the above is o= &, = a3 = o, = 0.25
=  satisfies the constraints Vi, 0<¢, and a,+a,-a,-a, =0
= all samples are support vectors



SVM Example: XOR Problem

o(x) =[1 V2x® 2x@ 2xOx @ (xOF (x(z))z}

Class 1: x, =[1,-1], X, =[-1,1]
Class 2: x;=[1,1], x, = [-1,-1]

Weight vector w Is:

W = iaizigp(xi) = O.25(¢(X1)+ ¢(X2)_¢(X3)_¢(X4»

- ~lo 0 0 -v2 0 0]

Thus the nonlinear discriminant function iIs:

g(x)=we(x) ZW o, (x) = (fx(l)x(z)) —2xWx©@



SVM Example: XOR Problem

g(x)=-2xWx®

J2x Dy @

decision boundaries nonlinear decision boundary is linear



SVM Summary

= Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

=  Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

= Disadvantages:

= |t’s not clear how to select a kernel function in a principled
manner

= tends to be slower than other methods



