תרגול 2

ערך מוחלט

הגדרה

יהא \(x \in \mathbb{R} \). הערך המוחלט של \(x \) מוגדר עיון \(|x| \) כך: \[|x| = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases} \]

ופירוש גיאומטרי

יהא \(x \). הערך \(|x| \) מעט את המרחק בין \(x \) ל-0.

\[|x| = \max(-x, x) \]

אי-שיוויון ערך מוחלט

נניח \(0 < a \). עבור \(|x| < a \) קבוצת כל \(x \). לפי הגדרת הערך המוחלט, קבוצת הפתרונות של ה-שיוויון \(|x| < a \) היא כל \(x \) ש- \(x \) קרוי מרוחק מ-0 במ Sanctus 깊ות \(a \) או יותר.

אי-שיוויון \(-a < x < a \) קבוצת הפתרונות

מק桉 וי-פרא反應שסש את כל \(x \) \(-a \) כיסויים \(a \)

תרגיל 1

פתרו את ה-שיוויון הבא:

\[\frac{2}{x} - 5 < 1 \]
לפי הגדרה, עלינו לפתור את א-שיוויון הבא:

\[\frac{2}{x} - 5 < 1 \]

ולא-שיוויון שני:

\[\frac{2}{x} - 5 < 1 \]

כפי שהшло ב西红ון, חומת הספר, א-שיוויון מחו צפוף של 통해 הד服務ים וה�이ות של מהי מדריך. ניסיון זה מופיע בחלקה של החיתוך של שתי כבוצות הפרשוניות של קבוצת הפתרונות שיתくなりました.

לפתור כל אחד מהם בנפרד, ולה병원 את החיתוך של שתי קבוצות הפתרונות שית[jsכולב.

終わり א':

 דרך א' אפשרית, היא להבחין כי הביטוי

\[\frac{2}{x} - 5 < 1 \]

מכיל שני א-שיוויונות. נפרדים

\[\frac{2}{x} < 1 \quad \text{מכפוף של פרוסיים } \]

\[\frac{2}{x} - 5 < 1 \quad \text{מכפוף של פרוסיים } \]

הி פירוש כל אחד מהמה בנפרד, ולה병원 את החיתוך של שתי קבוצות הפרשוניות שית[jsכולב.

א-שיוויון ראשון:

\[-1 < \frac{2}{x} - 5 \quad \Rightarrow \quad -x^2 - 2x - 5x^2 < 0 \Rightarrow 2x^2 - x < 0 \Rightarrow x(2x - 1) < 0 \]

מכפלתה של להכתב הקמכס רכמס האחד המורמודים והハードי והים והא שפילים. לכל ישجلس של שיש מקימי שוניז:

(כדי שאי הшлоון יתקייםعمار \(x \) דריש שרכי האחד הפוסים)

מקערת ראשונה:

\(2x - 1 > 0 \Rightarrow x > \frac{1}{2} \)

אלא, מקערת שני:

\(2x - 1 < 0 \Rightarrow x < \frac{1}{2} \)

בזכ, א-שיוויון שני:

\[2 \quad \frac{2}{x} - 5 < 1 \] multiplicites both sideb by \(x^2 \), which is always positive

\[2x - 5x^2 < x^2 \] multiplicites both sideb by \(x^2 \), which is always positive

\[0 < 6x^2 - 2x \] multiplicites both sideb by \(x^2 \), which is always positive

\[0 < x(3x - 1) \] multiplicites both sideb by \(x^2 \), which is always positive

כפי שהלו ב西红ון, חומת הספר, א-שיוויון מחו צפוף שלを通して הד서비스ים וה院士ות של מהי מדריך.

שנין: (כדי שאי הלוון יתקייםعمار \(x \) דריש שרכי האחד הפוסים)

מקערת ראשונה:

\(3x - 1 < 0 \Rightarrow x < \frac{1}{3} \)

אלא, מקערת שני:

\(3x - 1 > 0 \Rightarrow x > \frac{1}{3} \)
University of Haifa – Faculty of Law

1 – Practice

\[3x - 1 > 0 \Rightarrow x > \frac{1}{3} \quad \text{and} \quad x > 0 \]

לפי התשובה הדרישה היא \(x > \frac{1}{3} \).

כעת, נמציא את החיתוך של שני הקבוצות הפתרונות:

\[\frac{2}{x} - 5 < 1 \]

מכיל את כל הפתרונות עבור \(\left\{ x : \frac{1}{3} < x < \frac{1}{2} \right\} \).

כעת, נמצא את החיתוך של החיתוך שני הקבוצות הפתרונות:

וככ עבורה של \[\frac{1}{a} > \frac{1}{x} > \frac{1}{b} \]

אף \(a < x < b \) ואור \(a, b > 0 \) נוכל פתרון האהנまり בורפ הור למתכינו הם:

\[\frac{2}{x} - 5 < 1 \Rightarrow -1 < \frac{2}{x} - 5 < 1 \Rightarrow 4 < \frac{2}{x} < 6 \Rightarrow \frac{1}{4} < x < \frac{1}{6} \Rightarrow \frac{2}{6} > x > \frac{1}{2} \Rightarrow x > \frac{1}{3} \]
תרגיל 2
מציא את קבוצת הפתרונות עבור אי-שוויון הבא:

\[|x - 3| < |2x - 1| \]

\[x - 3 \geq 0 \Rightarrow x \geq 3 \]

\[x - 3 < 2x - 1 \]

ענף זה אנדרישם כי:

\[-2 < x \leq \frac{1}{2} \text{ וא } x \geq 3 \]

\[x \geq 3 \]

\[x - 3 < 0 \Rightarrow x < 3 \]

\[-(x - 3) < 2x - 1 \]

ענף זה אנדרישם כי:

\[x < \frac{1}{2} \text{ וא } x < -2 \]

\[x < -2 \]

ב掬ור זה ניתן דרישות כי:

\[x < 3 \text{ וא } x \geq \frac{1}{2} \text{ וא } \frac{4}{3} < x \]

\[\frac{4}{3} \leq x < 3 \]

ב掬ור זה אפשר דרישות כי:

\[x < 3 \text{ וא } x \geq \frac{1}{2} \text{ וא } x < -2 \]

\[x < -2 \]
 vardbciq ciklna c 2 x 2 3 a 1 a 3

בשביעי קבלנו כ 2 2 x 2 3

אוי שיוויון המשולש

עובר מחיים כי a b a b \in \mathbb{R}

הוכחת

\[|a+b|=\begin{cases} a+b \leq |a|+|b| & a+b \geq 0 \\
-(a+b)=(-a)+(-b) \leq |a|+|b| & a+b < 0 \Rightarrow |a+b|\leq |a|+|b| \end{cases} \]

תרגיל 3

וף כל x \in \mathbb{R} מתקיים x 4

ודר א'

גוני חלק את ההוכחה לפידים:

\bullet \quad \text{עובר} \quad x \geq 7 \quad \text{ים} \quad x-4 \geq 0 \quad \text{ולב pochek יעליו לוהית כ}

\bullet \quad \text{עובר} \quad x \geq 7 \quad \text{ים} \quad x-4+x-7 \geq 3 \Rightarrow 2x \geq 14

\bullet \quad \text{עובר} \quad x < 7 \quad \text{ים} \quad x-4 \geq 0 \quad \text{לול pochek יעליו לוהית כ}

ודר ב'

נסדרם באוי שיוויון המשולש:

\[|x-4|+|x-7| = |x-4|+|7-x| \geq |x-4+7-x| = |3| = 3 \Rightarrow |x-4|+|x-7| \geq 3 \]
פונקציות

הגדרת פונקציה

פונקציה f היא לכל היותר פונקציה של איבר $x \in D$ יש איבר יחיד $y \in E$ כך פונקציה f היא לכל המרחבים של האיבר $x \in D$ איבר יחיד $y \in E$. הקבוצה $f(D) = \{f(x) : x \in A\}$ נקראת ת domina פונקציה. הקבוצה E נקראת ת domina הפונקציה. הקבוצה $f(D)$ נקראת תמונת הפונקציה. מסמנים את עי f : D → E

פונקציה f היא תמונת הפונקציה? לא פונקציה.

לאיבר 4 בתמונה לא מתאימו איבר בטווח. ולא פונקציה.

לאיבר 1 בתמונה מותאם יותר מאיבר יחיד בטווח.

מזה תמונת הפונקציה!

מזה תמונת הפונקציה!
פונקציה חד-חד-ערכית

slideUp

תהי \(f : D \rightarrow E \) פונקציה. נאמר כי \(f \) היא \(D \) \(E \) פונקציה \(f \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) אם לכל \(x, x_2 \in D \) \(x \neq x_2 \) \(f(x) \neq f(x_2) \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \).

הגדורה אנלוגית:

\[x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \]

פונקציה על

slideUp

תהי \(f : D \rightarrow E \) פונקציה. נאמר כי \(f \) היא \(D \) \(E \) פונקציה \(f \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) אם לכל \(x \in D \) \(y \in E \) קיים \(z \in D \) \(f(x) = y \).

פונקציה הפיכה

slideUp

תהי \(f : D \rightarrow E \) פונקציה. נאמר כי \(f \) היא \(f^{-1} \) \(D \rightarrow E \) פונקציה \(f^{-1} \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) אם לכל \(x \in D \) \(y \in E \) קיים \(z \in D \) \(f^{-1}(y) = z \).

הגדרה אנלוגית:

\[f^{-1}(f(x)) = x \in D \]
\[f^{-1}(f^{-1}(y)) = y \in E \]

אם \(f \) היא \(D \) \(E \) פונקציה \(f \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) המקיימת \(f^{-1}(f(x)) = x \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) לכל \(x \in D \) \(y \in E \) \(f^{-1}(f^{-1}(y)) = y \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) \(f \) \(\frac{\text{תחום פונקציה}}{\text{תחום פונקציה}} \) הפיכה.

ללכל \(x \in D \) \(f^{-1}(f(x)) = x \in D \) \(y \in E \) \(f^{-1}(y) = x \), \(x \in D \) \(y \in E \) \(f^{-1}(f^{-1}(y)) = y \) \(f^{-1}(f(x)) = y \) \(x \in D \) \(y \in E \) \(f^{-1}(f^{-1}(y)) = y \).
פונקציה מונוטונית
\[f : D \rightarrow E \]
תחילה פונקציה מונוטונית:
\[\forall x, y \in D : x \leq y \Rightarrow f(x) \leq f(y) \]
פונקציה מונוטונית עליונה אם \(f \) קיים \(\forall x, y \in D : x < y \Rightarrow f(x) \leq f(y) \)
פונקציה מונוטונית יורדת אם \(f \) קיים \(\forall x, y \in D : x < y \Rightarrow f(x) \geq f(y) \)
פונקציה מונוטונית יורדת ממש אם \(f \) קיים \(\forall x, y \in D : x < y \Rightarrow f(x) > f(y) \)
פונקציה מונוטונית משולسة אם \(f \) קיים \(\forall x, y \in D : x \leq y \Rightarrow f(x) \leq f(y) \)
פונקציה פסיפסית אם \(f \) קיים \(\forall x, y \in D : x < y \Rightarrow f(x) > f(y) \)
פונקציה פסיפסית מאה\-ון אם \(f \) קיים \(\forall x, y \in D : x \leq y \Rightarrow f(x) \geq f(y) \)
פונקציה מחזורית
\[f : D \rightarrow E \]
\[f(T + x) = f(x) \]
פונקציה וחסומה אם \(f \) קיים \(\forall x \in D : f(x) \leq M \) ו\(\forall x \in D : f(x) \geq -M \)
פונקציה מעורבת אם \(f \) קיים \(\exists x_0 \in D : f(x_0) = K \) ו\(\forall x \in D : f(x) \neq K \)
פונקציה זוויות
\[f : D \rightarrow E \]
פונקציה זוויות
\[f : D \rightarrow E \]
פונקציה זוויות
\[f : D \rightarrow E \]
פונקציה זוויות
\[f : D \rightarrow E \]
נאמר ש- \(f \) פונקציה חסומה אם קיים \(M > 0 \) כך ש:\[f(x) \leq M \quad \forall x \in D \]

תרגיל:
сталות הפונקציה הבודאת:
\[f(x) = x^2 \]

法令 מקהלה הפונקציות הבאות:

• תחום: \(\mathbb{R} \)
• טווח: \(\mathbb{R}^+ \)
• לא חחיית
• אין מונוטוניות (אך חסומה מלמטה)
• אין תחוםizo
• מחいら
• פונקציה זוגית
• לא מחזורית

כיצד יש לצמצם את התחום של הפונקציה, כדי שתהייה חח"ע? כיצד מוגדרת הפונקציה ההפוכה במקורה וה?
הקבנתה

f(x) = x^3

תחום:

טווח:

תחיים

מוגנעיות עליל קמוש

לא חסומת

פונקציות אי-זוגית

לא מחזורית

f(x) = x^a עבור a > 1

תחום:

 phạm

R

ייחודה

מון.paginator לעיל קמוש

לא חסומת

פונקציות אי-זוגית

לא מחזורית

a > 1

R

ייחודה

מוןنتشر לעיל קמוש

לא חסומת

פונקציות אי-זוגית

לא מחזורית
המשימה היא הצמצום של התחום של הפונקציה, כדי שהייתה חח"ע! כדי مدريدת הפונקציה ההפוכה במקורה! זה:

תחום:

\[-1,1\] = \{x: -1 \leq x \leq 1\}

ขาילית:

אינה חסומה (אך חסומה מלמטה)

חסומה:

אינה צוגית ואינה א-צוגית

מאונוטונית:

אינה מונוטונית

מחזורית:

הפונקציה \(\sin(x)\)

תחום:

\([-\pi, \pi]\)

טווח:

\([-1,1]\)

כיון שהייתה חח"ע, מוגדרת הפונקציה ההפוכה במקורה! זה:

\(\sin^{-1}(x)\)