Support Vector Machines

SVM

- Said to start in 1979 with Vladimir Vapnik's paper
- Major developments throughout 1990's
- Elegant theory
 - Has good generalization properties
- Have been applied to diverse problems very successfully in the last 10-15 years
- One of the most important developments in pattern recognition in the last 10 years

Problem Definition

Consider a training set of n iid samples

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

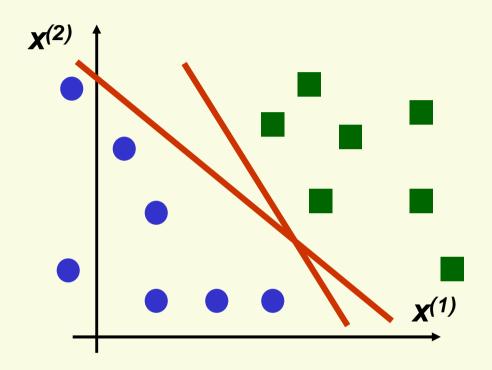
where x_i is a vector of length m and

 $y_i \in \{+1,-1\}$ is the class label for data point x_i .

Find a separating hyperplane $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ corresponding to the decision function

$$f(x) = sign(w \cdot x + b)$$

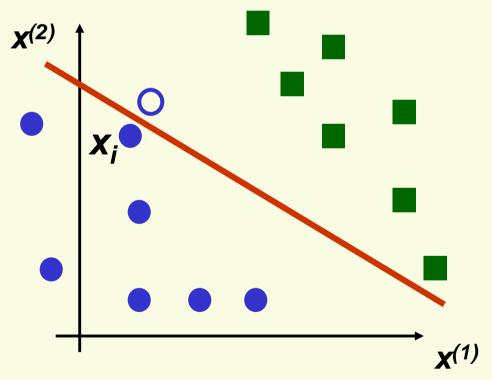
Separating Hyperplanes



which separating hyperplane should we choose?

Separating Hyperplanes

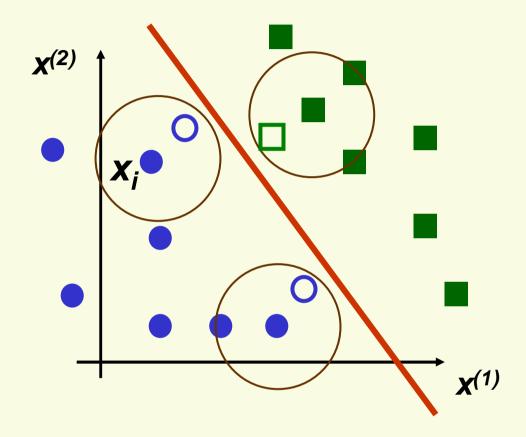
- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample x_i
- If we see new sample close to sample i, it is likely to be on the wrong side of the hyperplane



Poor generalization (performance on unseen data)

Separating Hyperplanes

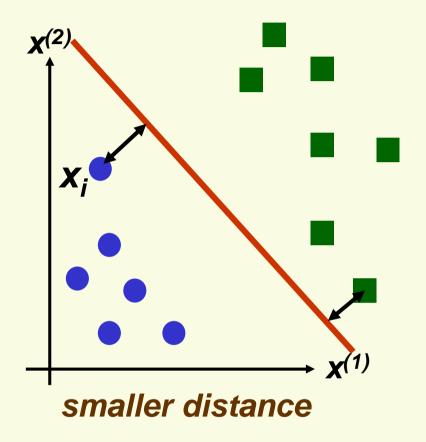
Hyperplane as far as possible from any sample

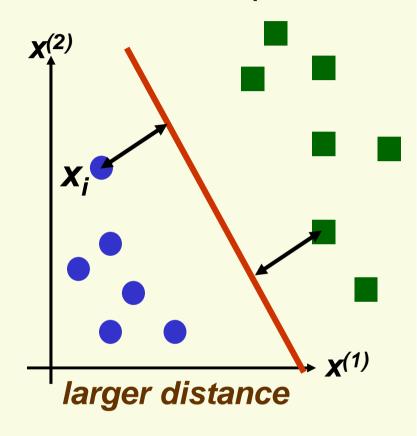


- New samples close to the old samples will be classified correctly
- Good generalization

SVM

Idea: maximize distance to the closest example

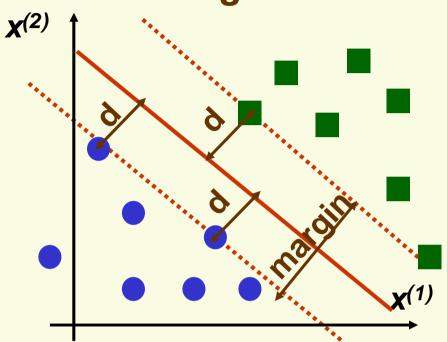




- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example

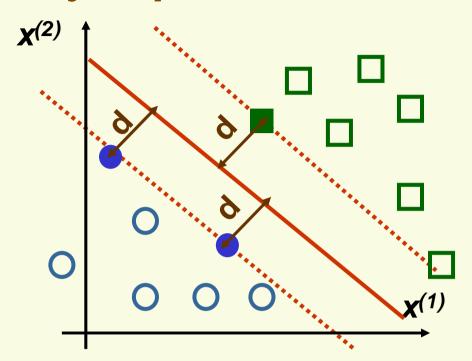
SVM: Linearly Separable Case

SVM: maximize the margin



- margin is twice the absolute value of distance d of the closest example to the separating hyperplane
- Better generalization (performance on test data)
 - in practice
 - and in theory

SVM: Linearly Separable Case

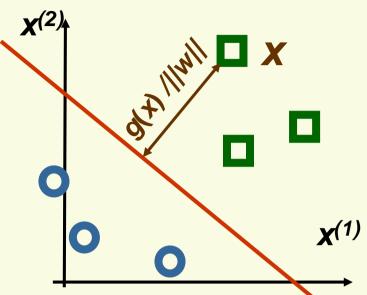


- Support vectors are the samples closest to the separating hyperplane
 - they are the most difficult patterns to classify
 - Optimal hyperplane is completely defined by support vectors
 - of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $g(x) = w^t x + b$
- absolute distance between x and the boundary g(x) = 0

$$\frac{\left|\mathbf{w}^{\mathsf{t}}\mathbf{x} + \boldsymbol{b}\right|}{\left\|\mathbf{w}\right\|}$$



distance is unchanged for hyperplane

$$g_1(x) = \alpha g(x)$$

$$\frac{\left|\alpha \mathbf{w}^{t} \mathbf{x} + \alpha \mathbf{b}\right|}{\|\alpha \mathbf{w}\|} = \frac{\left|\mathbf{w}^{t} \mathbf{x} + \mathbf{b}\right|}{\|\mathbf{w}\|}$$

- Let \mathbf{x}_i be an example closest to the boundary. Set $|\mathbf{w}^t \mathbf{x}_i + b| = 1$
- Now the largest margin hyperplane is unique

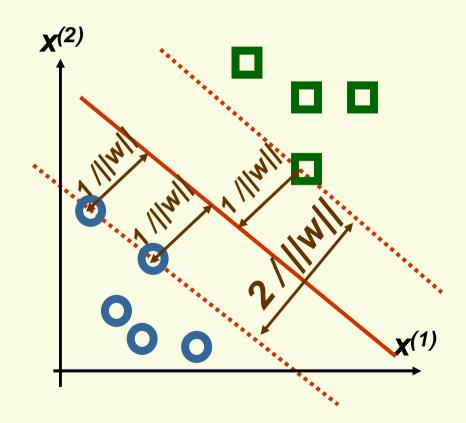
SVM: Formula for the Margin

- For uniqueness, set $|\mathbf{w}^t \mathbf{x}_i + b| = 1$ for any example \mathbf{x}_i closest to the boundary
- now distance from closest sample x_i to g(x) = 0 is

$$\frac{\left|\mathbf{w}^{t}\mathbf{x}_{i} + \boldsymbol{b}\right|}{\left\|\mathbf{w}\right\|} = \frac{1}{\left\|\mathbf{w}\right\|}$$

Thus the margin is

$$m = \frac{2}{\|\mathbf{w}\|}$$



SVM: Optimal Hyperplane

• Maximize margin $m = \frac{2}{\|\mathbf{w}\|}$ subject to constraints

$$\begin{cases} \mathbf{w}^{t} \mathbf{x}_{i} + \mathbf{b} \ge 1 & \mathbf{y}_{i} = 1 \\ \mathbf{w}^{t} \mathbf{x}_{i} + \mathbf{b} \le -1 & \mathbf{y}_{i} = -1 \end{cases}$$

Can convert our problem to

$$J(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2 \qquad \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

 J(w) is a quadratic function, thus there is a single global minimum

Constrained Quadratic Programming

Primal Problem:

Minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

subject to $\mathbf{y}_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) \ge 1$, $\forall i$

- Introduce Lagrange multipliers $\alpha_i \geq \mathbf{0}$ associated with the constraints
- The solution to the primal problem is equivalent to determining the saddle point of the function

$$L_{p} \equiv L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{n} \alpha_{i} (\mathbf{y}_{i}(\mathbf{x}_{i} \cdot \mathbf{w} + b) - 1)$$

Solving Constrained QP

• At saddle point, L_P has minimum requiring

$$\frac{\partial L_P}{\partial w} = w - \sum_i \alpha_i y_i \mathbf{X}_i = \mathbf{0} \implies w = \sum_i \alpha_i y_i \mathbf{X}_i$$

$$\frac{\partial L_P}{\partial \boldsymbol{b}} = \sum_i \alpha_i \boldsymbol{y}_i = \mathbf{0}$$

Primal-Dual

Primal:

$$L_{P} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{n} \alpha_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=1}^{n} \alpha_{i}$$

minimize L_P with respect to w,b, subject to $\alpha_i \ge 0$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0 \quad \text{substitute}$$

Dual:

$$L_D = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$$

maximize L_D with respect to α subject to $\alpha_i \ge 0$, $\sum_i \alpha_i y_i = 0$

Solving QP using dual problem

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{t} x_{j}$$
constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

- $\alpha = {\alpha_1, ..., \alpha_n}$ are new variables, one for each sample
- $L_D(\alpha)$ can be optimized by quadratic programming
- $L_D(\alpha)$ formulated in terms of α
 - it depends on w and b indirectly

Threshold

• b can be determined from the optimal α and Karush-Kuhn-Tucker (KKT) conditions

$$\alpha_i [\mathbf{y}_i (\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) - \mathbf{1}] = \mathbf{0}, \forall \mathbf{i}$$

• $\alpha_i > \mathbf{0}$ implies

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) = 1 \implies \mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} = y_i$$

$$\boldsymbol{b} = \boldsymbol{y}_i - \boldsymbol{w} \cdot \boldsymbol{x}_i$$

Support Vectors

- For every sample i, one of the following must hold
 - $\alpha_i = 0$
 - $\alpha_i > 0$ and $y_i(w \cdot x_i + b 1) = 0$
- Many $\alpha_i = \mathbf{0} \implies \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$ sparse solution
- Samples with $\alpha_i > 0$ are **Support Vectors** and they are the closest to the separating hyperplane
- Optimal hyperplane is completely defined by support vectors

More on dual problem

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^t x_j$$
 constrained to $\alpha_i \ge 0 \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i y_i = 0$

- $L_D(\alpha)$ depends on the number of samples, not on dimension of samples
- samples appear only through the dot products $x_i^t x_j$
- This will become important when looking for a nonlinear discriminant function, as we will see soon

SVM: Classification

Given a new sample x, finds its label y

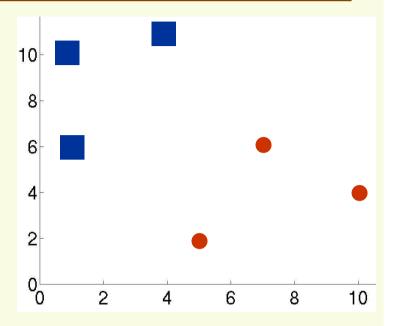
$$y = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \quad \text{duality}$$

$$y = sign(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b)$$

SVM: Example

- Class 1: [1,6], [1,10], [4,11]
- Class 2: [5,2], [7,6], [10,4]



SVM: Example

Solution
$$\alpha = \begin{bmatrix} 0.036 \\ 0.039 \\ 0.076 \\ 0 \end{bmatrix}$$
 support vectors

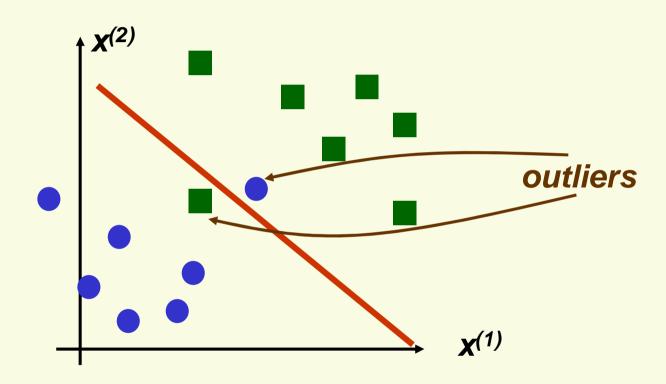
find wusing
$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i = (\alpha \cdot \mathbf{y})^t \mathbf{x} = \begin{bmatrix} -0.33 \\ 0.20 \end{bmatrix}$$

• since $\alpha_1 > 0$, can find **b** using

$$b = \frac{1}{y_1} - w^t x_1 = 0.13$$

SVM: Non Separable Case

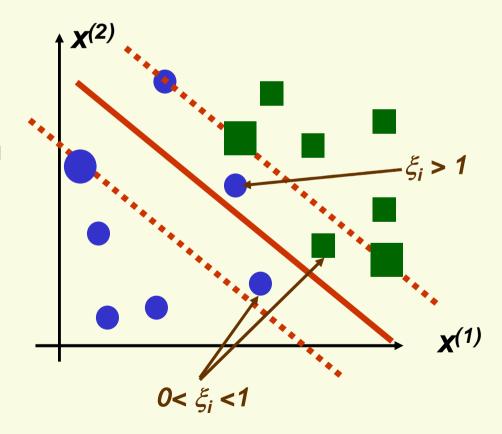
 Data is most likely to be not linearly separable, but linear classifier may still be appropriate



- Can apply SVM in non linearly separable case
 - data should be "almost" linearly separable for good performance

SVM with slacks

- Use nonnegative "slack" variables ξ_1, \ldots, ξ_n (one for each sample)
- Change constraints from $y_i(\mathbf{w}^t\mathbf{x}_i + b) \ge 1 \quad \forall i$ to $y_i(\mathbf{w}^t\mathbf{x}_i + b) \ge 1 \xi_i \quad \forall i$
- ξ_i is a measure of deviation from the ideal for sample i
 - $\xi_i > 1$ sample i is on the wrong side of the separating hyperplane
 - $0 < \xi_i < 1$ sample i is on the right side of separating hyperplane but within the region of maximum margin



SVM with slacks

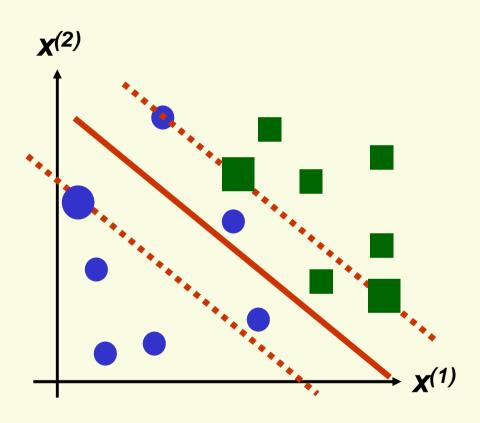
Would like to minimize

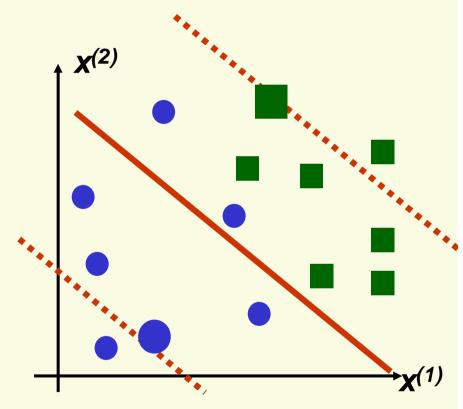
$$J(w, \xi_1,..., \xi_n) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

- constrained to $y_i(\mathbf{w}^t\mathbf{x}_i + \mathbf{b}) \ge 1 \xi_i$ and $\xi_i \ge \mathbf{0} \ \forall i$
- C > 0 is a constant which measures relative weight of the first and second terms
 - if C is small, we allow a lot of samples not in ideal position
 - if C is large, we want to have very few samples not in ideal position

SVM with slacks

$$J(w, \xi_1,..., \xi_n) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$





small C, a lot of samples not in ideal position

SVM with slacks- Dual Formulation

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} y_{i} y_{j} x_{i}^{t} x_{j}$$
constrained to $0 \le \alpha_{i} \le C \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

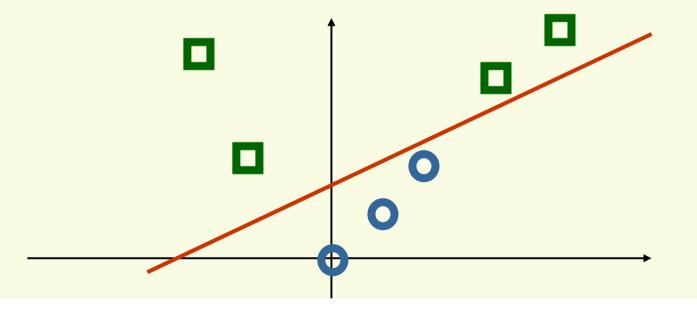
$$\mathbf{0} \leq \alpha_i \leq \mathbf{C} \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i \mathbf{y}_i = \mathbf{0}$$

- find **w** using $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i$
- solve for **b** using any $0 < \alpha_i < C$ and $\alpha_i [y_i(\mathbf{w}^t \mathbf{x}_i + \mathbf{b}) 1] = 0$

Non Linear Mapping

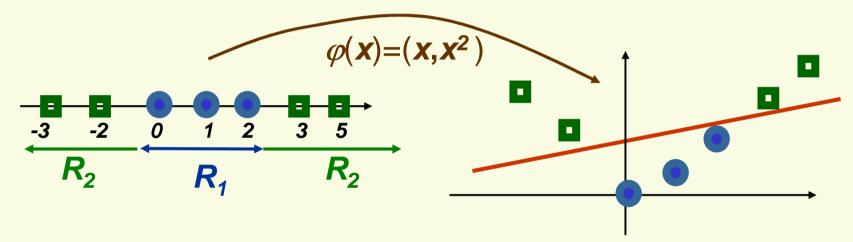
- Cover's theorem:
 - "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space"
- One dimensional space, not linearly separable

• Lift to two dimensional space with $\varphi(\mathbf{x}) = (\mathbf{x}, \mathbf{x}^2)$



Non Linear Mapping

- To solve a non linear classification problem with a linear classifier
 - 1. Project data x to high dimension using function $\varphi(x)$
 - 2. Find a linear discriminant function for transformed data $\varphi(\mathbf{x})$
 - 3. Final nonlinear discriminant function is $g(x) = w^t \varphi(x) + w_0$

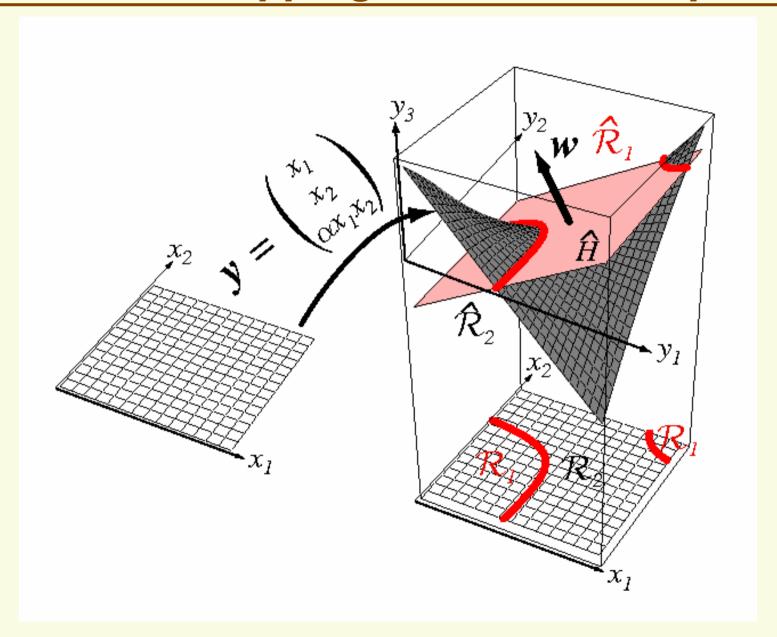


In 2D, discriminant function is linear

$$g\left(\begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} + \mathbf{W}_0$$

In 1D, discriminant function is not linear $g(x) = w_1 x + w_2 x^2 + w_0$

Non Linear Mapping: Another Example



Non Linear SVM

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"
 - 1. poor generalization to test data
 - 2. computationally expensive
- SVM avoids the "curse of dimensionality" problems by
 - 1. enforcing largest margin permits good generalization
 - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
 - 2. computation in the higher dimensional case is performed only implicitly through the use of *kernel* functions

Non Linear SVM: Kernels

Recall SVM optimization
$$\max_{i=1}^{n} L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} y_{i} y_{j} x_{i}^{t} x_{j}$$

- Note this optimization depends on samples x_i only through the dot product $x_i^t x_i$
- If we lift x_i to high dimensional space F using $\varphi(x)$, need to compute high dimensional product $\varphi(\mathbf{x}_i)^t \varphi(\mathbf{x}_i)$

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i y_i y_j \varphi(x_i)^t \varphi(x_j)$$

 The dimensionality of space F not necessarily important. May not even know the map φ.

Kernel

A function that returns the value of the dot product between the images of the two arguments:

$$K(x,y) = \varphi(\mathbf{x}_i)^t \varphi(\mathbf{x}_j)$$

 Given a function K, it is possible to verify that it is a kernel.

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i y_i y_j \varphi(x_i)^t \varphi(x_j)$$

$$K(x_i, x_j)$$

- Now we only need to compute $K(x_i, x_j)$ instead of $\varphi(x_i)^t \varphi(x_i)$
 - "kernel trick": do not need to perform operations in high dimensional space explicitly

Kernel Matrix

(aka the Gram matrix):

	K(1,1)	K(1,2)	K(1,3)	 K(1,m)
	K(2,1)	K(2,2)	K(2,3)	 K(2,m)
K=				
	K(m,1)	K(m,2)	K(m,3)	 K(m,m)

- The central structure in kernel machines
- Contains all necessary information for the learning algorithm
- Fuses information about the data AND the kernel
- Many interesting properties:

Mercer's Theorem

- The kernel matrix is Symmetric Positive Definite
- Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space

Every (semi)positive definite, symmetric function is a kernel: i.e. there exists a mapping φ such that it is possible to write:

$$K(x,y) = \varphi(x)^t \varphi(y)$$

Positive definite
$$\int_{\forall f \in L_2} K(x, y) f(x) f(y) dx dy \ge 0$$

From www.support-vector.net

Examples of Kernels

- Some common choices (both satisfying Mercer's condition):
 - Polynomial kernel $K(x_i, x_j) = (x_i^t x_j + 1)^p$
 - Gaussian radial Basis kernel (data is lifted in infinite dimension)

$$K(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$$

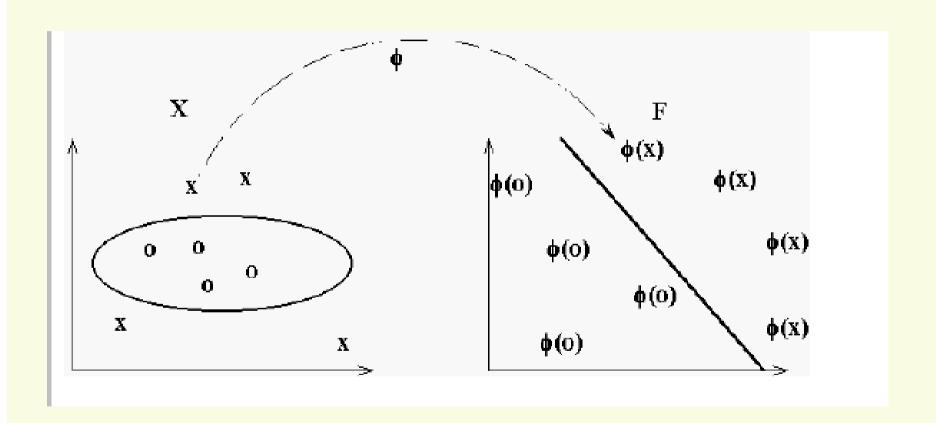
Example: Polynomial Kernels

$$X = (X_1, X_2);$$

 $Z = (Z_1, Z_2);$

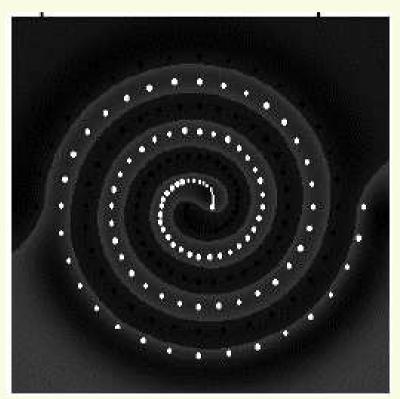
$$K(x,z) \equiv \langle x,z \rangle^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} = x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1}x_{2}z_{2} = \langle (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}), (z_{1}^{2}, z_{2}^{2}, \sqrt{2}z_{1}z_{2}) \rangle = \langle \phi(x), \phi(z) \rangle$$

Example Polynomial Kernels



Example: the two spirals

 Separated by a hyperplane in feature space (gaussian kernels)



Making Kernels

- The set of kernels is closed under some operations. If K, K' are kernels, then:
- K+K' is a kernel
- cK is a kernel, if c>0
- aK+bK' is a kernel, for a,b >0
- Etc etc etc......
- can make complex kernels from simple ones: modularity!

Non Linear SVM Recepie

- Start with data $x_1, ..., x_n$ which lives in feature space of dimension d
- Choose kernel $K(x_i, x_j)$ corresponding to some function $\varphi(x_i)$ which takes sample x_i to a higher dimensional space
- Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i y_i y_j K(x_i, x_j)$$

constrained to $\mathbf{0} \le \alpha_i \le \mathbf{C} \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i \mathbf{y}_i = \mathbf{0}$

Non Linear SVM Recipe

Weight vector w in the high dimensional space:

$$\mathbf{w} = \sum_{i}^{n} \alpha_{i} \mathbf{y}_{i} \varphi(\mathbf{x}_{i})$$

 Linear discriminant function of largest margin in the high dimensional space:

$$\mathbf{g}(\varphi(\mathbf{x})) = \mathbf{w}^t \varphi(\mathbf{x}) = \left(\sum_{\mathbf{x}_i \in \mathbf{S}} \alpha_i \mathbf{y}_i \varphi(\mathbf{x}_i)\right)^t \varphi(\mathbf{x})$$

Non linear discriminant function in the original space:

$$g(x) = \left(\sum_{x_i \in S} \alpha_i y_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i y_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i y_i K(x_i, x)$$

• decide class 1 if g(x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

$$g(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$

$$g(x) = \sum_{x \in X} a_x x^x$$

 $g(x) = \sum_{\text{vector } x_i} \text{weight of support}$

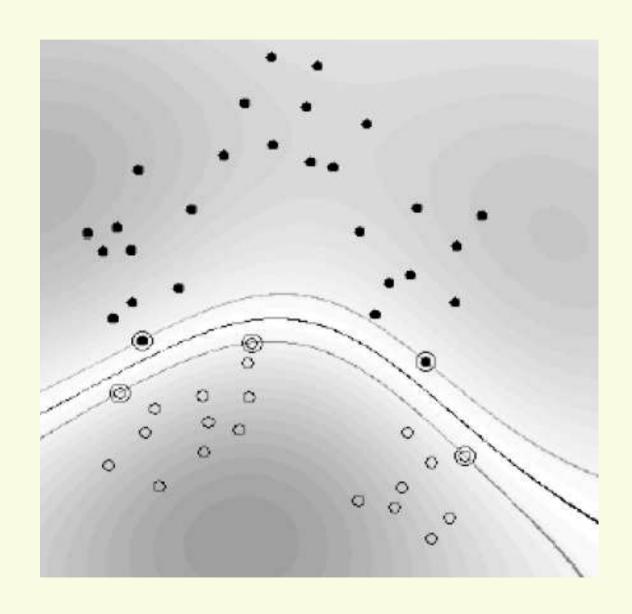
Ŧ1

"inverse distance" from x to support vector **x**;

most important training samples, i.e. support vectors

$$K(x_i, x) = \exp\left(-\frac{1}{2\sigma^2}||x_i - x||^2\right)$$

Toy Example with a Gaussian Kernel

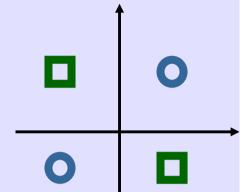


Higher Order Polynomials Taken from Andrew Moore

Poly- nomial	φ(x)	Cost to build H matrix tradition ally	Cost if d=100	φ(a) ^t φ(b)	Cost to build <i>H</i> matrix sneakily	Cost if d=100
Quadratic	All d ² /2 terms up to degree 2	o ² n ² /4	2,500 n ²	(a ^t b +1) ²	$dn^2/2$	50 <i>n</i> ²
Cubic	All d ³ /6 terms up to degree 3	$d^3 n^2 / 12$	83,000 <i>n</i> ²	(a ^t b +1) ³	$dn^2/2$	50 <i>n</i> ²
Quartic	All d ⁴ /24 terms up to degree 4	d ⁴ n ² /48	1,960,000 <i>n</i> ²	(a ^t b +1) ⁴	$d n^2/2$	50 <i>n</i> ²

n is the number of samples, **d** is number of features

- Class 1: $\mathbf{x_1} = [1,-1], \ \mathbf{x_2} = [-1,1]$
- Class 2: $\mathbf{x_3} = [1,1], \ \mathbf{x_4} = [-1,-1]$



- Use polynomial kernel of degree 2:
 - $K(x_i, x_j) = (x_i^t x_j + 1)^2$
 - This kernel corresponds to mapping

$$\varphi(\mathbf{x}) = \begin{bmatrix} 1 & \sqrt{2} \, \mathbf{x}^{(1)} & \sqrt{2} \, \mathbf{x}^{(2)} & \sqrt{2} \, \mathbf{x}^{(1)} \, \mathbf{x}^{(2)} & \left(\mathbf{x}^{(1)}\right)^2 & \left(\mathbf{x}^{(2)}\right)^2 \end{bmatrix}^{\mathsf{T}}$$

Need to maximize

$$L_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{i} \mathbf{z}_{i} \mathbf{z}_{j} (\mathbf{x}_{i}^{t} \mathbf{x}_{j} + \mathbf{1})^{2}$$

constrained to $0 \le \alpha_i \ \forall i \ and \ \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$

- Can rewrite $L_D(\alpha) = \sum_{i=1}^4 \alpha_i \frac{1}{2} \alpha^t H \alpha$ $H_{ij} = z_i z_j K(x_i, x_j)$ where $K(x_i, x_j) = (x_i^t x_j + 1)^2$

 - Thus $H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$
- Take derivative with respect to α and set it to $\boldsymbol{0}$

$$\frac{d}{da}L_{D}(\alpha) = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 9 & 1 & -1 & -1\\1 & 9 & -1 & -1\\-1 & -1 & 9 & 1\\-1 & -1 & 1 & 9 \end{bmatrix} \alpha = \mathbf{0}$$

- Solution to the above is $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.25$
 - satisfies the constraints $\forall i$, $0 \le \alpha_i$ and $\alpha_1 + \alpha_2 \alpha_3 \alpha_4 = 0$
 - all samples are support vectors

$$\varphi(\mathbf{x}) = \begin{bmatrix} 1 & \sqrt{2} \, \mathbf{x}^{(1)} & \sqrt{2} \, \mathbf{x}^{(2)} & \sqrt{2} \, \mathbf{x}^{(1)} \, \mathbf{x}^{(2)} & \left(\mathbf{x}^{(1)} \right)^2 & \left(\mathbf{x}^{(2)} \right)^2 \end{bmatrix}^{t}$$

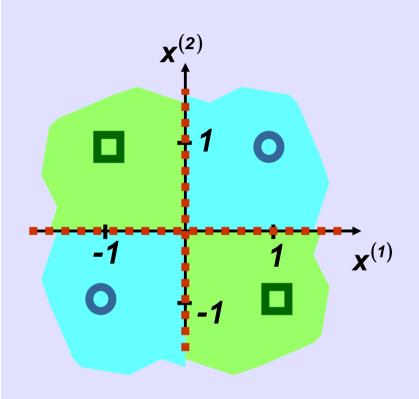
- Class 1: x₁ = [1,-1], x₂ = [-1,1]
- Class 2: x₃ = [1,1], x₄ = [-1,-1]
- Weight vector w is:

$$\mathbf{w} = \sum_{i=1}^{4} \alpha_{i} \mathbf{z}_{i} \varphi(\mathbf{x}_{i}) = \mathbf{0.25} (\varphi(\mathbf{x}_{1}) + \varphi(\mathbf{x}_{2}) - \varphi(\mathbf{x}_{3}) - \varphi(\mathbf{x}_{4}))$$
$$= \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & -\sqrt{2} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Thus the nonlinear discriminant function is:

$$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = -\sqrt{2} (\sqrt{2} x^{(1)} x^{(2)}) = -2 x^{(1)} x^{(2)}$$

$$g(x) = -2x^{(1)}x^{(2)}$$





decision boundaries nonlinear

decision boundary is linear

SVM Summary

- Advantages:
 - Based on nice theory
 - excellent generalization properties
 - objective function has no local minima
 - can be used to find non linear discriminant functions
 - Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
- Disadvantages:
 - It's not clear how to select a kernel function in a principled manner
 - tends to be slower than other methods