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Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Example – 3D Reconstruction

Source: http://www.photogrammetry.ethz.ch/general/persons/fabio/fabio_spie0102.pdf

Image Matching

Three approaches:

• Shape Matching

– Assume shape has been extracted

• Direct (appearance-based) registration

– Search for alignment where most pixels agree

• Feature-based registration

– Find a few matching features in both images

– compute alignment

Direct Method (brute force)

The simplest approach is a brute force search

• Need to define image distance function:

SSD, Normalized Correlation, Mutual Information, etc.

• Search over all parameters within a reasonable range:

e.g. for translation:

for ∆x=x0:step:x1,

for ∆y=y0:step:y1,

calculate Dist(image1(x,y),image2(x+∆x,y+∆y))

end;

end;
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Shape Representation

• Region Based Representation

• Area / Circumference / Width

• Euler Number

• Moments

• Quad Trees

• Edge Based Representation

• Chain Code

• Fourier Descriptor

• Interior Based Representation

• MAT / Skeleton

• Hierarchical Representations

Shape Representation

Shape representation must be GOOD:

• Different shapes ⇔ Different Codes

• Location / Rotation /Scale  Invariant

• Convenient

• Stable

•Generative
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Moment expressions that are invariant to

translation, rotation and/or scale:

wide domain, not unique, not unambiguous, not 

generative, not stable, invariant to translation, rotation. 

Very convenient.
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Quad Tree Representation

wide domain, 

unique, unambiguous, generative – up to error 

tolerance
partially stable

Not invariant to translation, rotation scale. 

Inefficient for comparison

Edge Based Representation

Chain Code

wide domain, Unique, unambiguous, generative - 2D only,

Not very stable Invariant to translation. Rotation (x90 deg)
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wide domain, Unique, unambiguous, generative, Stable (depends

on tolerance), Invariant to translation. Rotation, Scale.

Fourier Descriptors

θθθθ

r

Fourier

Transform

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Interior Based representation – MAT, Skeleton

Pattern Matching – Direct approach
(Appearance based)

pattern

image

• • •

( ) ( ) ( )[ ]∑
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e y,xPyv,xuIv,ud
2

pattern

image

De(u,v)=0

Look for minimum of:

Finding a pattern in an Image
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Finding a pattern in an Image
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∈

−++=
Ny,x

e y,xPyv,xuIv,ud
2

( ) ( ) ( ) ( )∑
∈

++−+++=
Ny,x

y,xPyv,xuIy,xPyv,xuI 2
22

( ) ( ) ( ) ( )∑ ∑∑
∈ ∈∈

++−+++=
Ny,x Ny,xNy,x

y,xPyv,xuIy,xPyv,xuI 2
22

Sum of squares

of the window

Sum of squares

of the pattern

CONSTANT

Correlation

Finding a pattern in an Image - Correlation
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Correlation Real Image – Correlation Example

image

pattern

Correlation
Correlation value is dependent on the local 

gray value of the pattern and the image window.
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Correlation value is independent of the local 

gray value of the pattern and the image window.

Correlation value is in (-1..1)

Normalized Correlation Normalized Correlation - Example
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Correlation

Normalized Correlation - Example
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Pattern Matching - Example
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Pairs for Image Matching 
Feature Based Object 

Detection

Features Descriptors

Feature Based Object 
Detection

Features: Issues to be addressed

• What are “good” features to extract?

–Distinctive

–Invariant to different acquisition conditions

–Different view-points, different   

illuminations, different cameras, etc.

• How can we find corresponding features 
in both images?

no chance to match!
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Invariant Feature Descriptors

• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, 
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid 
2001, Brown & Lowe 2002, Matas et. al. 2002, 
Schaffalitzky & Zisserman 2002 

Image Features

• Feature Detectors - where

• Feature Descriptors - what

• Methods:
– Harris Corner Detector (multi-scale Harris)

– SIFT (Scale Invariant Features Transform)

Harris Corner Detector 
C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

• We should easily recognize a corner by 
looking through a small window

• Shifting a window in any direction should 

give a large change in intensity

Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions
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Harris Detector: Mathematics
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Evaluate change of intensity for shift in [u,v] direction:
IntensityShifted 

intensity
Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Corner at position (x,y) ? Harris Detector: Mathematics
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Harris Detector: Mathematics
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For small shifts [u,v] we have a bilinear approximation:
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where M is a 2×2 matrix computed from image derivatives:

Harris Detector: Mathematics

Denote by ei the ith eigen-vector of M  whose eigen-value is λi:

Conclusions:

0>= ii

T

i M λee

( ) ( ) max1,
,maxarg e== vuE

vu

( ) maxmax λ=eE

What is the direction [u,v] of greatest intensity change?
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v
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Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(λmax)
-1/2

(λmin)
-1/2

Ellipse E(u,v) = const

Harris Detector: Mathematics

λ1

λ2

“Corner”

λ1 and λ2 are large,

λ1 ~ λ2;

E increases in all 

directions

λ1 and λ2 are small;

E is almost constant 

in all directions

“Edge” 

λ1 >> λ2

“Edge” 

λ2 >> λ1

“Flat” 

region

Classification of 

image points using 

eigenvalues of M:

Harris Detector: Mathematics

M

M
R

Trace
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=

Measure of corner response (without calculating the e.v.):
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R is associated with the smallest eigen-vector (why?)
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Harris Corner Detector

• The Algorithm:

– Find points with large corner response 

function  R (R > threshold)

– Take the points of local maxima of R
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Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow

Find points with large corner response: R>threshold
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
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Harris Detector: Workflow Harris Detector: Example

Harris Detector: Example Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 

remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some Properties

Partial invariance to affine intensity change

� Only derivatives are used =>   invariance to intensity

shift I → I + b

� Intensity scale: I → a I

g

x (image coordinate)

threshold

g

x (image coordinate)

Harris Detector: Some Properties

• But: non-invariant to spatial scale!

All points will be 

classified as edges
Corner !

Scale Invariant Detection

• Consider regions (e.g. circles) of different 
sizes around a point

• Regions of corresponding sizes will look 

the same in both images

Scale Invariant Detection

• The problem: how do we choose corresponding circles 
independently in each image?

• Solution: choose the scale of the “best” corner.
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Harris-Laplacian Point Detector

• Harris-Laplacian
Find local maximum of:  Harris corner detector 

for a set of Laplacian images.

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

scale

x

y

← Harris →

←
L

ap
la

ci
an

 →

Memo: Gaussian / Laplacian Pyramids

-

-

- =

=

=

Gaussian 

Pyramid

Laplacian 

Pyramid

Harris - Laplacian Detector SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity

Compute appearance

descriptors

SIFT (Lowe ’04)
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SIFT – Scale Invariant Feature Transform

• Give about 2000 stable “keypoints” for a typical 500 x 500 
image

• Each keypoint is described by a vector of 

4 x 4 x 8 = 128 elements
(over 4x4 array of 8-bin gradient histograms keypoint

neighborhood)

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Find local maximum of Laplacian in 

space and scale

scale

x

y

← Laplacian →

←
L

ap
la

ci
an

 →

SIFT - Point Detection

• Construct scale-space:

σ increasing

First octave Second octave

( ) IG *σ

( ) IkG *σ
( ) IkG *2σ

( ) IG *2σ

( ) IkG *2 σ

( ) IkG *2 2σ

SIFT – Scale Space
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SIFT – point detection

• Scale Space extrema detection.

• Choose all extrema within 3x3x3 neighborhood.

( )σD

( )σkD

( )σ2kD

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

SIFT – point detection

Experimentally, Maximum of Laplacian gives best notion of scale:

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

Detections at multiple scales

SIFT - Step 1: Interest Point Detection

Some of the detected SIFT frames. 

http://www.vlfeat.org/overview/sift.html

832 SIFT extrema233x189 image

SIFT – point detection
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2) Remove bad Interest points:

a) Remove points with low contrast

b) Remove Edge points (Eigenvalues of    

Hessian Matrix must BOTH be large).

SIFT - Step 2: Interest Localization & Filtering Interest Points

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT – Descriptor Vector

• Each SIFT interest point is associated with 
location (x,y) and scale (σ)

• Compute gradient magnitude and orientation for 
each SIFT point:

STEP 3: Select canonical orientation  

0 2ππππ

Assign canonical orientation at peak of smoothed histogram (fit 

parabola to better localize peak).

STEP 3: Select canonical orientation  

• Compute SIFT feature - a vector of 128 entries.

• Each SIFT interest point is associated 
with location (x,y), scale (σ), gradient 
magnitude and orientation (m, θ).

SIFT – Descriptor Vector
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• Gradients determined in 16x16 window at SIFT point in 
scale space.

• Histogram is computed for gradients of each 4x4 sub 
window in 8 relative directions.

• A 4x4x8 = 128 dimensional feature vector is produced.

SIFT – Descriptor Vector

Image from: Jonas Hurrelmann

STEP 4: Compute SIFT feature vector of 128 entries
SIFT – Descriptor Vector
STEP 4: Compute feature vector  

Object Recognition

• Only 3 keys are 
needed for recognition, 
so extra keys provide 
robustness

Recognition under occlusion
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Test of illumination Robustness

• Same image under differing illumination

273 keys verified in final match

• Given a feature in I1, how to find the best 

match in I2?

1. Define distance function that compares two 
descriptors.

2. Test all the features in I2, find the one with min 
distance. Accept if below threshold.

Matching SIFT Features

I1
I2

Matching SIFT Features

22 correct matches

Matching SIFT Features

33 correct matches
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Matching SIFT Features

How to evaluate the performance of a  

feature matcher?

50

75

200

Matching SIFT Features

• True positives (TP) = # of detected 
matches that are correct

• False positives (FP) = # of detected 
matches that are incorrect

50

75

200
false match

true match

• Threshold t affects  # of correct/false matches

Matching SIFT Features

1

0.7

0 1FP rate

TP

rate

0.1

• ROC Curve

- Generated by computing   

(FP, TP) for different 

thresholds.

- Maximize area under the 

curve (AUC).

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluating SIFT Features

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, 
and to moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5

Rotation = 450
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Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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Image Matching
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Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Example – 3D Reconstruction

Source: http://www.photogrammetry.ethz.ch/general/persons/fabio/fabio_spie0102.pdf

Image Matching

Three approaches:

• Shape Matching

– Assume shape has been extracted

• Direct (appearance-based) registration

– Search for alignment where most pixels agree

• Feature-based registration

– Find a few matching features in both images

– compute alignment

Direct Method (brute force)

The simplest approach is a brute force search

• Need to define image distance function:

SSD, Normalized Correlation, Mutual Information, etc.

• Search over all parameters within a reasonable range:

e.g. for translation:

for ∆x=x0:step:x1,

for ∆y=y0:step:y1,

calculate Dist(image1(x,y),image2(x+∆x,y+∆y))

end;

end;
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Shape Representation

• Region Based Representation

• Area / Circumference / Width

• Euler Number

• Moments

• Quad Trees

• Edge Based Representation

• Chain Code

• Fourier Descriptor

• Interior Based Representation

• MAT / Skeleton

• Hierarchical Representations

Shape Representation

Shape representation must be GOOD:

• Different shapes ⇔ Different Codes

• Location / Rotation /Scale  Invariant

• Convenient

• Stable

•Generative

∑∑=
x y
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ij )y,x(IyxM

I(x,y) = 1   If pixel (x,y) is IN object

0   otherwise 

ij –Moment:

Area: ∑∑=
x y
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M
x =Average x-coordinate:

Average y-coordinate: 00

01

M

M
y =

Center of Mass:

Moments

)(
M

M
,

M

M
)y,x(

00
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00

10=

Moments

∑∑ −−=µ
x y

ji

ij )y,x(I)yy()xx(Central Moment:

Moment expressions that are invariant to

translation, rotation and/or scale:

wide domain, not unique, not unambiguous, not 

generative, not stable, invariant to translation, rotation. 

Very convenient.
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Quad Tree Representation

wide domain, 

unique, unambiguous, generative – up to error 

tolerance
partially stable

Not invariant to translation, rotation scale. 

Inefficient for comparison

Edge Based Representation

Chain Code

wide domain, Unique, unambiguous, generative - 2D only,

Not very stable Invariant to translation. Rotation (x90 deg)
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wide domain, Unique, unambiguous, generative, Stable (depends

on tolerance), Invariant to translation. Rotation, Scale.

Fourier Descriptors

θθθθ

r

Fourier

Transform

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Interior Based representation – MAT, Skeleton

Pattern Matching – Direct approach
(Appearance based)

pattern

image

• • •

( ) ( ) ( )[ ]∑
∈

−++=
Ny,x

e y,xPyv,xuIv,ud
2

pattern

image

De(u,v)=0

Look for minimum of:

Finding a pattern in an Image
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Finding a pattern in an Image

( ) ( ) ( )[ ]∑
∈

−++=
Ny,x

e y,xPyv,xuIv,ud
2

( ) ( ) ( ) ( )∑
∈

++−+++=
Ny,x

y,xPyv,xuIy,xPyv,xuI 2
22

( ) ( ) ( ) ( )∑ ∑∑
∈ ∈∈

++−+++=
Ny,x Ny,xNy,x

y,xPyv,xuIy,xPyv,xuI 2
22

Sum of squares

of the window

Sum of squares

of the pattern

CONSTANT

Correlation

Finding a pattern in an Image - Correlation

• • •

( ) ( )[ ]∑
∈

++
Ny,x

y,xPyv,xuI

pattern

image

Look for maximum of:

*

I P

I  corr  P

Correlation Real Image – Correlation Example

image

pattern

Correlation
Correlation value is dependent on the local 

gray value of the pattern and the image window.
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( )[ ] ( )[ ]∑
∈

−−++
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Correlation value is independent of the local 

gray value of the pattern and the image window.

Correlation value is in (-1..1)

Normalized Correlation Normalized Correlation - Example

image

pattern

Correlation Normalized 
Correlation

Normalized Correlation - Example

image

Pattern

Correlation

Pattern Matching - Example

imagePattern
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Pairs for Image Matching 
Feature Based Object 

Detection

Features Descriptors

Feature Based Object 
Detection

Features: Issues to be addressed

• What are “good” features to extract?

–Distinctive

–Invariant to different acquisition conditions

–Different view-points, different   

illuminations, different cameras, etc.

• How can we find corresponding features 
in both images?

no chance to match!
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Invariant Feature Descriptors

• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, 
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid 
2001, Brown & Lowe 2002, Matas et. al. 2002, 
Schaffalitzky & Zisserman 2002 

Image Features

• Feature Detectors - where

• Feature Descriptors - what

• Methods:
– Harris Corner Detector (multi-scale Harris)

– SIFT (Scale Invariant Features Transform)

Harris Corner Detector 
C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

• We should easily recognize a corner by 
looking through a small window

• Shifting a window in any direction should 

give a large change in intensity

Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions
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Harris Detector: Mathematics

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑

Evaluate change of intensity for shift in [u,v] direction:
IntensityShifted 

intensity
Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Corner at position (x,y) ? Harris Detector: Mathematics

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑
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
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
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For small [u,v]:

We have:

[ ] [ ] 
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

 
≅  

 

For small shifts [u,v] we have a bilinear approximation:

2

2
,

( , )
x x y

x y x y y

I I I
M w x y

I I I

 
=  

  
∑

where M is a 2×2 matrix computed from image derivatives:

Harris Detector: Mathematics

Denote by ei the ith eigen-vector of M  whose eigen-value is λi:

Conclusions:

0>= ii

T

i M λee

( ) ( ) max1,
,maxarg e== vuE

vu

( ) maxmax λ=eE

What is the direction [u,v] of greatest intensity change?
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

 
≅  

 

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(λmax)
-1/2

(λmin)
-1/2

Ellipse E(u,v) = const

Harris Detector: Mathematics

λ1

λ2

“Corner”

λ1 and λ2 are large,

λ1 ~ λ2;

E increases in all 

directions

λ1 and λ2 are small;

E is almost constant 

in all directions

“Edge” 

λ1 >> λ2

“Edge” 

λ2 >> λ1

“Flat” 

region

Classification of 

image points using 

eigenvalues of M:

Harris Detector: Mathematics

M

M
R

Trace

det
=

Measure of corner response (without calculating the e.v.):

1 2

1 2

det

trace

M

M

λ λ
λ λ

=

= +

R is associated with the smallest eigen-vector (why?)
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R v.s. λ1, λ2

Harris Corner Detector

• The Algorithm:

– Find points with large corner response 

function  R (R > threshold)

– Take the points of local maxima of R
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Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow

Find points with large corner response: R>threshold
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
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Harris Detector: Workflow Harris Detector: Example

Harris Detector: Example Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 

remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some Properties

Partial invariance to affine intensity change

� Only derivatives are used =>   invariance to intensity

shift I → I + b

� Intensity scale: I → a I

g

x (image coordinate)

threshold

g

x (image coordinate)

Harris Detector: Some Properties

• But: non-invariant to spatial scale!

All points will be 

classified as edges
Corner !

Scale Invariant Detection

• Consider regions (e.g. circles) of different 
sizes around a point

• Regions of corresponding sizes will look 

the same in both images

Scale Invariant Detection

• The problem: how do we choose corresponding circles 
independently in each image?

• Solution: choose the scale of the “best” corner.
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Harris-Laplacian Point Detector

• Harris-Laplacian
Find local maximum of:  Harris corner detector 

for a set of Laplacian images.

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

scale

x

y

← Harris →

←
L

ap
la

ci
an

 →

Memo: Gaussian / Laplacian Pyramids

-

-

- =

=

=

Gaussian 

Pyramid

Laplacian 

Pyramid

Harris - Laplacian Detector SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity

Compute appearance

descriptors

SIFT (Lowe ’04)
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SIFT – Scale Invariant Feature Transform

• Give about 2000 stable “keypoints” for a typical 500 x 500 
image

• Each keypoint is described by a vector of 

4 x 4 x 8 = 128 elements
(over 4x4 array of 8-bin gradient histograms keypoint

neighborhood)

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Find local maximum of Laplacian in 

space and scale

scale

x

y

← Laplacian →

←
L

ap
la

ci
an

 →

SIFT - Point Detection

• Construct scale-space:

σ increasing

First octave Second octave

( ) IG *σ

( ) IkG *σ
( ) IkG *2σ

( ) IG *2σ

( ) IkG *2 σ

( ) IkG *2 2σ

SIFT – Scale Space
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SIFT – point detection

• Scale Space extrema detection.

• Choose all extrema within 3x3x3 neighborhood.

( )σD

( )σkD

( )σ2kD

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

SIFT – point detection

Experimentally, Maximum of Laplacian gives best notion of scale:

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

Detections at multiple scales

SIFT - Step 1: Interest Point Detection

Some of the detected SIFT frames. 

http://www.vlfeat.org/overview/sift.html

832 SIFT extrema233x189 image

SIFT – point detection
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2) Remove bad Interest points:

a) Remove points with low contrast

b) Remove Edge points (Eigenvalues of    

Hessian Matrix must BOTH be large).

SIFT - Step 2: Interest Localization & Filtering Interest Points

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT – Descriptor Vector

• Each SIFT interest point is associated with 
location (x,y) and scale (σ)

• Compute gradient magnitude and orientation for 
each SIFT point:

STEP 3: Select canonical orientation  

0 2ππππ

Assign canonical orientation at peak of smoothed histogram (fit 

parabola to better localize peak).

STEP 3: Select canonical orientation  

• Compute SIFT feature - a vector of 128 entries.

• Each SIFT interest point is associated 
with location (x,y), scale (σ), gradient 
magnitude and orientation (m, θ).

SIFT – Descriptor Vector
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• Gradients determined in 16x16 window at SIFT point in 
scale space.

• Histogram is computed for gradients of each 4x4 sub 
window in 8 relative directions.

• A 4x4x8 = 128 dimensional feature vector is produced.

SIFT – Descriptor Vector

Image from: Jonas Hurrelmann

STEP 4: Compute SIFT feature vector of 128 entries
SIFT – Descriptor Vector
STEP 4: Compute feature vector  

Object Recognition

• Only 3 keys are 
needed for recognition, 
so extra keys provide 
robustness

Recognition under occlusion
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Test of illumination Robustness

• Same image under differing illumination

273 keys verified in final match

• Given a feature in I1, how to find the best 

match in I2?

1. Define distance function that compares two 
descriptors.

2. Test all the features in I2, find the one with min 
distance. Accept if below threshold.

Matching SIFT Features

I1
I2

Matching SIFT Features

22 correct matches

Matching SIFT Features

33 correct matches
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Matching SIFT Features

How to evaluate the performance of a  

feature matcher?

50

75

200

Matching SIFT Features

• True positives (TP) = # of detected 
matches that are correct

• False positives (FP) = # of detected 
matches that are incorrect

50

75

200
false match

true match

• Threshold t affects  # of correct/false matches

Matching SIFT Features

1

0.7

0 1FP rate

TP

rate

0.1

• ROC Curve

- Generated by computing   

(FP, TP) for different 

thresholds.

- Maximize area under the 

curve (AUC).

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluating SIFT Features

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, 
and to moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5

Rotation = 450
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Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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Image Matching
Image Retrieval

Object Recognition Motion Estimation and Optical Flow

Tracking 
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Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Example – 3D Reconstruction

Source: http://www.photogrammetry.ethz.ch/general/persons/fabio/fabio_spie0102.pdf

Image Matching

Three approaches:

• Shape Matching

– Assume shape has been extracted

• Direct (appearance-based) registration

– Search for alignment where most pixels agree

• Feature-based registration

– Find a few matching features in both images

– compute alignment

Direct Method (brute force)

The simplest approach is a brute force search

• Need to define image distance function:

SSD, Normalized Correlation, Mutual Information, etc.

• Search over all parameters within a reasonable range:

e.g. for translation:

for ∆x=x0:step:x1,

for ∆y=y0:step:y1,

calculate Dist(image1(x,y),image2(x+∆x,y+∆y))

end;

end;
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Shape Representation

• Region Based Representation

• Area / Circumference / Width

• Euler Number

• Moments

• Quad Trees

• Edge Based Representation

• Chain Code

• Fourier Descriptor

• Interior Based Representation

• MAT / Skeleton

• Hierarchical Representations

Shape Representation

Shape representation must be GOOD:

• Different shapes ⇔ Different Codes

• Location / Rotation /Scale  Invariant

• Convenient

• Stable

•Generative

∑∑=
x y

ji

ij )y,x(IyxM

I(x,y) = 1   If pixel (x,y) is IN object

0   otherwise 

ij –Moment:

Area: ∑∑=
x y

)y,x(IM00

00

10

M

M
x =Average x-coordinate:

Average y-coordinate: 00

01

M

M
y =

Center of Mass:

Moments

)(
M

M
,

M

M
)y,x(

00

01

00

10=

Moments

∑∑ −−=µ
x y

ji

ij )y,x(I)yy()xx(Central Moment:

Moment expressions that are invariant to

translation, rotation and/or scale:

wide domain, not unique, not unambiguous, not 

generative, not stable, invariant to translation, rotation. 

Very convenient.
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Quad Tree Representation

wide domain, 

unique, unambiguous, generative – up to error 

tolerance
partially stable

Not invariant to translation, rotation scale. 

Inefficient for comparison

Edge Based Representation

Chain Code

wide domain, Unique, unambiguous, generative - 2D only,

Not very stable Invariant to translation. Rotation (x90 deg)

0

2

4

6

13

5 7

0
7

6

6

6

6

5

5

3

3

2

2

2

1

1

000102011717211

Fourier Descriptors

θθθθ

r

θθθθ

r

Boundary 

Representation

Fourier

Transform

θθθθ

r

Fourier TransformBoundary Rep

Translation

θθθθ

rScale

θθθθ

r

θθθθ

r

θθθθ

r

θθθθ

r

(spectrum)

Rotation
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wide domain, Unique, unambiguous, generative, Stable (depends

on tolerance), Invariant to translation. Rotation, Scale.

Fourier Descriptors

θθθθ

r

Fourier

Transform

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Interior Based representation – MAT, Skeleton

Pattern Matching – Direct approach
(Appearance based)

pattern

image

• • •

( ) ( ) ( )[ ]∑
∈

−++=
Ny,x

e y,xPyv,xuIv,ud
2

pattern

image

De(u,v)=0

Look for minimum of:

Finding a pattern in an Image
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Finding a pattern in an Image

( ) ( ) ( )[ ]∑
∈

−++=
Ny,x

e y,xPyv,xuIv,ud
2

( ) ( ) ( ) ( )∑
∈

++−+++=
Ny,x

y,xPyv,xuIy,xPyv,xuI 2
22

( ) ( ) ( ) ( )∑ ∑∑
∈ ∈∈

++−+++=
Ny,x Ny,xNy,x

y,xPyv,xuIy,xPyv,xuI 2
22

Sum of squares

of the window

Sum of squares

of the pattern

CONSTANT

Correlation

Finding a pattern in an Image - Correlation

• • •

( ) ( )[ ]∑
∈

++
Ny,x

y,xPyv,xuI

pattern

image

Look for maximum of:

*

I P

I  corr  P

Correlation Real Image – Correlation Example

image

pattern

Correlation
Correlation value is dependent on the local 

gray value of the pattern and the image window.
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( )[ ] ( )[ ]∑
∈

−−++
Ny,x

uv Py,xPIyv,xuI

( )[ ] ( )[ ]
21

22

/

Ny,x Ny,x

uv Py,xPIyv,xuI











−−++∑ ∑

∈ ∈

Correlation value is independent of the local 

gray value of the pattern and the image window.

Correlation value is in (-1..1)

Normalized Correlation Normalized Correlation - Example

image

pattern

Correlation Normalized 
Correlation

Normalized Correlation - Example

image

Pattern

Correlation

Pattern Matching - Example

imagePattern

Euclidean

0

0.2

0.4

0.6

0.8

1

NCC MTM
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Pairs for Image Matching 
Feature Based Object 

Detection

Features Descriptors

Feature Based Object 
Detection

Features: Issues to be addressed

• What are “good” features to extract?

–Distinctive

–Invariant to different acquisition conditions

–Different view-points, different   

illuminations, different cameras, etc.

• How can we find corresponding features 
in both images?

no chance to match!
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Invariant Feature Descriptors

• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, 
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid 
2001, Brown & Lowe 2002, Matas et. al. 2002, 
Schaffalitzky & Zisserman 2002 

Image Features

• Feature Detectors - where

• Feature Descriptors - what

• Methods:
– Harris Corner Detector (multi-scale Harris)

– SIFT (Scale Invariant Features Transform)

Harris Corner Detector 
C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

• We should easily recognize a corner by 
looking through a small window

• Shifting a window in any direction should 

give a large change in intensity

Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions
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Harris Detector: Mathematics

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑

Evaluate change of intensity for shift in [u,v] direction:
IntensityShifted 

intensity
Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Corner at position (x,y) ? Harris Detector: Mathematics

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑

( ) ( ) yx vIuIyxIvyuxI ++=++ ,,

( ) ( ) ( ) ( )[ ] =







=∑

yx

yx
v

u
yxIyxIyxwvuE

,

2

,,,,

For small [u,v]:

We have:

[ ] [ ] 







=




















∑

v

u
Mvu

v

u

III

III
yxwvu

yyx

yxx

2

2

),(

Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

 
≅  

 

For small shifts [u,v] we have a bilinear approximation:

2

2
,

( , )
x x y

x y x y y

I I I
M w x y

I I I

 
=  

  
∑

where M is a 2×2 matrix computed from image derivatives:

Harris Detector: Mathematics

Denote by ei the ith eigen-vector of M  whose eigen-value is λi:

Conclusions:

0>= ii

T

i M λee

( ) ( ) max1,
,maxarg e== vuE

vu

( ) maxmax λ=eE

What is the direction [u,v] of greatest intensity change?
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

 
≅  

 

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(λmax)
-1/2

(λmin)
-1/2

Ellipse E(u,v) = const

Harris Detector: Mathematics

λ1

λ2

“Corner”

λ1 and λ2 are large,

λ1 ~ λ2;

E increases in all 

directions

λ1 and λ2 are small;

E is almost constant 

in all directions

“Edge” 

λ1 >> λ2

“Edge” 

λ2 >> λ1

“Flat” 

region

Classification of 

image points using 

eigenvalues of M:

Harris Detector: Mathematics

M

M
R

Trace

det
=

Measure of corner response (without calculating the e.v.):

1 2

1 2

det

trace

M

M

λ λ
λ λ

=

= +

R is associated with the smallest eigen-vector (why?)
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R v.s. λ1, λ2

Harris Corner Detector

• The Algorithm:

– Find points with large corner response 

function  R (R > threshold)

– Take the points of local maxima of R
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Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow

Find points with large corner response: R>threshold
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
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Harris Detector: Workflow Harris Detector: Example

Harris Detector: Example Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 

remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some Properties

Partial invariance to affine intensity change

� Only derivatives are used =>   invariance to intensity

shift I → I + b

� Intensity scale: I → a I

g

x (image coordinate)

threshold

g

x (image coordinate)

Harris Detector: Some Properties

• But: non-invariant to spatial scale!

All points will be 

classified as edges
Corner !

Scale Invariant Detection

• Consider regions (e.g. circles) of different 
sizes around a point

• Regions of corresponding sizes will look 

the same in both images

Scale Invariant Detection

• The problem: how do we choose corresponding circles 
independently in each image?

• Solution: choose the scale of the “best” corner.
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Harris-Laplacian Point Detector

• Harris-Laplacian
Find local maximum of:  Harris corner detector 

for a set of Laplacian images.

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

scale

x

y

← Harris →

←
L

ap
la

ci
an

 →

Memo: Gaussian / Laplacian Pyramids

-

-

- =

=

=

Gaussian 

Pyramid

Laplacian 

Pyramid

Harris - Laplacian Detector SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity

Compute appearance

descriptors

SIFT (Lowe ’04)
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SIFT – Scale Invariant Feature Transform

• Give about 2000 stable “keypoints” for a typical 500 x 500 
image

• Each keypoint is described by a vector of 

4 x 4 x 8 = 128 elements
(over 4x4 array of 8-bin gradient histograms keypoint

neighborhood)

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT – Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Find local maximum of Laplacian in 

space and scale

scale

x

y

← Laplacian →

←
L

ap
la

ci
an

 →

SIFT - Point Detection

• Construct scale-space:

σ increasing

First octave Second octave

( ) IG *σ

( ) IkG *σ
( ) IkG *2σ

( ) IG *2σ

( ) IkG *2 σ

( ) IkG *2 2σ

SIFT – Scale Space
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SIFT – point detection

• Scale Space extrema detection.

• Choose all extrema within 3x3x3 neighborhood.

( )σD

( )σkD

( )σ2kD

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

SIFT – point detection

Experimentally, Maximum of Laplacian gives best notion of scale:

STEP 1: 

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

Detections at multiple scales

SIFT - Step 1: Interest Point Detection

Some of the detected SIFT frames. 

http://www.vlfeat.org/overview/sift.html

832 SIFT extrema233x189 image

SIFT – point detection
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2) Remove bad Interest points:

a) Remove points with low contrast

b) Remove Edge points (Eigenvalues of    

Hessian Matrix must BOTH be large).

SIFT - Step 2: Interest Localization & Filtering Interest Points

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT – Descriptor Vector

• Each SIFT interest point is associated with 
location (x,y) and scale (σ)

• Compute gradient magnitude and orientation for 
each SIFT point:

STEP 3: Select canonical orientation  

0 2ππππ

Assign canonical orientation at peak of smoothed histogram (fit 

parabola to better localize peak).

STEP 3: Select canonical orientation  

• Compute SIFT feature - a vector of 128 entries.

• Each SIFT interest point is associated 
with location (x,y), scale (σ), gradient 
magnitude and orientation (m, θ).

SIFT – Descriptor Vector
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• Gradients determined in 16x16 window at SIFT point in 
scale space.

• Histogram is computed for gradients of each 4x4 sub 
window in 8 relative directions.

• A 4x4x8 = 128 dimensional feature vector is produced.

SIFT – Descriptor Vector

Image from: Jonas Hurrelmann

STEP 4: Compute SIFT feature vector of 128 entries
SIFT – Descriptor Vector
STEP 4: Compute feature vector  

Object Recognition

• Only 3 keys are 
needed for recognition, 
so extra keys provide 
robustness

Recognition under occlusion
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Test of illumination Robustness

• Same image under differing illumination

273 keys verified in final match

• Given a feature in I1, how to find the best 

match in I2?

1. Define distance function that compares two 
descriptors.

2. Test all the features in I2, find the one with min 
distance. Accept if below threshold.

Matching SIFT Features

I1
I2

Matching SIFT Features

22 correct matches

Matching SIFT Features

33 correct matches
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Matching SIFT Features

How to evaluate the performance of a  

feature matcher?

50

75

200

Matching SIFT Features

• True positives (TP) = # of detected 
matches that are correct

• False positives (FP) = # of detected 
matches that are incorrect

50

75

200
false match

true match

• Threshold t affects  # of correct/false matches

Matching SIFT Features

1

0.7

0 1FP rate

TP

rate

0.1

• ROC Curve

- Generated by computing   

(FP, TP) for different 

thresholds.

- Maximize area under the 

curve (AUC).

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluating SIFT Features

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, 
and to moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5

Rotation = 450
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Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003


