Image Matching

Image Retrieval

Object Recognition

Motion Estimation and Optical Flow
Tracking




Example: Mosiacing (Panorama)

Example — 3D Reconstruction

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Source: http:/fvww, ethz. 7 iolfabio_spie0102.pdf

Image Matching

Three approaches:
» Shape Matching
— Assume shape has been extracted
» Direct (appearance-based) registration
— Search for alignment where most pixels agree
» Feature-based registration

— Find a few matching features in both images
— compute alignment

Direct Method (brute force)

The simplest approach is a brute force search
* Need to define image distance function:
SSD, Normalized Correlation, Mutual Information, etc.

Search over all parameters within a reasonable range:

e.g. for translation:

for Ax=x0:step:x1,
for Ay=yO:step:yl,
calculate Dist(imagel(x,y),image2(x+Ax,y+Ay))
end;
end;




Shape Representation

* Region Based Representation
e Area / Circumference / Width
¢ Euler Number

* Moments
* Quad Trees

* Edge Based Representation
¢ Chain Code
* Fourier Descriptor

« Interior Based Representation
* MAT / Skeleton
* Hierarchical Representations

Shape Representation
Shape representation must be GOOD:
« Different shapes <> Different Codes
* Location / Rotation /Scale Invariant

o - Ju
¢ Convenient w
»

e Stable

«Generative ~ \ % /

Moments

_ 1 If pixel (x,y) is IN object
I =
(y) { 0 otherwise

ij —-Moment: Mij = ZZ Xiyj|(X,Y)
X y
Area: MOO = ZZI(X:Y)
Xy

. v MIO v MOI
Average x-coordinate: X = y=
Average y-coordinate: M()() M()()
_ M, M
Center of Mass: (X,y) = (i,i
M(]O M()(]

Moments
Central Moment: M = ZZ(X -X)'(y -y)'l(xy)
x oy

Moment expressions that are invariant to
translation, rotation and/or scale:
1. For first-order moments, py; = pyo = 0, (always invariant).
2. For second-order moments, (p + g = 2), the invariants are
= paot B2 (9.80°
&= (oo po) 4,

™

. For third-order moments (p + ¢ = 3), the invariants are
&= (oo = 312 + (o — 3pa)’
Gu= (oot p2) + (bos T o)

wide domain, not unique, not unambiguous, not
generative, not stable, invariant to translation, rotation.
Very convenient.




Quad Tree Representation
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wide domain,

unique, unambiguous, generative — up to error
tolerance

partially stable

Not invariant to translation, rotation scale.
Inefficient for comparison

Edge Based Representation
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wide domain, Unique, unambiguous, generative - 2D only,
Not very stable Invariant to translation. Rotation (x90 deg)

Fourier Descriptors

r
0
Boundary

Representatiy

Fourier
r Transform
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Boundary Rep Fourier Transform
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Fourier Descriptors

Fourier
r Transform
s

wide domain, Unique, unambiguous, generative, Stable (depends
on tolerance), Invariant to translation. Rotation, Scale.

Interior Based representation — MAT, Skeleton

NN
‘//‘ [ [ \\ \‘\

I\
S

/ O\ \\ \ ) ) |
e 2N /

N / X
» ) % N >\>/></x { ///‘\

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Pattern Matching — Direct approach
(Appearance based)

pattern

Finding a pattern in an Image

pattern

Look for minimum of’

de(U,V): Z [l(u+X’V+Y)—P(X,y)]2 /

D, (u,v)=0




Finding a pattern in an Image

d,(wv)= Z lu+xv+y)-Pxy)f

Finding a pattern in an Image - Correlation

pattern

Look for maximum of:

Yl xv+yPley]

x,yeN

x,yeN
= z u+xv+y) +P(xy) - 2lu+xv+yPkxy)
x,yeN
= Zl(u +xV+y) + Z P(x,y) —22 I(u+xv+yP(xy)

x,yeN / x,yeN ‘ x,yeN ‘

Sum of squares Sum of squares Correlation

of the window of the pattern
CONSTANT

Correlation

I corr P

Real Image — Correlation Example

pattern

Correlation
Correlation value is dependent on the local
gray value of the pattern and the image window.




Normalized Correlation

Y Mosxvy)-1]Plcy)-P]

> los sl LY PPl |

Correlation value is in (-1..1)

Correlation value is independent of the local

gray value of the pattern and the image window.

Normalized Correlation - Example

pattern
(Canomw

Correlation Normali;ed
Correlation

Normalized Correlation - Example

image Correlation

IA.

Pattern

Pattern Matching - Example

el cntropy, Figure 3 phts

betwosriy twer ranidom variabl

dting the joint 20 histogrne
lietes the pevalises, U w
ol by imtensity. Together witl

Pattel’n w aEe visialieed by 0 Veun

cutidd by thee overdnp aren bety

, image

thre Banctional depencemey i=

Jependeniey is hased on go-m

-

p—

—-————
——_
[ e
I — .
F. —"-_"—' - I*‘ .
T i
— - e Bl

Euclidean

0.8

0.6

0.4

0.2




Pairs for Image Matching

Feature Based Object
Detection

Patch Model

Features Descriptors

Features: Issues to be addressed

+ What are “good” features to extract?
—Distinctive
—Invariant to different acquisition conditions
—Different view-points, different
illuminations, different cameras, etc.
* How can we find corresponding features
in both images?

no chance to match!




Invariant Feature Descriptors

« Schmid & Mohr 1997, Lowe 1999, Baumberg 2000,
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid
2001, Brown & Lowe 2002, Matas et. al. 2002,
Schaffalitzky & Zisserman 2002

Image Features

» Feature Detectors - where
» Feature Descriptors - what

» Methods:
— Harris Corner Detector (multi-scale Harris)
— SIFT (Scale Invariant Features Transform)

Harris Corner Detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

* We should easily recognize a corner by
looking through a small window

« Shifting a window in any direction should
give a large change in intensity

Harris Detector: Basic Idea

I

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions




Harris Detector: Mathematics

Corner at position (x,y) ?
Evaluate change of intensity for shift in [u, V] direction:

E(u,v)= Zw(x y)[I(x+u y+v)— I(x y)]

function |nten5|ty

1 in window, O outside Gaussian

Harris Detector: Mathematics

E(u,v)= ZW(x,y)[I(x+u,y+v)—I(x, y)]2

X,y

For small [u,v]: 1(x+u,y+v)=1(x,y)+ul + vl
We have:

)= wl, y#

2

) 1]

1%

X,y

[ VI we y){ gy ﬂw[ ”]Mm\

A /

Harris Detector: Mathematics

For small shifts [#,V] we have a bilinear approximation:

E(u,v) = [u,v] M {u}
v

where M is a 2x2 matrix computed from image derivatives:

I’ 11,
M = Zw(x y)LI ;2)}

Harris Detector: Mathematics

What is the direction [u,v] of greatest intensity change?

max

argmaxg(, E(u, v) =e

Denote by €, the i eigen-vector of M whose eigen-value is A;:

( N

e Me. =2 >0

Conclusions:

Ele,,)=4

max
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Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v);[u,v] M {u}
V

7\.1, 7\.2 — eigenvalues of M

direction of the
fastest change

Ellipse E(u,v) = const

direction of the
slowest change

Harris Detector: Mathematics

Classification of Ay
image points using
eigenvalues of M:

A, and A, are small;
E is almost constant
in all directions

——
“Edge”

A>>1, / @ “Corner”
A and A, are large,

Ay~ Ay
E increases in all
directions
“Flat” “Edge”
region Ay>> 0y
A

Harris Detector: Mathematics

Measure of corner response (without calculating the e.v.):

e
det M

" TraceM

N

detM =44,
traceM =4, + 4,

R is associated with the smallest eigen-vector (why?)

Rvs. A, Ay

Harris Corner Detector

» The Algorithm:

— Find points with large corner response
function R (R > threshold)

— Take the points of local maxima of R

11



Harris Detector: Workflow

Harris Detector: Workflow

Compute corner response R

e - P~ = Wl Y] i ‘\ -,
vl ,’ (l " ‘ ™ ‘.L‘."(. l‘: X :,

Harris Detector: Workflow
Find points with large corner response: R>threshold

Harris Detector: Workflow

Take only the points of local maxima of R

12



Harris Detector: Workflow

Harris Detector: Example

Harris Detector: Example

Harris Detector: Some Properties
» Rotation invariance

N 2 A
&7 AN

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

‘ Corner response R is invariant to image rotation

13



Harris Detector: Some Properties

Partial invariance to affine intensity change

v'Only derivatives are used => invariance to intensity

shift/ > 1+ b
vIntensity scale: I — a [
1A N\ ‘ A
threshold ,/.\\/ ;A i /’\\ T g
X (image coordinate) X (image coordinate)

Harris Detector: Some Properties

* But: non-invariant to spatial scale!

—> &

All points will be Corner !
classified as edges

Scale Invariant Detection

» Consider regions (e.qg. circles) of different
sizes around a point

* Regions of corresponding sizes will look
the same in both images

=

Scale Invariant Detection

The problem: how do we choose corresponding circles
independently in each image?

Solution: choose the scale of the “best” corner.

(o

14



Harris-Laplacian Point Detector

» Harris-Laplacian
Find local maximum of: Harris corner detector
for a set of Laplacian images.

scale D
PN
o~

<« Laplacian —»

<« Harris — X

' K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Memo: Gaussian / Laplacian Pyramids

Gaussian Laplacian
Pyramid Pyramid

Harris - Laplacian Detector

SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Koy
RB.
PN

\,ﬁf‘c

}
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S e
A X =

s #F x4
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SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Give about 2000 stable “keypoints” for a typical 500 x 500
image

Each keypoint is described by a vector of

4 x4 x 8 =128 elements
(over 4x4 array of 8-bin gradient histograms keypoint
neighborhood)

SIFT — Scale Invariant Feature Transform

- Find local maximum of Laplacian in
space and scale

scale T
=
Q
<
=N z
pJ > —
\
<« Laplacian —> X

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT - Point Detection

» Construct scale-space:

increasing o

Glo)*1
Glko)*1

First octave G(k ZU)* 1 Second octave

SIFT — Scale Space

=

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

16



SIFT — point detection
STEP 1:

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

» Scale Space extrema detection.
» Choose all extrema within 3x3x3 neighborhood.

SIFT — point detection

STEP 1:
Determine local Maxima in DoG pyramid (Laplacian Pyramid).

d2ate 2 SRR seale

Experimentally, Maximum of Laplacian gives best notion of s

SIFT - Step 1: Interest Point Detection
Detections at multiple scales

Some of the detected SIFT frames.

http://www.vlfeat.org/overview/sift.html

SIFT — point detection

233x189 image 832 SIFT extrema

17



SIFT - Step 2: Interest Localization & Filtering

2) Remove bad Interest points:
a) Remove points with low contrast
b) Remove Edge points (Eigenvalues of
Hessian Matrix must BOTH be large).

ATA= [lelz ZIwa:|

YL, Y Iyl =) [ Z” } (I ) =Y. vI(vD)T

Interest Points

(c) I

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated with
location (x,y) and scale (o)

» Compute gradient magnitude and orientation for
each SIFT point:

Assign canonical orientation at peak of smoothed histogram (fit
parabola to better localize peak).

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated
with location (x,y), scale (o), gradient
magnitude and orientation (m, 0).

&

» Compute SIFT feature - a vector of 128 entries.

18



SIFT — Descriptor Vector
STEP 4: Compute SIFT feature vector of 128 entries

+ Gradients determined in 16x16 window at SIFT point in
scale space.

» Histogram is computed for gradients of each 4x4 sub
window in 8 relative directions.

* A 4x4x8 = 128 dimensional feature vector is produced.

K| ¥ | K l

w b H | K

RN f.}: K

Image gradients Keypoint descriptor
Image from: Jonas Hurrelmann

SIFT — Descriptor Vector

STEP 4: Compute feature vector

Object Recognition

* Only 3 keys are
needed for recognition,
so extra keys provide
robustness

Recognition under occlusion

19



Test of illumination Robustness

« Same image under differing illumination

Matching SIFT Features

+ Given a feature in I, how to find the best
match in 1,7

1. Define distance function that compares two
descriptors.

2. Test all the features in |, find the one with min

22 correct matches

Matching SIFT Features

33 correct matches

20



Matching SIFT Features

How to evaluate the performance of a
feature matcher?

T T4

= 50
75
200

Matching SIFT Features

e Threshold t affects # of correct/false matches

» True positives (TP) = # of detected
matches that are correct

» False positives (FP) = # of detected
matches that are incorrect

Matching SIFT Features

¢ ROC Curve 1

- Generated by computing 0.7 /

(FP, TP) for different ’

thresholds. ™ /

rate /!
- Maximize area under the /
curve (AUC). //
/I
0 0‘.1 FP rate 1

Evaluating SIFT Features

« Empirically found? to show very good performance,
invariant to image rotation, scale, intensity change,
and to moderate affine transformations

?,ee

Scale = 2.5
Rotation = 459

detection rate

4 B 8
false positive rale atn”

I'D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IICV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003




Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

22



Image Matching

Image Retrieval

Object Recognition

Motion Estimation and Optical Flow
Tracking




Example: Mosiacing (Panorama)

Example — 3D Reconstruction

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Source: http:/fvww, ethz. 7 iolfabio_spie0102.pdf

Image Matching

Three approaches:
» Shape Matching
— Assume shape has been extracted
» Direct (appearance-based) registration
— Search for alignment where most pixels agree
» Feature-based registration

— Find a few matching features in both images
— compute alignment

Direct Method (brute force)

The simplest approach is a brute force search
* Need to define image distance function:
SSD, Normalized Correlation, Mutual Information, etc.

Search over all parameters within a reasonable range:

e.g. for translation:

for Ax=x0:step:x1,
for Ay=yO:step:yl,
calculate Dist(imagel(x,y),image2(x+Ax,y+Ay))
end;
end;




Shape Representation

* Region Based Representation
e Area / Circumference / Width
¢ Euler Number

* Moments
* Quad Trees

* Edge Based Representation
¢ Chain Code
* Fourier Descriptor

« Interior Based Representation
* MAT / Skeleton
* Hierarchical Representations

Shape Representation
Shape representation must be GOOD:
« Different shapes <> Different Codes
* Location / Rotation /Scale Invariant

o - Ju
¢ Convenient w
»

e Stable

«Generative ~ \ % /

Moments

_ 1 If pixel (x,y) is IN object
I =
(y) { 0 otherwise

ij —-Moment: Mij = ZZ Xiyj|(X,Y)
X y
Area: MOO = ZZI(X:Y)
Xy

. Y I\/II(J \/ MO]
Average x-coordinate: X = y=
Average y-coordinate: MOO MOO
_ M, M
Center of Mass: (X,y) = ( 10 , ol
MOO MOO

Moments
Central Moment: M = ZZ(X -X)'(y -y)'l(xy)
x oy

Moment expressions that are invariant to
translation, rotation and/or scale:
1. For first-order moments, py; = pyo = 0, (always invariant).
2. For second-order moments, (p + g = 2), the invariants are
= paot B2 (9.80°
&= (oo po) 4,

™

. For third-order moments (p + ¢ = 3), the invariants are
&= (oo = 312 + (o — 3pa)’
Gu= (oot p2) + (bos T o)

wide domain, not unique, not unambiguous, not
generative, not stable, invariant to translation, rotation.
Very convenient.




Quad Tree Representation

A
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wide domain,

unique, unambiguous, generative — up to error
tolerance

partially stable

Not invariant to translation, rotation scale.
Inefficient for comparison

Edge Based Representation

o [ lzﬁ‘\k 3. 7
TEE 7
. . 2/ : sy 7
o | 3 i

. 3 5

000102011717211

wide domain, Unique, unambiguous, generative - 2D only,
Not very stable Invariant to translation. Rotation (x90 deg)

Fourier Descriptors

r
0
Boundary

Representatiy

Fourier
r Transform
—_
0

Boundary Rep Fourier Transform
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Fourier Descriptors

Fourier
r Transform
s

wide domain, Unique, unambiguous, generative, Stable (depends
on tolerance), Invariant to translation. Rotation, Scale.

Interior Based representation — MAT, Skeleton

NN
‘//‘ [ [ \\ \‘\

I\
S

/ O\ \\ \ ) ) |
e 2N /

N / X
» ) % N >\>/></x { ///‘\

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Pattern Matching — Direct approach
(Appearance based)

pattern

Finding a pattern in an Image

pattern

Look for minimum of’

de(u,V): Z [l(U+X’V+Y)—P(X,y)]2 /

D, (u,v)=0




Finding a pattern in an Image

d,(wv)= Z lu+xv+y)-Pxy)f

Finding a pattern in an Image - Correlation

pattern

Look for maximum of:

Yl xv+yPley]

x,yeN

x,yeN
= z u+xv+y) +P(x,y) - 2lu+xv+yPkxy)
x,yeN
= Zl(u +xV+y) + Z P(x,y) —22 Iu+xv+yP(xy)

x,yeN / x,yeN ‘ x,yeN ‘

Sum of squares Sum of squares Correlation

of the window of the pattern
CONSTANT

Correlation

I corr P

Real Image — Correlation Example

pattern

Correlation
Correlation value is dependent on the local
gray value of the pattern and the image window.




Normalized Correlation

Y Mosxvy)-1]Plcy)-P]

> los sl LY PPl |

Correlation value is in (-1..1)

Correlation value is independent of the local

gray value of the pattern and the image window.

Normalized Correlation - Example

pattern
(Canomw

Correlation Normali;ed
Correlation

Normalized Correlation - Example

image Correlation

IA.

Pattern

Pattern Matching - Example
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Pairs for Image Matching

Feature Based Object
Detection

Patch Model

Features Descriptors

Features: Issues to be addressed

+ What are “good” features to extract?
—Distinctive
—Invariant to different acquisition conditions
—Different view-points, different
illuminations, different cameras, etc.
* How can we find corresponding features
in both images?

no chance to match!




Invariant Feature Descriptors

« Schmid & Mohr 1997, Lowe 1999, Baumberg 2000,
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid
2001, Brown & Lowe 2002, Matas et. al. 2002,
Schaffalitzky & Zisserman 2002

Image Features

» Feature Detectors - where
» Feature Descriptors - what

» Methods:
— Harris Corner Detector (multi-scale Harris)
— SIFT (Scale Invariant Features Transform)

Harris Corner Detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

* We should easily recognize a corner by
looking through a small window

« Shifting a window in any direction should
give a large change in intensity

Harris Detector: Basic Idea

I

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions




Harris Detector: Mathematics

Corner at position (x,y) ?
Evaluate change of intensity for shift in [u, V] direction:

E(u,v)= Z/w(x y)[l(x+u y+v)— I(x y)]
X,y ‘

function |nten5|ty

1 in window, O outside Gaussian

Harris Detector: Mathematics

E(u,v)= ZW(x,y)[I(x+u,y+v)—I(x, y)]2

X,y

For small [u,v]: 1(x+u,y+v)=1(x,y)+ul + vl
We have:

)= wl, y#

2

) 1]

1%

X,y

[ VI we y){ gy ﬂw[ ”]Mm\

A /

Harris Detector: Mathematics

For small shifts [#,V] we have a bilinear approximation:

E(u,v) = [u,v] M {u}
V

where M is a 2x2 matrix computed from image derivatives:

> 11,
M = Zw(x y)LI ;2)}

Harris Detector: Mathematics

What is the direction [u,v] of greatest intensity change?

max

argmaxg(, E(u, v) =e

Denote by €, the i eigen-vector of M whose eigen-value is A;:

( N

e Me. =2 >0

Conclusions:

Ele,,)=4

max

10



Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v);[u,v] M {u}
V

7\.1, 7\.2 — eigenvalues of M

direction of the
fastest change

Ellipse E(u,v) = const

direction of the
slowest change

Harris Detector: Mathematics

Classification of Ay
image points using
eigenvalues of M:

A, and A, are small;
E is almost constant
in all directions

——
“Edge”

A>>1, / @ “Corner”
A and A, are large,

Ay~ Ay
E increases in all
directions
“Flat” “Edge”
region Ay>> 0y
A

Harris Detector: Mathematics

Measure of corner response (without calculating the e.v.):

e
det M

" TraceM

N

detM =44,
traceM =4, + 4,

R is associated with the smallest eigen-vector (why?)

Rvs. A, Ay

Harris Corner Detector

» The Algorithm:

— Find points with large corner response
function R (R > threshold)

— Take the points of local maxima of R

11



Harris Detector: Workflow

Harris Detector: Workflow

Compute corner response R

e - P~ = Wl Y] i ‘\ -,
vl ,’ (l " ‘ ™ ‘.L‘."(. l‘: X :,

Harris Detector: Workflow
Find points with large corner response: R>threshold

Harris Detector: Workflow

Take only the points of local maxima of R

12



Harris Detector: Workflow

Harris Detector: Example

Harris Detector: Example

Harris Detector: Some Properties
» Rotation invariance

N 2 A
&7 AN

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

‘ Corner response R is invariant to image rotation

13



Harris Detector: Some Properties

Partial invariance to affine intensity change

v'Only derivatives are used => invariance to intensity

shift/ > 1+ b
vIntensity scale: I — a [
1A N\ ‘ A
threshold ,/.\\/ ;A i /’\\ T g
X (image coordinate) X (image coordinate)

Harris Detector: Some Properties

* But: non-invariant to spatial scale!

—> &

All points will be Corner !
classified as edges

Scale Invariant Detection

» Consider regions (e.qg. circles) of different
sizes around a point

* Regions of corresponding sizes will look
the same in both images

=

Scale Invariant Detection

The problem: how do we choose corresponding circles
independently in each image?

Solution: choose the scale of the “best” corner.

(o
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Harris-Laplacian Point Detector

» Harris-Laplacian
Find local maximum of: Harris corner detector
for a set of Laplacian images.

scale D
PN
o~

<« Laplacian —»

<« Harris — X

' K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Memo: Gaussian / Laplacian Pyramids

Gaussian Laplacian
Pyramid Pyramid

Harris - Laplacian Detector

SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Koy
RB.
PN
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SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Give about 2000 stable “keypoints” for a typical 500 x 500
image

Each keypoint is described by a vector of

4 x4 x 8 =128 elements
(over 4x4 array of 8-bin gradient histograms keypoint
neighborhood)

SIFT — Scale Invariant Feature Transform

- Find local maximum of Laplacian in
space and scale

scale T
=
Q
<
=N z
pJ > —
\
<« Laplacian —> X

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT - Point Detection

» Construct scale-space:

increasing o

G(2o)*1
Glo)*1 c(zm)*z.
Glko)*1 Glro) 1
First octave G(k ZU)* 1 Second octave

SIFT — Scale Space

=

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)
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SIFT — point detection
STEP 1:

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

» Scale Space extrema detection.
» Choose all extrema within 3x3x3 neighborhood.

SIFT — point detection

STEP 1:
Determine local Maxima in DoG pyramid (Laplacian Pyramid).

d2ate 2 SRR seale

Experimentally, Maximum of Laplacian gives best notion of s

SIFT - Step 1: Interest Point Detection
Detections at multiple scales

Some of the detected SIFT frames.

http://www.vlfeat.org/overview/sift.html

SIFT — point detection

233x189 image 832 SIFT extrema

17



SIFT - Step 2: Interest Localization & Filtering

2) Remove bad Interest points:
a) Remove points with low contrast
b) Remove Edge points (Eigenvalues of
Hessian Matrix must BOTH be large).

ATA= [lelz ZIwa:|

YL, Y Iyl =) [ Z” } (I ) =Y. vI(vD)T

Interest Points

(c) I

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated with
location (x,y) and scale (o)

» Compute gradient magnitude and orientation for
each SIFT point:

Assign canonical orientation at peak of smoothed histogram (fit
parabola to better localize peak).

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated
with location (x,y), scale (o), gradient
magnitude and orientation (m, 0).

&

» Compute SIFT feature - a vector of 128 entries.

18



SIFT — Descriptor Vector
STEP 4: Compute SIFT feature vector of 128 entries

+ Gradients determined in 16x16 window at SIFT point in
scale space.

» Histogram is computed for gradients of each 4x4 sub
window in 8 relative directions.

* A 4x4x8 = 128 dimensional feature vector is produced.

K| ¥ | K l

w b H | K

RN f.}: K

Image gradients Keypoint descriptor
Image from: Jonas Hurrelmann

SIFT — Descriptor Vector

STEP 4: Compute feature vector

Object Recognition

* Only 3 keys are
needed for recognition,
so extra keys provide
robustness

Recognition under occlusion

19



Test of illumination Robustness

« Same image under differing illumination

Matching SIFT Features

+ Given a feature in I, how to find the best
match in 1,7

1. Define distance function that compares two
descriptors.

2. Test all the features in |, find the one with min

22 correct matches

Matching SIFT Features

33 correct matches

20



Matching SIFT Features

How to evaluate the performance of a
feature matcher?

T T4

= 50
75
200

Matching SIFT Features

e Threshold t affects # of correct/false matches

» True positives (TP) = # of detected
matches that are correct

» False positives (FP) = # of detected
matches that are incorrect

Matching SIFT Features

¢ ROC Curve 1

- Generated by computing 0.7 /

(FP, TP) for different ’

thresholds. ™ /

rate /!
- Maximize area under the /
curve (AUC). //
/I
0 0‘.1 FP rate 1

Evaluating SIFT Features

« Empirically found? to show very good performance,
invariant to image rotation, scale, intensity change,
and to moderate affine transformations

?,ee

Scale = 2.5
Rotation = 459

detection rate

4 B 8
false positive rale atn”

I'D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IICV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003




Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

22



Image Matching

Image Retrieval

Object Recognition

Motion Estimation and Optical Flow
Tracking




Example: Mosiacing (Panorama)

Example — 3D Reconstruction

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Source: http:/fvww, ethz. 7 iolfabio_spie0102.pdf

Image Matching

Three approaches:
» Shape Matching
— Assume shape has been extracted
» Direct (appearance-based) registration
— Search for alignment where most pixels agree
» Feature-based registration

— Find a few matching features in both images
— compute alignment

Direct Method (brute force)

The simplest approach is a brute force search
* Need to define image distance function:
SSD, Normalized Correlation, Mutual Information, etc.

Search over all parameters within a reasonable range:

e.g. for translation:

for Ax=x0:step:x1,
for Ay=yO:step:yl,
calculate Dist(imagel(x,y),image2(x+Ax,y+Ay))
end;
end;




Shape Representation

* Region Based Representation
e Area / Circumference / Width
¢ Euler Number

* Moments
* Quad Trees

* Edge Based Representation
¢ Chain Code
* Fourier Descriptor

« Interior Based Representation
* MAT / Skeleton
* Hierarchical Representations

Shape Representation
Shape representation must be GOOD:
« Different shapes <> Different Codes
* Location / Rotation /Scale Invariant

o - Ju
¢ Convenient w
»

e Stable

«Generative ~ \ % /

Moments

_ 1 If pixel (x,y) is IN object
I =
(y) { 0 otherwise

ij —-Moment: Mij = ZZ Xiyj|(X,Y)
X y
Area: MOO = ZZI(X:Y)
Xy

. Y I\/II(J \/ MO]
Average x-coordinate: X = y=
Average y-coordinate: MOO MOO
_ M, M
Center of Mass: (X,y) = ( 10 , ol
MOO MOO

Moments
Central Moment: M = ZZ(X -X)'(y -y)'l(xy)
x oy

Moment expressions that are invariant to
translation, rotation and/or scale:
1. For first-order moments, py; = pyo = 0, (always invariant).
2. For second-order moments, (p + g = 2), the invariants are
= paot B2 (9.80°
&= (oo po) 4,

™

. For third-order moments (p + ¢ = 3), the invariants are
&= (oo = 312 + (o — 3pa)’
Gu= (oot p2) + (bos T o)

wide domain, not unique, not unambiguous, not
generative, not stable, invariant to translation, rotation.
Very convenient.




Quad Tree Representation

A
QO @

OC@00e0

/N
@eC0

wide domain,

unique, unambiguous, generative — up to error
tolerance

partially stable

Not invariant to translation, rotation scale.
Inefficient for comparison

Edge Based Representation

o [ lzﬁ‘\k 3. 7
TEE 7
. . 2/ : sy 7
o | 3 i

. 3 5

000102011717211

wide domain, Unique, unambiguous, generative - 2D only,
Not very stable Invariant to translation. Rotation (x90 deg)

Fourier Descriptors

r
0
Boundary

Representatiy

Fourier
r Transform
—_
0

Boundary Rep Fourier Transform

Tmns.aﬁ r m A

- W

-




Fourier Descriptors

Fourier
r Transform
s

wide domain, Unique, unambiguous, generative, Stable (depends
on tolerance), Invariant to translation. Rotation, Scale.

Interior Based representation — MAT, Skeleton

NN
‘//‘ [ [ \\ \‘\

I\
S

/ O\ \\ \ ) ) |
e 2N /

N / X
» ) % N >\>/></x { ///‘\

wide domain, unique, unambiguous, generative
not stable - small changes affect dramatically

Pattern Matching — Direct approach
(Appearance based)

pattern

Finding a pattern in an Image

pattern

Look for minimum of’

de(u,V): Z [l(U+X’V+Y)—P(X,y)]2 /

D, (u,v)=0




Finding a pattern in an Image

d,(wv)= Z lu+xv+y)-Pxy)f

Finding a pattern in an Image - Correlation

pattern

Look for maximum of:

Yl xv+yPley]

x,yeN

x,yeN
= z u+xv+y) +P(x,y) - 2lu+xv+yPkxy)
x,yeN
= Zl(u +xV+y) + Z P(x,y) —22 Iu+xv+yP(xy)

x,yeN / x,yeN ‘ x,yeN ‘

Sum of squares Sum of squares Correlation

of the window of the pattern
CONSTANT

Correlation

I corr P

Real Image — Correlation Example

pattern

Correlation
Correlation value is dependent on the local
gray value of the pattern and the image window.




Normalized Correlation

Y Mosxvy)-1]Plcy)-P]

> los sl LY PPl |

Correlation value is in (-1..1)

Correlation value is independent of the local

gray value of the pattern and the image window.

Normalized Correlation - Example

pattern
(Canomw

Correlation Normali;ed
Correlation

Normalized Correlation - Example

image Correlation

IA.

Pattern

Pattern Matching - Example
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Pairs for Image Matching

Feature Based Object
Detection

Patch Model

Features Descriptors

Features: Issues to be addressed

+ What are “good” features to extract?
—Distinctive
—Invariant to different acquisition conditions
—Different view-points, different
illuminations, different cameras, etc.
* How can we find corresponding features
in both images?

no chance to match!




Invariant Feature Descriptors

« Schmid & Mohr 1997, Lowe 1999, Baumberg 2000,
Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid
2001, Brown & Lowe 2002, Matas et. al. 2002,
Schaffalitzky & Zisserman 2002

Image Features

» Feature Detectors - where
» Feature Descriptors - what

» Methods:
— Harris Corner Detector (multi-scale Harris)
— SIFT (Scale Invariant Features Transform)

Harris Corner Detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

* We should easily recognize a corner by
looking through a small window

« Shifting a window in any direction should
give a large change in intensity

Harris Detector: Basic Idea

I

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions




Harris Detector: Mathematics

Corner at position (x,y) ?
Evaluate change of intensity for shift in [u, V] direction:

E(u,v)= Z/w(x y)[l(x+u y+v)— I(x y)]
X,y ‘

function |nten5|ty

1 in window, O outside Gaussian

Harris Detector: Mathematics

E(u,v)= ZW(x,y)[I(x+u,y+v)—I(x, y)]2

X,y

For small [u,v]: 1(x+u,y+v)=1(x,y)+ul + vl
We have:

)= wl, y#

2

) 1]

1%

X,y

[ VI we y){ gy ﬂw[ ”]Mm\

A /

Harris Detector: Mathematics

For small shifts [#,V] we have a bilinear approximation:

E(u,v) = [u,v] M {u}
V

where M is a 2x2 matrix computed from image derivatives:

> 11,
M = Zw(x y)LI ;2)}

Harris Detector: Mathematics

What is the direction [u,v] of greatest intensity change?

max

argmaxg(, E(u, v) =e

Denote by €, the i eigen-vector of M whose eigen-value is A;:

( N

e Me. =2 >0

Conclusions:

Ele,,)=4

max

10



Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v);[u,v] M {u}
V

7\.1, 7\.2 — eigenvalues of M

direction of the
fastest change

Ellipse E(u,v) = const

direction of the
slowest change

Harris Detector: Mathematics

Classification of Ay
image points using
eigenvalues of M:

A, and A, are small;
E is almost constant
in all directions

——
“Edge”

A>>1, / @ “Corner”
A and A, are large,

Ay~ Ay
E increases in all
directions
“Flat” “Edge”
region Ay>> 0y
A

Harris Detector: Mathematics

Measure of corner response (without calculating the e.v.):

e
det M

" TraceM

N

detM =44,
traceM =4, + 4,

R is associated with the smallest eigen-vector (why?)

Rvs. A, Ay

Harris Corner Detector

» The Algorithm:

— Find points with large corner response
function R (R > threshold)

— Take the points of local maxima of R

11



Harris Detector: Workflow

Harris Detector: Workflow

Compute corner response R

e - P~ = Wl Y] i ‘\ -,
vl ,’ (l " ‘ ™ ‘.L‘."(. l‘: X :,

Harris Detector: Workflow
Find points with large corner response: R>threshold

Harris Detector: Workflow

Take only the points of local maxima of R

12



Harris Detector: Workflow

Harris Detector: Example

Harris Detector: Example

Harris Detector: Some Properties
» Rotation invariance

N 2 A
&7 AN

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

‘ Corner response R is invariant to image rotation

13



Harris Detector: Some Properties

Partial invariance to affine intensity change

v'Only derivatives are used => invariance to intensity

shift/ > 1+ b
vIntensity scale: I — a [
1A N\ ‘ A
threshold ,/.\\/ ;A i /’\\ T g
X (image coordinate) X (image coordinate)

Harris Detector: Some Properties

* But: non-invariant to spatial scale!

—> &

All points will be Corner !
classified as edges

Scale Invariant Detection

» Consider regions (e.qg. circles) of different
sizes around a point

* Regions of corresponding sizes will look
the same in both images

=

Scale Invariant Detection

The problem: how do we choose corresponding circles
independently in each image?

Solution: choose the scale of the “best” corner.

(o

14



Harris-Laplacian Point Detector

» Harris-Laplacian
Find local maximum of: Harris corner detector
for a set of Laplacian images.

scale D
PN
o~

<« Laplacian —»

<« Harris — X

' K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Memo: Gaussian / Laplacian Pyramids

Gaussian Laplacian
Pyramid Pyramid

Harris - Laplacian Detector

SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Koy
RB.
PN

\,ﬁf‘c

}

£

ADEN

£ K>
S e
A X =

s #F x4
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SIFT — Scale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Give about 2000 stable “keypoints” for a typical 500 x 500
image

Each keypoint is described by a vector of

4 x4 x 8 =128 elements
(over 4x4 array of 8-bin gradient histograms keypoint
neighborhood)

SIFT — Scale Invariant Feature Transform

- Find local maximum of Laplacian in
space and scale

scale T
=
Q
<
=N z
pJ > —
\
<« Laplacian —> X

David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT - Point Detection

» Construct scale-space:

increasing o

G(2o)*1
Glo)*1 c(zm)*z.
Glko)*1 Glro) 1
First octave G(k ZU)* 1 Second octave

SIFT — Scale Space

=

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)
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SIFT — point detection
STEP 1:

Determine local Maxima in DoG pyramid (Laplacian Pyramid).

» Scale Space extrema detection.
» Choose all extrema within 3x3x3 neighborhood.

SIFT — point detection

STEP 1:
Determine local Maxima in DoG pyramid (Laplacian Pyramid).

d2ate 2 SRR seale

Experimentally, Maximum of Laplacian gives best notion of s

SIFT - Step 1: Interest Point Detection
Detections at multiple scales

Some of the detected SIFT frames.

http://www.vlfeat.org/overview/sift.html

SIFT — point detection

233x189 image 832 SIFT extrema

17



SIFT - Step 2: Interest Localization & Filtering

2) Remove bad Interest points:
a) Remove points with low contrast
b) Remove Edge points (Eigenvalues of
Hessian Matrix must BOTH be large).

ATA= [lelz ZIwa:|

YL, Y Iyl =) [ Z” } (I ) =Y. vI(vD)T

Interest Points

(c) I

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated with
location (x,y) and scale (o)

» Compute gradient magnitude and orientation for
each SIFT point:

Assign canonical orientation at peak of smoothed histogram (fit
parabola to better localize peak).

SIFT — Descriptor Vector

STEP 3: Select canonical orientation

» Each SIFT interest point is associated
with location (x,y), scale (o), gradient
magnitude and orientation (m, 0).

&

» Compute SIFT feature - a vector of 128 entries.

18



SIFT — Descriptor Vector
STEP 4: Compute SIFT feature vector of 128 entries

+ Gradients determined in 16x16 window at SIFT point in
scale space.

» Histogram is computed for gradients of each 4x4 sub
window in 8 relative directions.

* A 4x4x8 = 128 dimensional feature vector is produced.

K| ¥ | K l

w b H | K

RN f.}: K

Image gradients Keypoint descriptor
Image from: Jonas Hurrelmann

SIFT — Descriptor Vector

STEP 4: Compute feature vector

Object Recognition

* Only 3 keys are
needed for recognition,
so extra keys provide
robustness

Recognition under occlusion

19



Test of illumination Robustness

« Same image under differing illumination

Matching SIFT Features

+ Given a feature in I, how to find the best
match in 1,7

1. Define distance function that compares two
descriptors.

2. Test all the features in |, find the one with min

22 correct matches

Matching SIFT Features

33 correct matches
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Matching SIFT Features

How to evaluate the performance of a
feature matcher?

T T4

= 50
75
200

Matching SIFT Features

e Threshold t affects # of correct/false matches

» True positives (TP) = # of detected
matches that are correct

» False positives (FP) = # of detected
matches that are incorrect

Matching SIFT Features

¢ ROC Curve 1

- Generated by computing 0.7 /

(FP, TP) for different ’

thresholds. ™ /

rate /!
- Maximize area under the /
curve (AUC). //
/I
0 0‘.1 FP rate 1

Evaluating SIFT Features

« Empirically found? to show very good performance,
invariant to image rotation, scale, intensity change,
and to moderate affine transformations

?,ee

Scale = 2.5
Rotation = 459

detection rate

4 B 8
false positive rale atn”

I'D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IICV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003




Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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