Review: mostly probability and some statistics

C2
Content

- Probability (should know already)
 - Axioms and properties
 - Conditional probability and independence
 - Law of Total probability and Bayes theorem
- Random Variables
 - Discrete
 - Continuous
- Pairs of Random Variables
- Random Vectors
- Gaussian Random Variable
Basics

- We are performing a random experiment (catching fish from the sea)
- Sample space S: the set of all possible outcomes
- An event A: a set of possible outcomes of experiment, i.e. a subset of S
- **Probability law**: a rule that assigns probabilities to events in an experiment

$$A \rightarrow P(A)$$
Axioms of Probability

1. $P(A) \geq 0$
2. $P(S) = 1$
3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
Properties of Probability

\[P(\emptyset) = 0 \]

\[P(A) \leq 1 \]

\[P(A^c) = 1 - P(A) \]

\[A \subset B \implies P(A) < P(B) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

\[\{ A_i \cap A_j = \emptyset, \forall i, j \} \implies P\left(\bigcup_{k=1}^{N} A_k \right) = \sum_{k=1}^{N} P(A_k) \]
Conditional Probability

- If A and B are two events, and we know that event B has occurred, then (if \(P(B) > 0 \))
 \[
 P(A|B) = \frac{P(A \cap B)}{P(B)}
 \]

 the “new” sample space is B, the “new” A is old \(A \cap B \)

- multiplication rule
 \[
 P(A \cap B) = P(A|B) \cdot P(B)
 \]
Independence

- A and B are independent events if
 \[P(A \cap B) = P(A) \cdot P(B) \]

- By the law of conditional probability, if A and B are independent
 \[P(A|B) = \frac{P(A) \cdot P(B)}{P(B)} = P(A) \]

- If two events are not independent, then they are said to be dependent
Law of Total Probability

- B_1, B_2, \ldots, B_n partition S
- Consider an event A
 \[A = A \cap B_1 \cup A \cap B_2 \cup A \cap B_3 \cup A \cap B_4 \]
- Thus $P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3) + P(A \cap B_4)$
- Or using multiplication rule:
 \[P(A) = P(A \mid B_1)P(B_1) + \ldots + P(A \mid B_4)P(B_4) \]
 \[P(A) = \sum_{k=1}^{n} P(A \mid B_k)P(B_k) \]
Bayes Theorem

- Let B_1, B_2, \ldots, B_n, be a partition of the sample space S. Suppose event A occurs. What is the probability of event B_i?

Answer: Bayes Rule

$$P(B_i \mid A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{k=1}^{n} P(A \mid B_k)P(B_k)}$$

- One of the most useful tools we are going to use
Random Variables

- A random variable X is a function from sample space S to a real number. $X: S \rightarrow R$

- X is random due to randomness of its argument

- $P(X = a) = P(X(\omega) = a) = P(\omega \mid X(\omega) = a)$
Two Types of Random Variables

- **Discrete** random variable has countable number of values
 - number of fish fins (0,1,2,…..,30)

- **Continuous** random variable has continuous number of values
 - fish weight (any real number between 0 and 100)
Cumulative Distribution Function

- Given a random variable \(X \), CDF is defined as

\[
F(a) = P(X \leq a)
\]

CDF for discrete rv

CDF for continuous rv

fins

fish weight

1000
Properties of CDF

1. $F(a)$ is non-decreasing
2. $\lim_{b \to \infty} F(b) = 1$
3. $\lim_{b \to -\infty} F(b) = 0$

- Questions about X can be asked in terms of CDF

\[P(a < X \leq b) = F(b) - F(a) \]

Example:

$P($fish weights between 20 and 30$) = F(30) - F(20)$
Discrete RV: Probability Mass Function

- Given a discrete random variable X, we define the probability mass function as

$$p(a) = P(X = a)$$

- Satisfies all axioms of probability

- CDF in discrete case satisfies

$$F(a) = P(X \leq a) = \sum_{x \leq a} P(X = a) = \sum_{x \leq a} p(a)$$
Continuous RV: Probability Density Function

- Given a continuous RV X, we say $f(x)$ is its probability density function if

 - $F(a) = P(X \leq a) = \int_{-\infty}^{a} f(x) \, dx$
 - and, more generally $P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx$
Properties of Probability Density Function

\[
\frac{d}{dx} F(x) = f(x)
\]

\[
P(X = a) = \int_{a}^{a} f(x) \, dx = 0
\]

\[
P(-\infty \leq X \leq \infty) = \int_{-\infty}^{\infty} f(x) \, dx = 1
\]

\[
f(x) \geq 0
\]
true probability

P(fish has 2 or 3 fins) = p(2) + p(3) = 0.3 + 0.4

take sums

density, not probability

P(fish weights 30kg) ≠ 0.6
P(fish weights 30kg) = 0
P(fish weights between 29 and 31kg) = \[\int_{29}^{31} f(x) \, dx\]

integrate
Expected Value

- Useful characterization of a r.v.
- Also known as mean, expectation, or first moment

\[\mu = E(X) = \sum_{x} x \cdot p(x) \]

discrete case:

\[\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx \]

continuous case:

- Expectation can be thought of as the average over many experiments
Expected Value for Functions of X

- Let $g(x)$ be a function of the r.v. X. Then

 discrete case: \(E[g(X)] = \sum_{x} g(x) \ p(x) \)

 continuous case: \(E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \, dx \)

- An important function of X: \([X-E(X)]^2\)

 - Variance \(E[[X-E(X)]^2] = \text{var}(X)=\sigma^2 \)

 - Variance measures the spread around the mean

 - Standard deviation = \([\text{var}(X)]^{1/2}\), has the same units as the r.v. X
Properties of Expectation

- If X is constant r.v. $X=c$, then $E(X) = c$

- If a and b are constants, $E(aX+b)=aE(X)+b$

- More generally,

 $$E\left(\sum_{i=1}^{n} (a_i X_i + c_i)\right) = \sum_{i=1}^{n} (a_i E(X_i) + c_i)$$

- If a and b are constants, then $\text{var}(aX+b)=a^2\text{var}(X)$
Pairs of Random Variables

- Say we have 2 random variables:
 - Fish weight \(X \)
 - Fish lightness \(Y \)

- Can define joint CDF
 \[
 F(a,b) = P(X \leq a, Y \leq b) = P(\omega \in S \mid X(\omega) \leq a, Y(\omega) \leq b)
 \]

- Similar to single variable case, can define
 - discrete: joint probability mass function
 \[
 p(a,b) = P(X = a, Y = b)
 \]
 - continuous: joint density function \(f(x,y) \)
 \[
 P(a \leq X \leq b, c \leq Y \leq d) = \int_{a \leq x \leq b} \int_{c \leq y \leq d} f(x,y) \, dx \, dy
 \]
Marginal Distributions

- given joint mass function \(p_{X,Y}(x,y) \), marginal, i.e. probability mass function for r.v. X can be obtained from \(p_{X,Y}(x,y) \)

\[
p_X(x) = \sum_{y} p_{X,Y}(x,y)
\]

\[
p_Y(y) = \sum_{x} p_{X,Y}(x,y)
\]

- marginal densities \(f_X(x) \) and \(f_Y(y) \) are obtained from joint density \(f_{X,Y}(x,y) \) by integrating

\[
f_X(x) = \int_{y=-\infty}^{y=\infty} f_{X,Y}(x,y) \, dy
\]

\[
f_Y(y) = \int_{x=-\infty}^{x=\infty} f_{X,Y}(x,y) \, dx
\]
Independence of Random Variables

- r.v. X and Y are independent if

 \[P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y) \]

- Theorem: r.v. X and Y are independent if and only if

 \[p_{x,y}(x,y) = p_y(y)p_x(x) \quad \text{(discrete)} \]

 \[f_{x,y}(x,y) = f_y(y)f_x(x) \quad \text{(continuous)} \]
More on Independent RV’s

- If X and Y are independent, then

 - $E(XY) = E(X)E(Y)$
 - $Var(X+Y) = Var(X) + Var(Y)$
 - $G(X)$ and $H(Y)$ are independent
Covariance

- Given r.v. X and Y, covariance is defined as:
 \[\text{cov}(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y) \]

- Covariance is useful for checking if features X and Y give similar information.

- Covariance (from co-vary) indicates tendency of X and Y to vary together:
 - If X and Y tend to increase together, Cov(X,Y) > 0
 - If X tends to decrease when Y increases, Cov(X,Y) < 0
 - If decrease (increase) in X does not predict behavior of Y, Cov(X,Y) is close to 0
Covariance Correlation

- If \(\text{cov}(X,Y) = 0 \), then \(X \) and \(Y \) are said to be uncorrelated (think unrelated). However \(X \) and \(Y \) are not necessarily independent.

- If \(X \) and \(Y \) are independent, \(\text{cov}(X,Y) = 0 \)

- Can normalize covariance to get correlation

\[
-1 \leq \text{cor}(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} \leq 1
\]
Random Vectors

- Generalize from pairs of r.v. to vector of r.v. \(X = [X_1 \ X_2 \ldots \ X_3] \) (think multiple features)
- Joint CDF, PDF, PMF are defined similarly to the case of pair of r.v.'s

Example:

\[
F(x_1, x_2, \ldots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n)
\]

- All the properties of expectation, variance, covariance transfer with suitable modifications
Covariance Matrix

- characteristics summary of random vector
- \(\text{cov}(X) = \text{cov}[X_1, X_2, \ldots, X_n] = \sum = E[(X-\mu)(X-\mu)^T] = \)

\[
\begin{bmatrix}
E(X_1 - \mu_1)(X_1 - \mu_1) & \cdots & E(X_1 - \mu_1)(X_n - \mu_1) \\
E(X_2 - \mu_2)(X_1 - \mu_1) & \cdots & E(X_n - \mu_n)(X_2 - \mu_2) \\
\vdots & \ddots & \vdots \\
E(X_n - \mu_n)(X_1 - \mu_1) & \cdots & E(X_n - \mu_n)(X_n - \mu_n)
\end{bmatrix}
\]

variances

\[
\begin{bmatrix}
\sigma_1^2 & c_{12} & c_{13} \\
c_{21} & \sigma_2^2 & c_{23} \\
c_{31} & c_{32} & \sigma_3^2
\end{bmatrix}
\]
covariances
Normal or Gaussian Random Variable

- Has density
 \[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

- Mean \(\mu \), and variance \(\sigma^2 \)
Multivariate Gaussian

- has density \(f(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}[(x-\mu)^t \Sigma^{-1} (x-\mu)]} \)
- mean vector \(\mu = [\mu_1, \ldots, \mu_n] \)
- covariance matrix \(\Sigma \)
Conditional Mass Function, Bayes Rule

- Define conditional mass function of X given $Y=y$ by
 \[P(x / y) = \frac{P(x, y)}{P(y)} \]
 y is fixed

- The law of Total Probability:
 \[P(x) = \sum_y P(x, y) = \sum_y P(x / y)P(y) \]

- The Bayes Rule:
 \[P(y / x) = \frac{P(y, x)}{P(x)} = \frac{P(x / y)P(y)}{\sum_y P(x / y)P(y)} \]
Conditional Density Function, Bayes Rule

- Define conditional density function of X given $Y=y$ by
 \[
p(x \mid y) = \frac{p(x, y)}{p(y)}
 \]
 \(y \) is fixed

- The law of Total Probability:
 \[
p(x) = \int_{-\infty}^{\infty} p(x, y) \, dy = \int_{-\infty}^{\infty} p(x \mid y) p(y) \, dy
 \]

- The Bayes Rule:
 \[
p(y \mid x) = \frac{p(y, x)}{p(x)} = \frac{p(x \mid y) p(y)}{\int_{-\infty}^{\infty} p(x \mid y) p(y) \, dy}
 \]