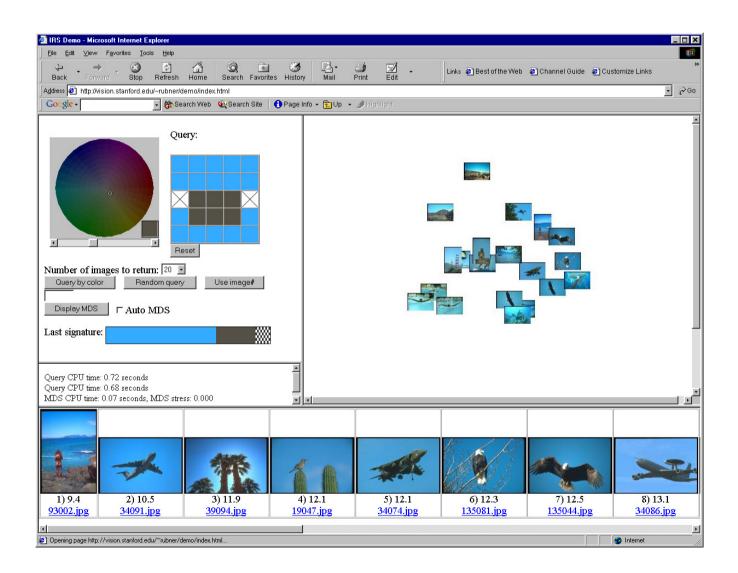
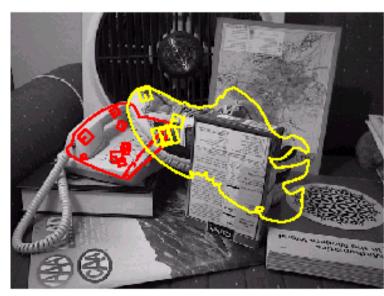
Image Matching

Image Retrieval



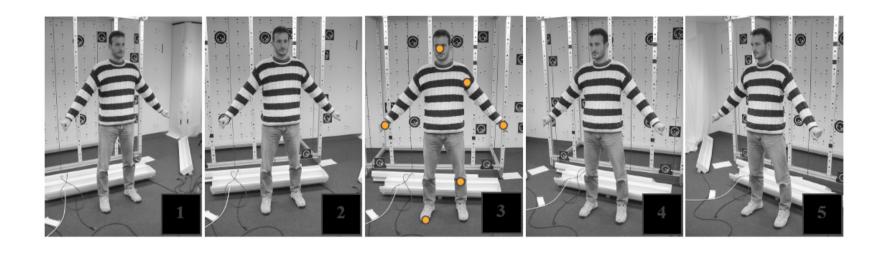
Object Recognition

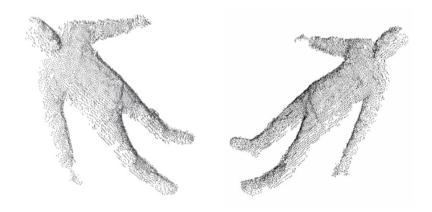


Motion Estimation and Optical Flow Tracking

Example: Mosiacing (Panorama)

Example – 3D Reconstruction





Source: http://www.photogrammetry.ethz.ch/general/persons/fabio_spie0102.pdf

Image Matching

Three approaches:

- Shape Matching
 - Assume shape has been extracted
- Direct (appearance-based) registration
 - Search for alignment where most pixels agree
- Feature-based registration
 - Find a few matching features in both images
 - compute alignment

Direct Method (brute force)

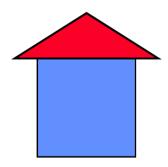
The simplest approach is a brute force search

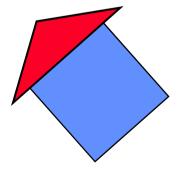
- Need to define image distance function:
 SSD, Normalized Correlation, Mutual Information, etc.
- Search over all parameters within a reasonable range:
 e.g. for translation:

```
for \Delta x=x0:step:x1,
for \Delta y=y0:step:y1,
calculate Dist(image1(x,y),image2(x+\Delta x,y+\Delta y))
end;
end;
```

Shape Representation

- Region Based Representation
- Area / Circumference / Width
- Euler Number
- Moments
- Quad Trees
- Edge Based Representation
- Chain Code
- Fourier Descriptor
- Interior Based Representation
- MAT / Skeleton
- Hierarchical Representations

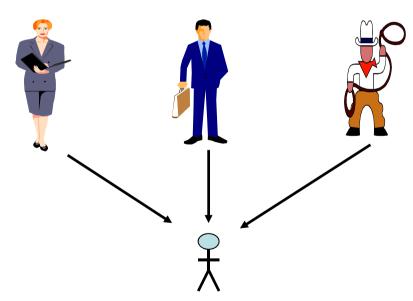




Shape Representation

Shape representation must be GOOD:

- Different shapes ⇔ Different Codes
- Location / Rotation / Scale Invariant
- Convenient
- Stable
- •Generative



Moments

$$I(x,y) = \begin{cases} 1 & \text{if pixel (x,y) is IN object} \\ 0 & \text{otherwise} \end{cases}$$

ij – Moment:
$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Area:
$$M_{00} = \sum_{x} \sum_{y} I(x,y)$$

Average x-coordinate:
$$\overline{X} = \frac{M_{10}}{M_{00}}$$
 $\overline{y} = \frac{M_{01}}{M_{00}}$

Center of Mass:
$$(\overline{X}, \overline{y}) = (\frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}})$$

Moments

Central Moment:
$$\mu_{ij} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{j} I(x, y)$$

Moment expressions that are invariant to translation, rotation and/or scale:

- 1. For first-order moments, $\mu_{0,1} = \mu_{1,0} = 0$, (always invariant).
- 2. For second-order moments, (p + q = 2), the invariants are

$$\begin{aligned}
\phi_1 &= \mu_{2,0} + \mu_{0,2} \\
\phi_2 &= (\mu_{2,0} - \mu_{0,2})^2 + 4\mu_{1,1}^2
\end{aligned} \tag{9.80}$$

3. For third-order moments (p + q = 3), the invariants are

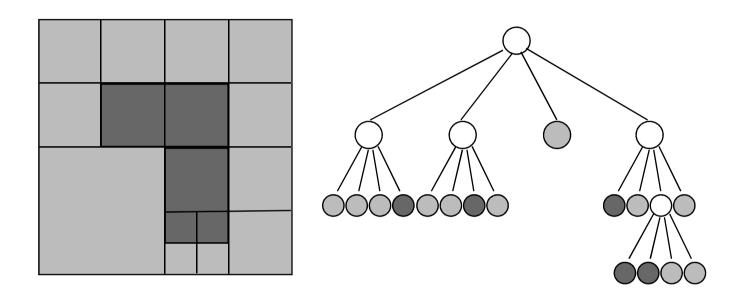
$$\phi_3 = (\mu_{3,0} - 3\mu_{1,2})^2 + (\mu_{0,3} - 3\mu_{2,1})^2$$

$$\phi_4 = (\mu_{3,0} + \mu_{1,2})^2 + (\mu_{0,3} + \mu_{2,1})^2$$

wide domain, not unique, not unambiguous, not generative, not stable, invariant to translation, rotation.

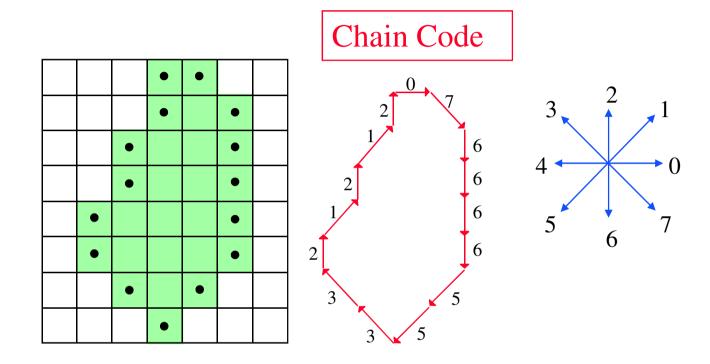
Very convenient.

Quad Tree Representation



wide domain, unique, unambiguous, generative – up to error tolerance partially stable Not invariant to translation, rotation scale. Inefficient for comparison

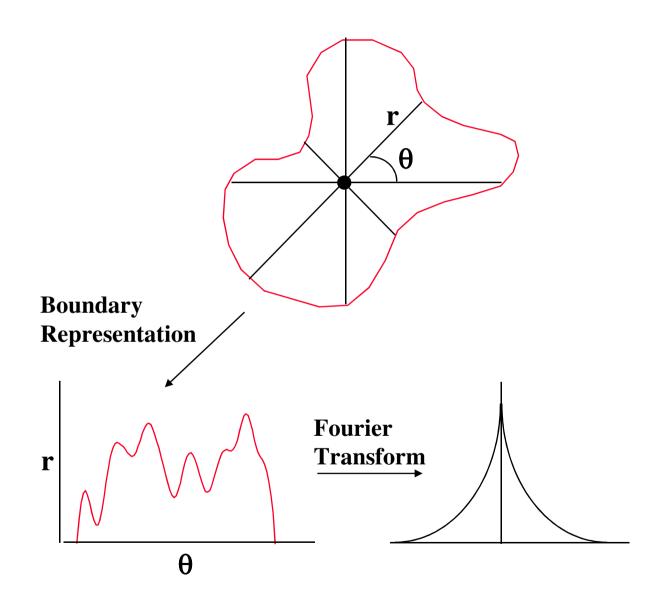
Edge Based Representation



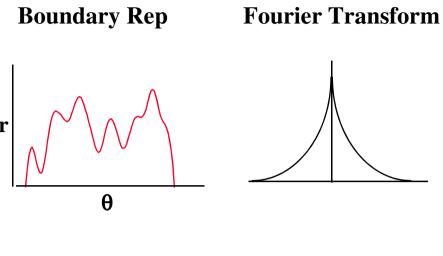
000102011717211

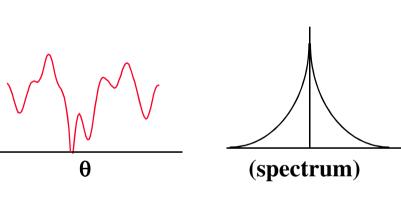
wide domain, Unique, unambiguous, generative - 2D only, Not very stable Invariant to translation. Rotation (x90 deg)

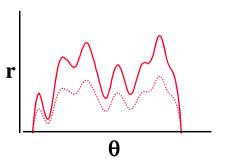
Fourier Descriptors

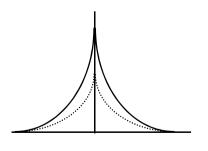


Translation Rotation Scale θ

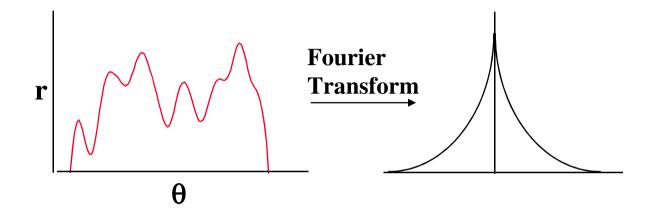






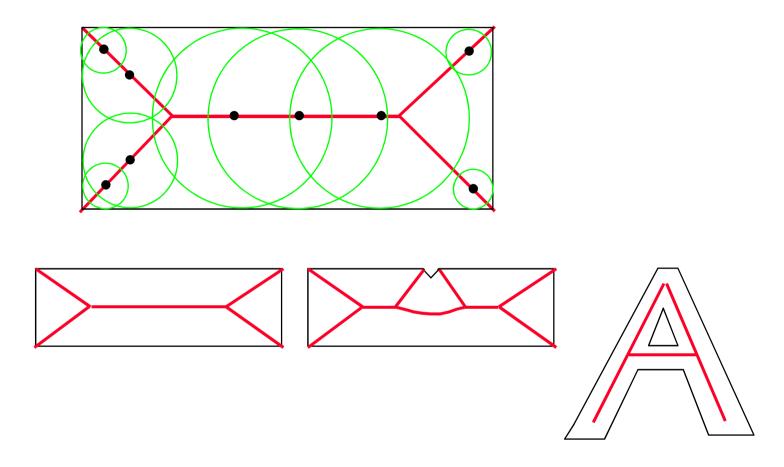


Fourier Descriptors



wide domain, Unique, unambiguous, generative, Stable (depends on tolerance), Invariant to translation. Rotation, Scale.

Interior Based representation – MAT, Skeleton



wide domain, unique, unambiguous, generative **not** stable - small changes affect dramatically

Pattern Matching – Direct approach (Appearance based)

image

pattern

Finding a pattern in an Image

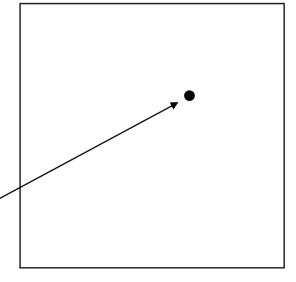
image

pattern

Look for minimum of:

$$d_e(u,v) = \sum_{x,y \in N} [I(u+x,v+y)-P(x,y)]^2$$

 $D_e(u,v)=0$

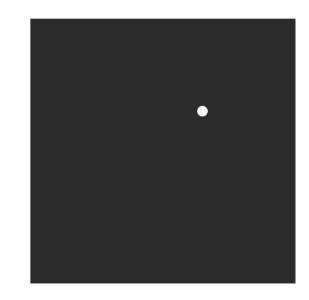


Finding a pattern in an Image

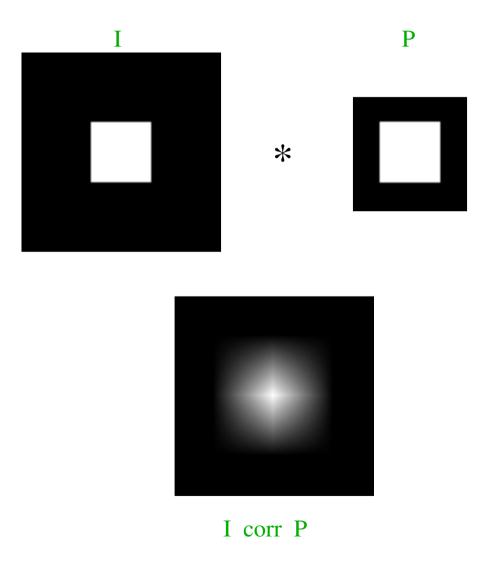
Finding a pattern in an Image - Correlation

pattern

Look for maximum of:



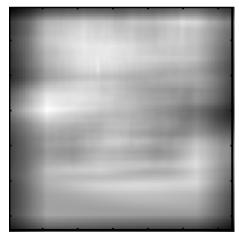
Correlation



Real Image – Correlation Example

image

pattern



Correlation

Correlation value is dependent on the local gray value of the pattern and the image window.

Normalized Correlation

$$\sum_{x,y\in\mathbb{N}} \left[\mathbf{I}(\mathbf{u}+\mathbf{x},\mathbf{v}+\mathbf{y}) - \bar{\mathbf{I}}_{uv} \right] \left[\mathbf{P}(\mathbf{x},\mathbf{y}) - \overline{\mathbf{P}} \right]$$

$$\sum_{x,y\in\mathbb{N}} \left[\mathbf{I}(\mathbf{u}+\mathbf{x},\mathbf{v}+\mathbf{y}) - \bar{\mathbf{I}}_{uv} \right]^2 \sum_{x,y\in\mathbb{N}} \left[\mathbf{P}(\mathbf{x},\mathbf{y}) - \overline{\mathbf{P}} \right]^2$$

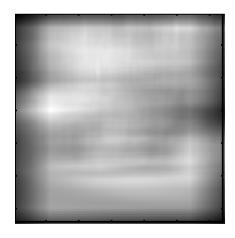
Correlation value is in (-1..1)

Correlation value is **independent** of the local gray value of the pattern and the image window.

Normalized Correlation - Example

image

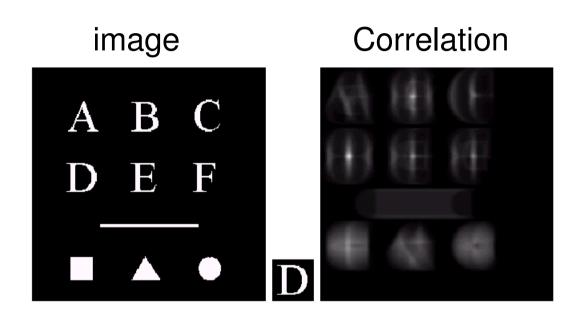
pattern



Correlation

Normalized Correlation

Normalized Correlation - Example



Pattern

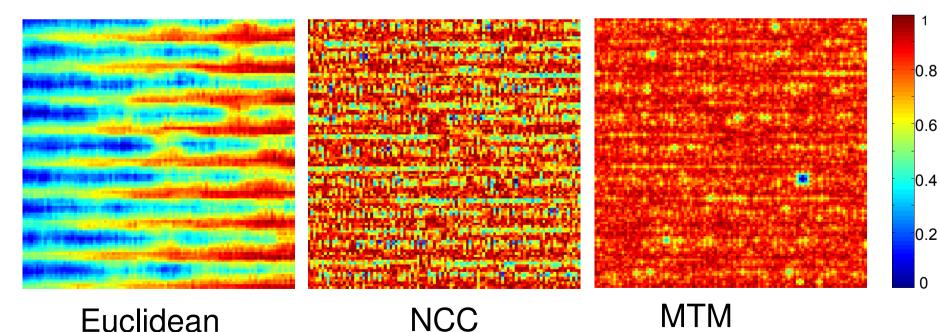
Pattern Matching - Example

between two random variable ofting the joint 2D histograms indicates the p-values, the verted by intensity. Together with weare visualized by their Venn ented by the overlap area between the functional dependency is based on non-m

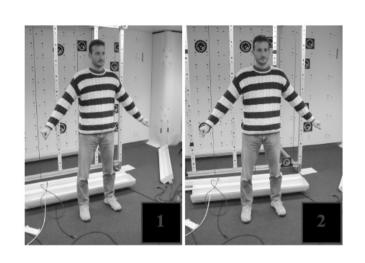
rential entropy. Figure 2 plots

repted entropy. Pigure 2 picts between two reactors verially which the product verially related the postellers, the reset by interesting Together will be see vipositized by their Vesti especial by their Vesti especial by their Vesti especial by their vesti side functional dependency to appropriate or the province of the best on their terms.

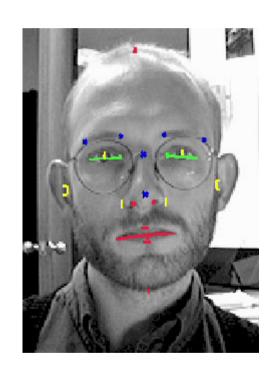
image

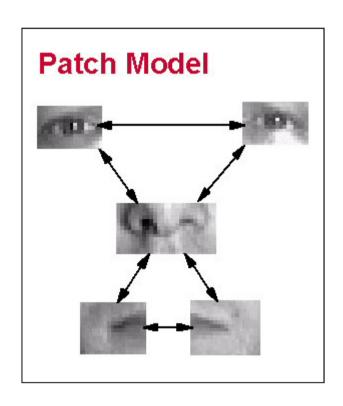


Pairs for Image Matching

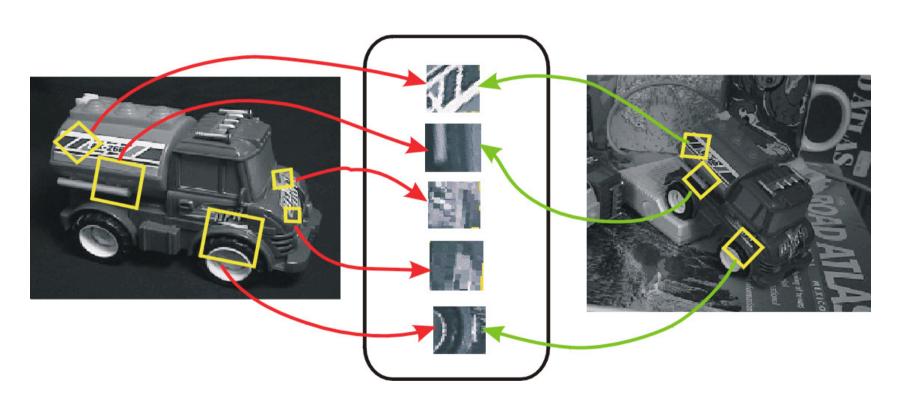


Feature Based Object Detection





Feature Based Object Detection



Features Descriptors

Features: Issues to be addressed

- What are "good" features to extract?
 - -Distinctive
 - -Invariant to different acquisition conditions
 - -Different view-points, different illuminations, different cameras, etc.
- How can we find corresponding features in both images?

Invariant Feature Descriptors

 Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & Lowe 2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002

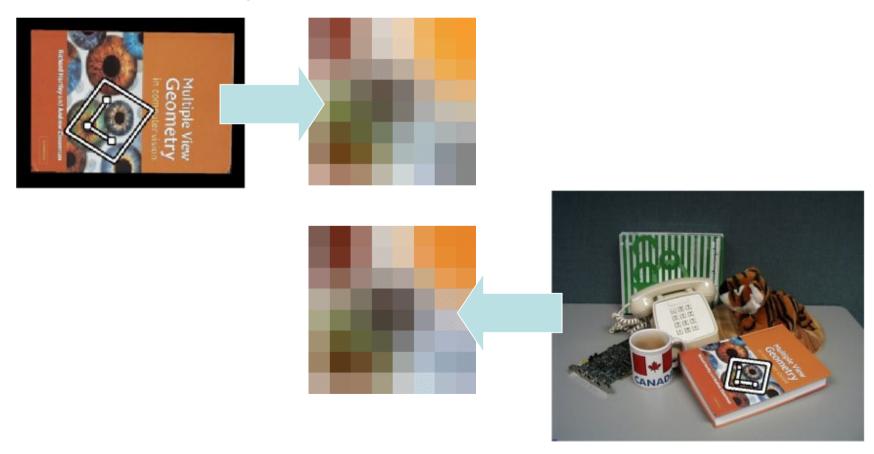


Image Features

- Feature <u>Detectors</u> where
- Feature <u>Descriptors</u> what

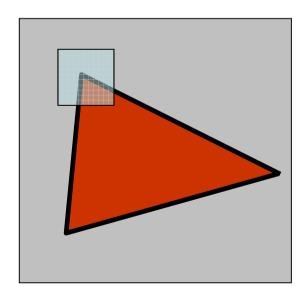
Methods:

- Harris Corner Detector (multi-scale Harris)
- SIFT (Scale Invariant Features Transform)

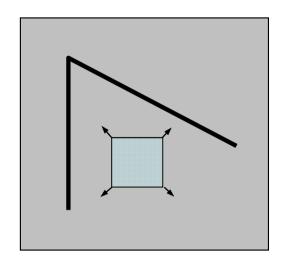
Harris Corner Detector

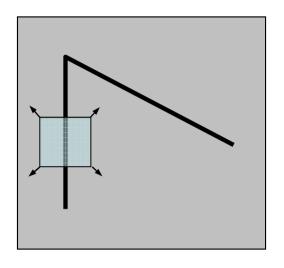
C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

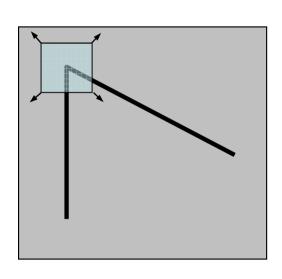
- We should easily recognize a corner by looking through a small window
- Shifting a window in any direction should give a large change in intensity



Harris Detector: Basic Idea







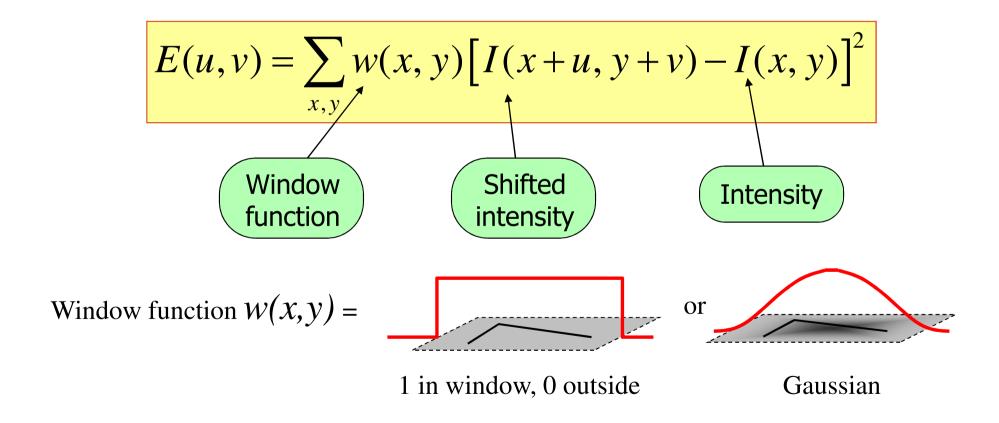
"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner at position (x,y)?

Evaluate change of intensity for shift in [u,v] direction:



$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

For small [u,v]: $I(x+u, y+v) = I(x, y) + uI_x + vI_y$

We have:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I_x(x,y) \quad I_y(x,y) \right] \left[u \right]^2 =$$

$$\begin{bmatrix} u & v \end{bmatrix} \sum w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

For small shifts [u, v] we have a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

What is the direction [u,v] of greatest intensity change?

$$\arg\max_{\|(u,v)\|=1} E(u,v) = \mathbf{e}_{\max}$$

Denote by \mathbf{e}_i the ith eigen-vector of M whose eigen-value is λ_i :

$$\mathbf{e}_i^T M \mathbf{e}_i = \lambda_i > 0$$

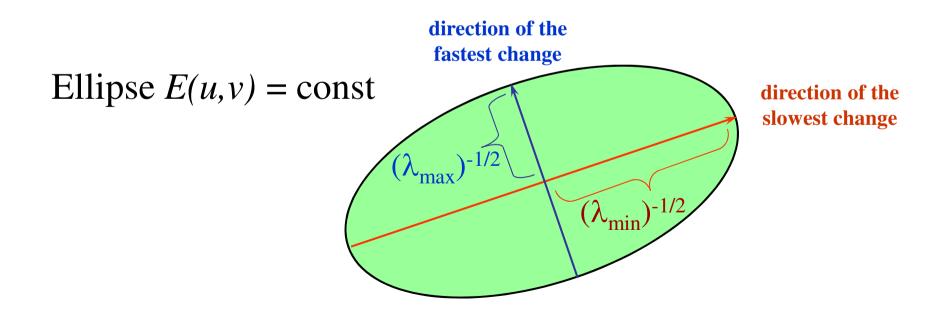
Conclusions:

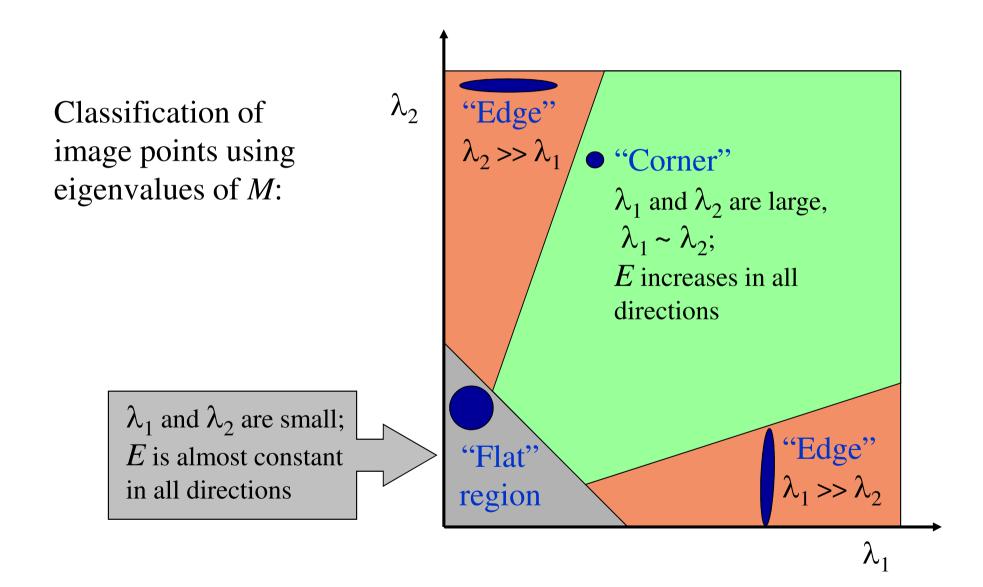
$$E(\mathbf{e}_{\text{max}}) = \lambda_{\text{max}}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

$$\lambda_1, \lambda_2$$
 – eigenvalues of M



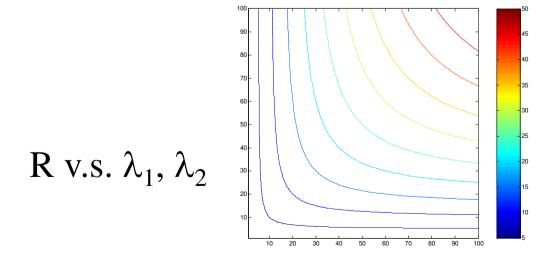


Measure of corner response (without calculating the e.v.):

$$R = \frac{\det M}{\operatorname{Trace} M}$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

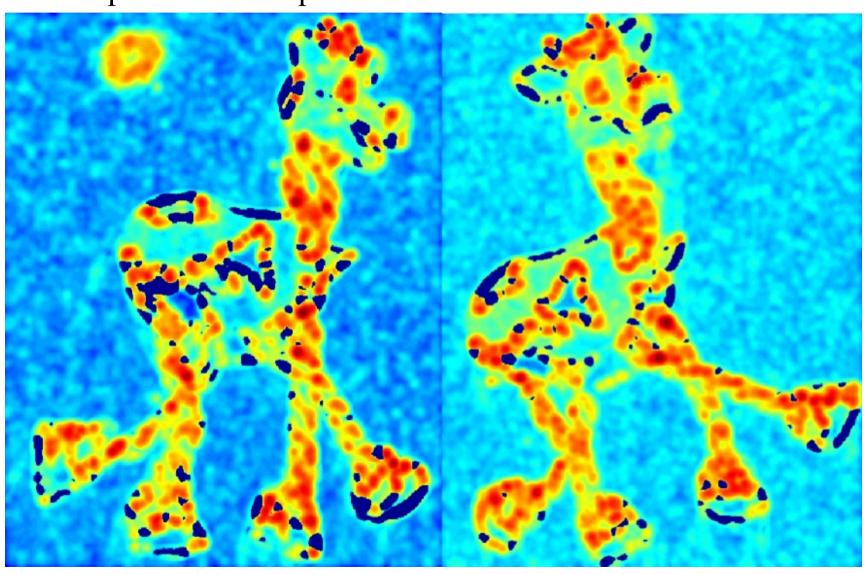
R is associated with the smallest eigen-vector (why?)



Harris Corner Detector

- The Algorithm:
 - Find points with large corner response function R (R > threshold)
 - Take the points of local maxima of R

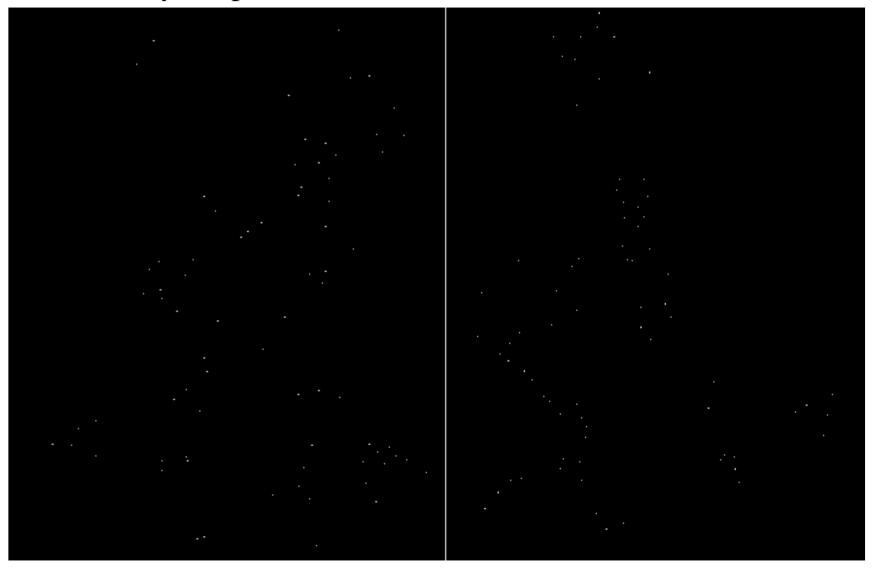
Compute corner response R



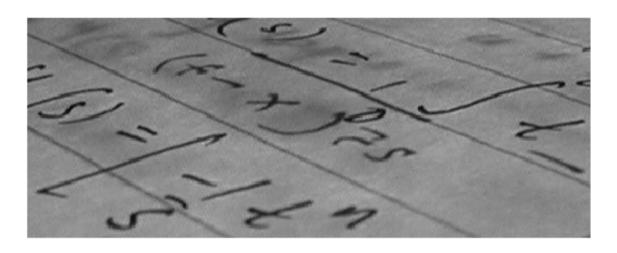
Find points with large corner response: *R*>threshold

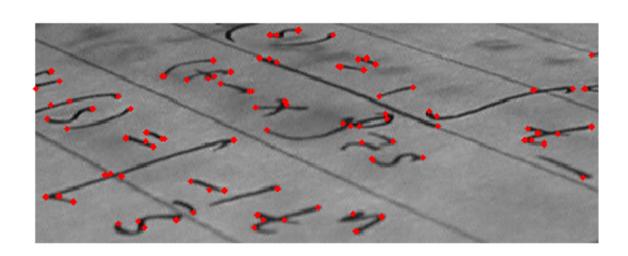


Take only the points of local maxima of R



Harris Detector: Example

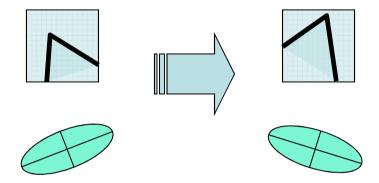




Harris Detector: Example

Harris Detector: Some Properties

Rotation invariance



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

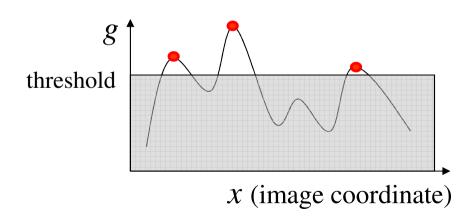
Corner response R is invariant to image rotation

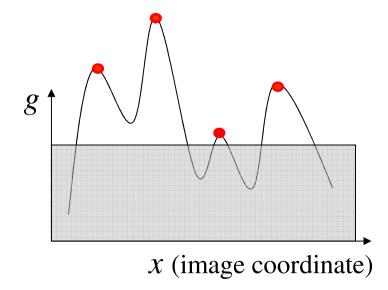
Harris Detector: Some Properties

Partial invariance to affine intensity change

✓Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓Intensity scale: $I \rightarrow a I$

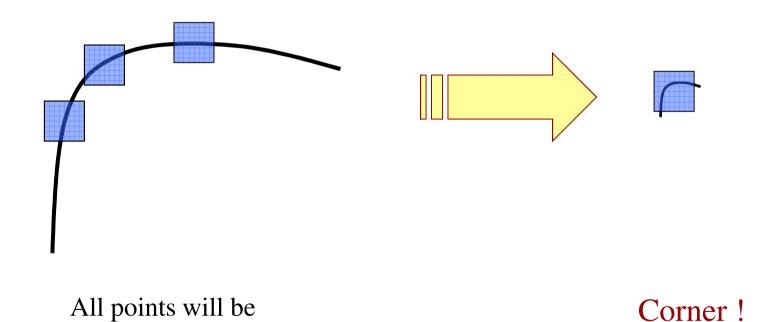




Harris Detector: Some Properties

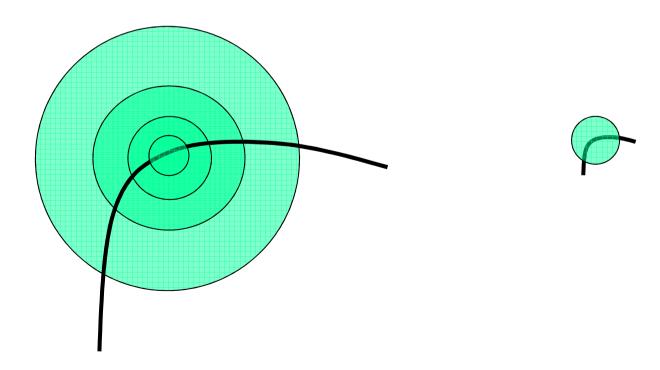
But: non-invariant to spatial scale!

classified as edges



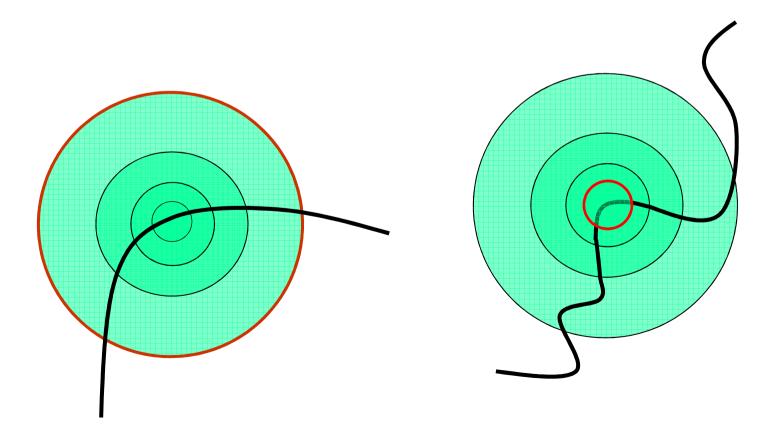
Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



Scale Invariant Detection

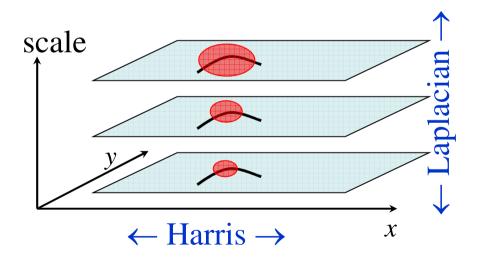
- The problem: how do we choose corresponding circles independently in each image?
- Solution: choose the scale of the "best" corner.



Harris-Laplacian Point Detector

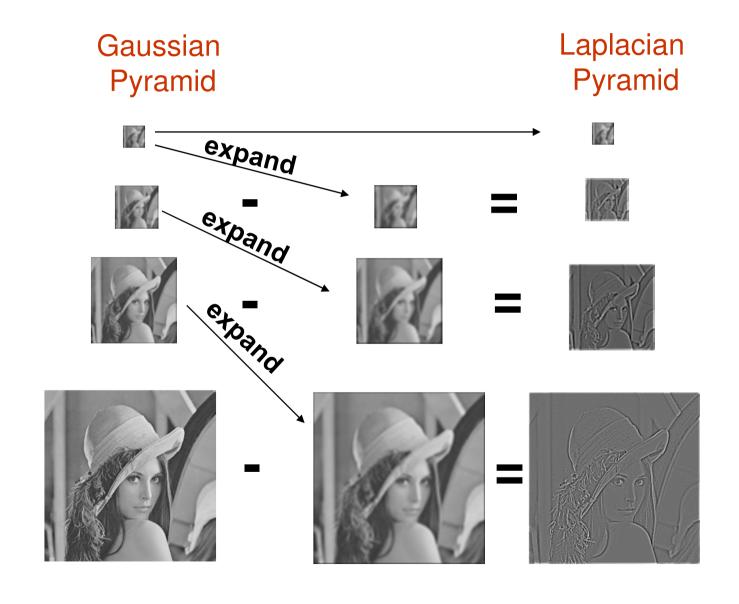
Harris-Laplacian

Find local maximum of: Harris corner detector for a set of Laplacian images.



¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

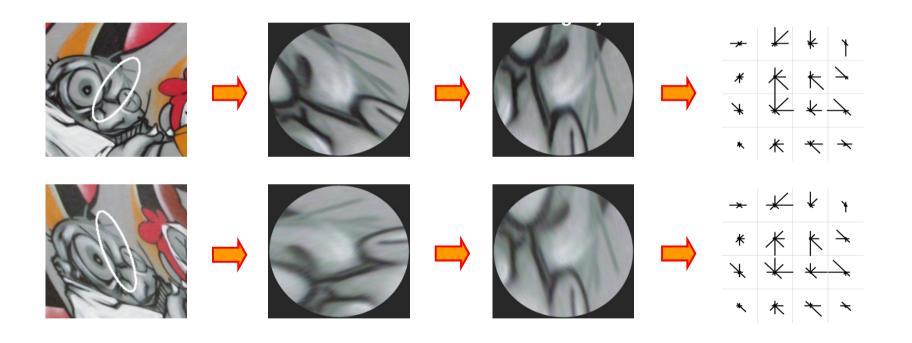
Memo: Gaussian / Laplacian Pyramids



Harris - Laplacian Detector

SIFT – Scale Invariant Feature Transform

David G. Lowe, "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, 60, 2 (2004), pp. 91-110



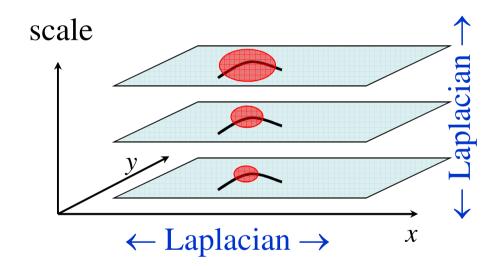
SIFT – Scale Invariant Feature Transform

David G. Lowe, "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Give about 2000 stable "keypoints" for a typical 500 x 500 image
- Each keypoint is described by a vector of
 4 x 4 x 8 = 128 elements
 (over 4x4 array of 8-bin gradient histograms keypoint neighborhood)

SIFT – Scale Invariant Feature Transform

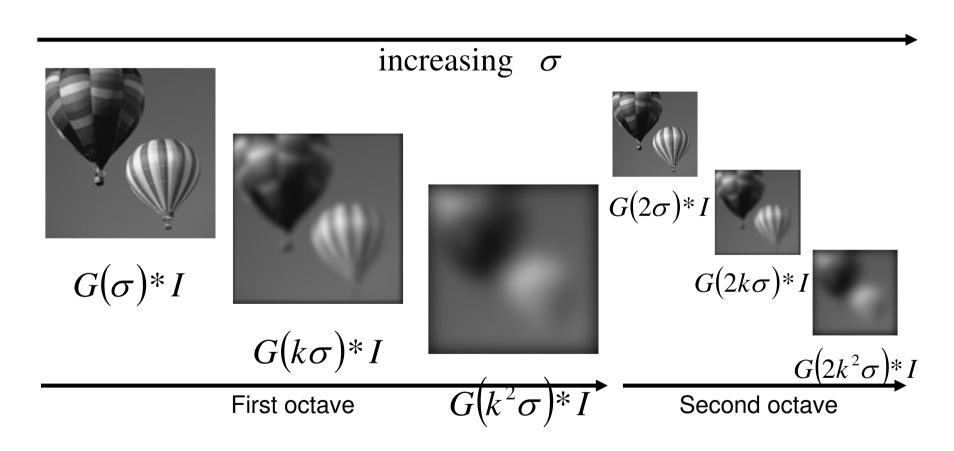
- Find local maximum of Laplacian in space and scale



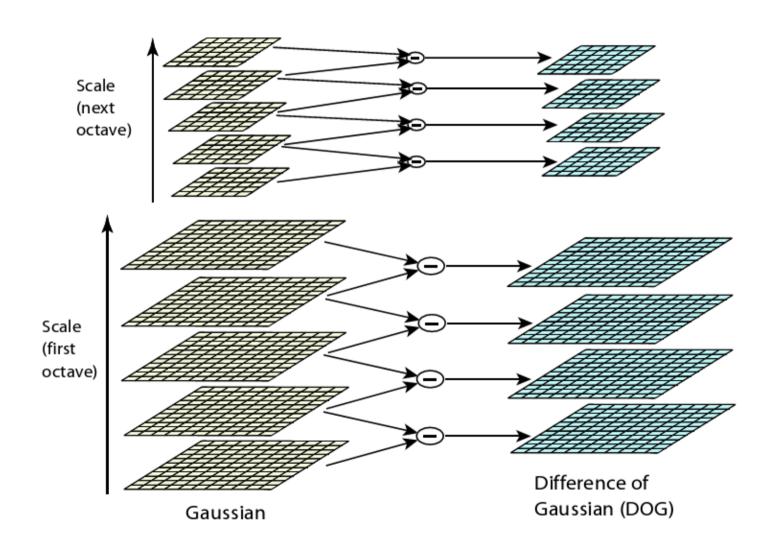
David G. Lowe, "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

SIFT - Point Detection

Construct scale-space:



SIFT – Scale Space

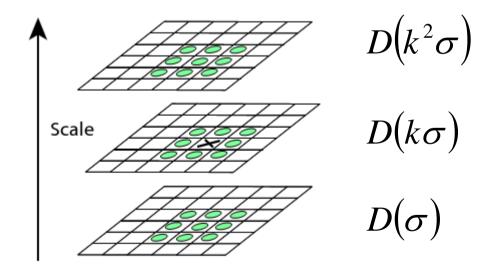


SIFT – point detection

STEP 1:

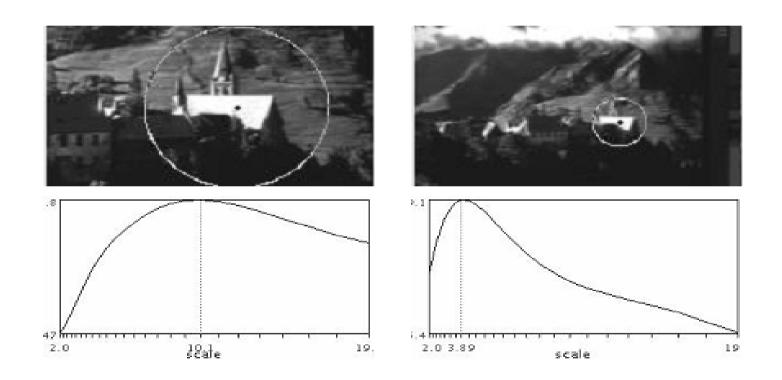
Determine local Maxima in DoG pyramid (Laplacian Pyramid).

- Scale Space extrema detection.
- Choose all extrema within 3x3x3 neighborhood.



SIFT – point detection

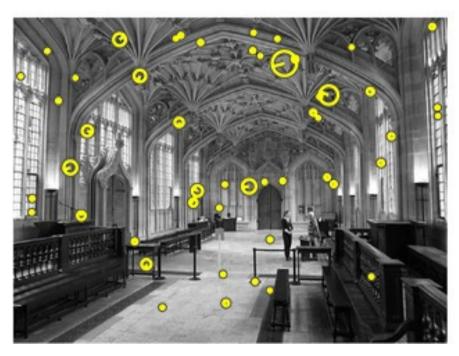
STEP 1: Determine local Maxima in DoG pyramid (Laplacian Pyramid).



Experimentally, Maximum of Laplacian gives best notion of sc

SIFT - Step 1: Interest Point Detection

Detections at multiple scales



Some of the detected SIFT frames.

http://www.vlfeat.org/overview/sift.html

SIFT – point detection

233x189 image

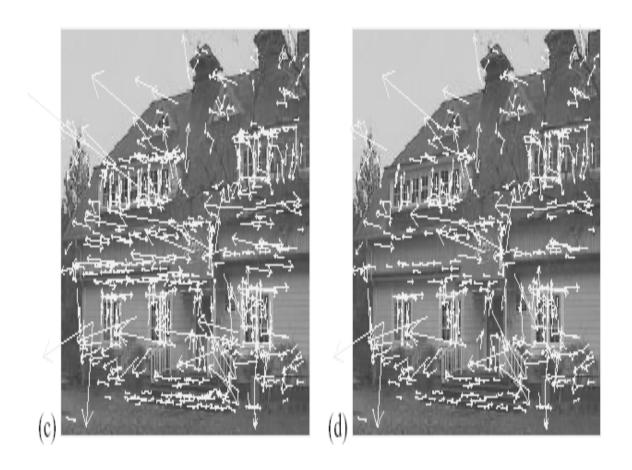
832 SIFT extrema

SIFT - Step 2: Interest Localization & Filtering

- 2) Remove bad Interest points:
 - a) Remove points with low contrast
 - b) Remove Edge points (Eigenvalues of Hessian Matrix must BOTH be large).

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

Interest Points

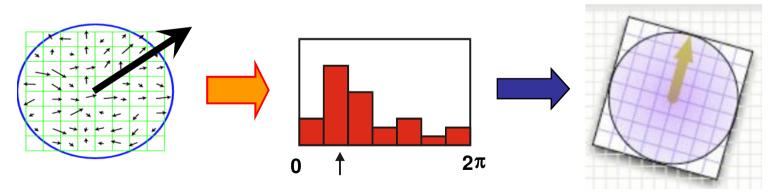


- (c) 729 left after peak value threshold (from 832)
- (d) 536 left after testing ratio of principle curvatures

SIFT – Descriptor Vector

STEP 3: Select canonical orientation

- Each SIFT interest point is associated with location (x,y) and scale (σ)
- Compute gradient magnitude and orientation for each SIFT point:

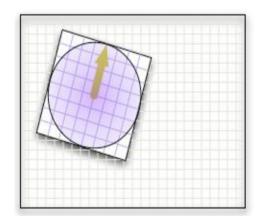


Assign canonical orientation at peak of smoothed histogram (fit parabola to better localize peak).

SIFT – Descriptor Vector

STEP 3: Select canonical orientation

 Each SIFT interest point is associated with location (x,y), scale (σ), gradient magnitude and orientation (m, θ).



Compute SIFT feature - a vector of 128 entries.

SIFT – Descriptor Vector

STEP 4: Compute SIFT feature vector of 128 entries

- Gradients determined in 16x16 window at SIFT point in scale space.
- Histogram is computed for gradients of each 4x4 sub window in 8 relative directions.
- A 4x4x8 = 128 dimensional feature vector is produced.

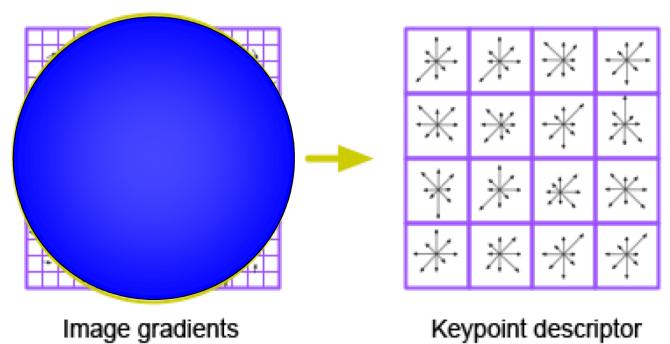
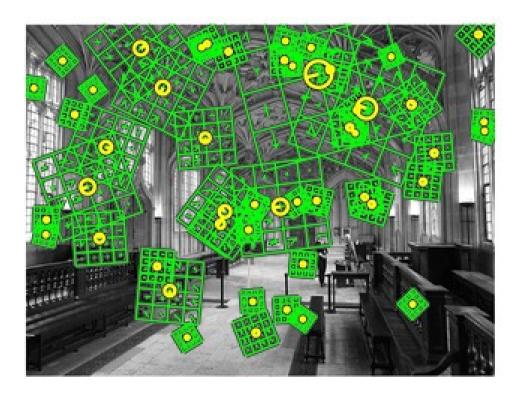


Image from: Jonas Hurrelmann

SIFT – Descriptor Vector

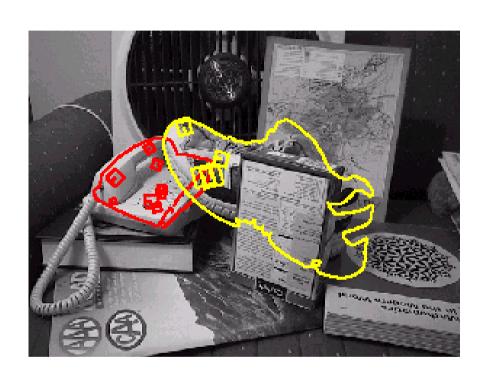
STEP 4: Compute feature vector

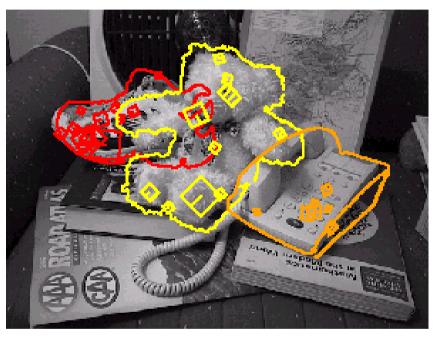


Object Recognition

 Only 3 keys are needed for recognition, so extra keys provide robustness

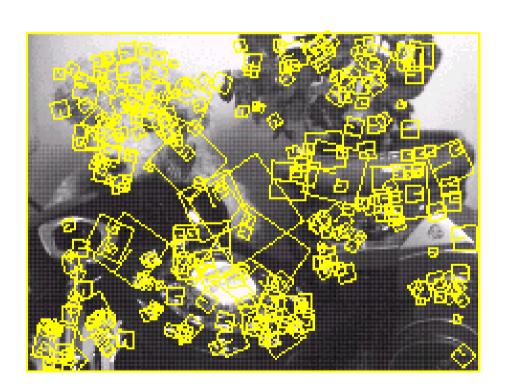
Recognition under occlusion





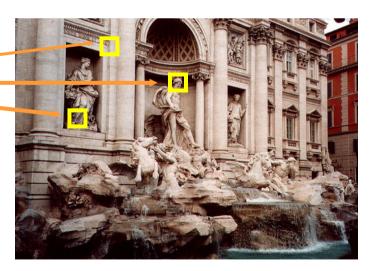
Test of illumination Robustness

• Same **image** under differing illumination

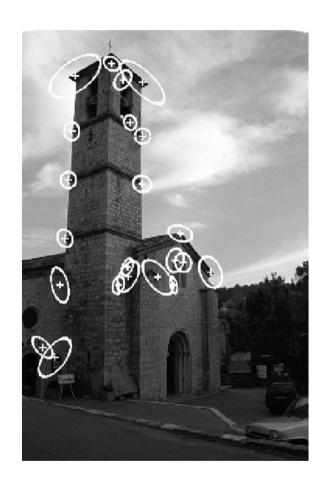


273 keys verified in final match

- Given a feature in I₁, how to find the best match in I₂?
 - 1. Define distance function that compares two descriptors.
 - 2. Test all the features in I₂, find the one with min distance. Accept if below threshold.



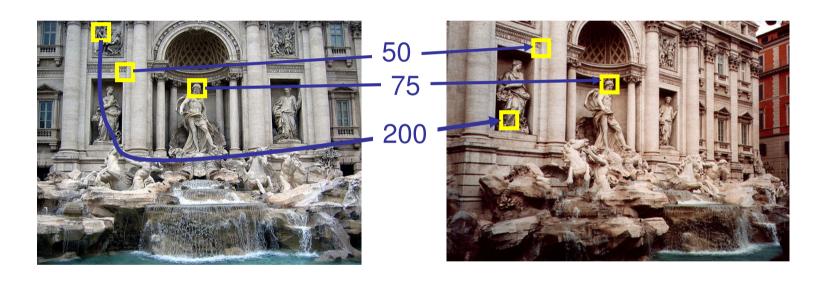
 \mathbf{I}_{2}



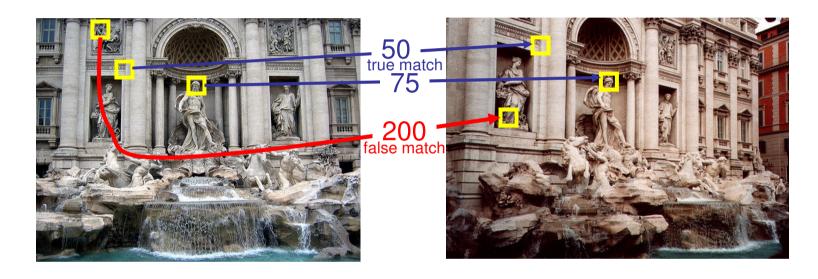
22 correct matches

33 correct matches

How to evaluate the performance of a feature matcher?



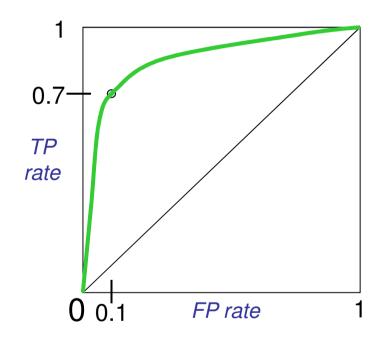
• Threshold t affects # of correct/false matches



- True positives (TP) = # of detected matches that are correct
- False positives (FP) = # of detected matches that are incorrect

ROC Curve

- Generated by computing (FP, TP) for different thresholds.
- Maximize area under the curve (AUC).

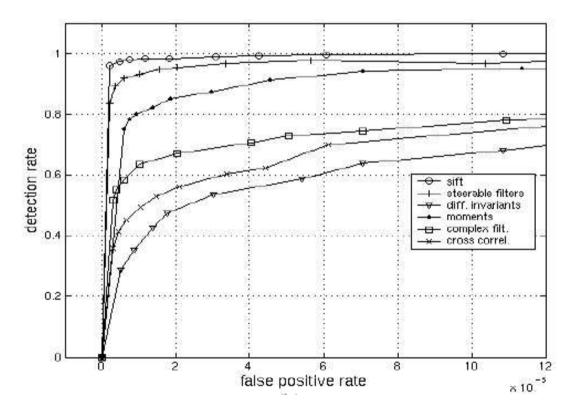


http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluating SIFT Features

 Empirically found² to show very good performance, invariant to *image rotation*, *scale*, *intensity change*, and to moderate *affine* transformations

Scale = 2.5Rotation = 45^0



¹ D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

² K.Mikolajczyk, C.Schmid. "A Performance Evaluation of Local Descriptors". CVPR 2003

Example - Mosaicing

Source: Alexei Efros

Example: Mosiacing (Panorama)

