Nonparametric Density Estimation
Nearest Neighbors , KNN

k-Nearest Neighbors

= Recall the generic expression for density

estimation k /n

IO(X)“T

= |[n Parzen windows estimation, we fix V and that
determines k, the number of points inside V

= In k-nearest neighbor approach we fix k, and find
V that contains k points inside

k-Nearest Neighbors

= KNN approach seems a good solution for the
problem of the “best” window size
= Let the cell volume be a function of the training data

= Center a cell about x and let it grows until it captures k
samples

= k are called the k nearest-neighbors of x

MR

= 2 possibilities can occur:

= Density is high near x; therefore the cell will be small
which provides a good resolution

= Density is low; therefore the cell will grow large and
stop until higher density regions are reached

k-Nearest Neighbor

= Of course, now we have a new question

= How to choose k?
= A good “rule of thumb“is k = h

= Can prove convergence if n goes to infinity
= Not too useful in practice, however

= Let's look at 1-D example
= we have one sample, i.e.n =1

kK/n 1 X, X
p(X)z v =2 —

V—XJ -

V‘XJ

= But the estimated p(x) Is not even close to a
density function: T 1
2 2|x

dx =0 #1
_X1‘

k-Nearest Neighbor: Density estimation

I'
-2 r-} 2 i 1 2 3 k|
] ‘lll !
n=/ n=/
ﬂ, :,.r ku=.|r
o— o

n=1 =1
-I.'I.I:-J! ,I,'“:-II!

]
7
A~ |

k-Nearest Neighbor

! i
n=230
k=10
il) 2 i 4 {l { ! /
! {
=+
k=9 A
il i) 2 i) {l { 2 K} q

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:

a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David C. Stork, Fattern Classification.

Copyright © 2001 by John Wiley & Sons, Inc.

k-Nearest Neighbor

= Thus straightforward density estimation p(x)
does not work very well with KNN approach
because the resulting density estimate

1. Is not even a density

2. Has a lot of discontinuities (looks very spiky,
not differentiable)

3. Even for large regions with no observed
samples the estimated density Is far from zero
(talls are too heavy)

= Notice in the theory, if infinite number of samples is
available, we could construct a series of estimates that
converge to the true density using KNN estimation. However
this theorem is not very useful in practice because the
number of samples is always limited

k-Nearest Neighbor

= However we shouldn’t give up the nearest
neighbor approach yet

= |nstead of approximating the density p(x), we
can use kNN method to approximate the
posterior distribution P(c;|x)

= We don’t need p(x) If we can get a good
estimate on P(c;|x)

k-Nearest Neighbor

How would we estimate P(c; | X) from a set of n
abeled samples?

. . k /

Recall our estimate for density: p(x zTn

_et’s place a cell of volume V around x and
capture k samples 1 3

= k; samples amongst k labeled c; then: % ® X

3
k. /'n 22
p(c;,X) =
Using conditional probability, let's estimate posterior:
_p(x,c;) p(x,c;) _ k/n Kk _k
p(Ci | X) - ~ m k /n — —

C K
2K,

Jl j=1

p(X) B ip(x,cj)

k-Nearest Neighbor Rule

= Thus our estimate of posterior is just the fraction of
samples which belong to class c;:

p(Ci |X)=%

= This Is a very simple and intuitive estimate

= Under the zero-one loss function (MAP classifier) just
choose the class which has the largest number of
samples in the cell

= |nterpretation is: given an unlabeled example (that is
X), find k most similar labeled examples (closest
neighbors among sample points) and assign the most
frequent class among those neighbors to X

k-Nearest Neighbor: Example

= Back to fish sorting

= Suppose we have 2 features, and collected sample points
as in the picture

= letk =3

= 2 seabass, 1 salmon are the 3
length I nearest neighbors

= Thus classify as sea bass

=R aems

| s e\
T \
m gl

— ! —

- '

lightness

\ KNN: How Well Does it Work?

KNN rule is certainly simple and intuitive, but does it
work?

Assume we have an unlimited number of samples

By definition, the best possible error rate is the Bayes
rate E*

Nearest-neighbor rule leads to an error rate greater
than E*

But even for k =1, as n — o, It can be shown that
nearest neighbor rule error rate is smaller than 2E*

As we Iincrease k, the upper bound on the error gets
better and better, that is the error rate (as n — «) for
the kNN rule i1s smaller than cE*,with smaller ¢ for
larger k

If we have a lot of samples, the kNN rule will do very
well !

INN: Voronol Cells

X,

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.

\ KNN: Multi-Modal Distributions

= Most parametric ! -....= =
distributions would not f‘ .gl
work for this 2 class e O, »
classification problem: O “. =
® B
‘-
= Nearest neighbors will - ®
=0
do reasonably well, _ ©
provided we have a lot = u® X
of samples = .. : =

v

\ KNN: How to Choose k?

= |n theory, when the infinite number of samples is
available, the larger the k, the better is
classification (error rate gets closer to the optimal

Bayes error rate)

= But the caveat is that all k neighbors have to be

close to x
= Possible when infinite # samples available
= Impossible in practice since # samples is finite

\ KNN: How to Choose k?

= |n practice
1. k should be large so that error rate is
minimized
= Kk too small will lead to noisy decision
poundaries

2. k should be small enough so that only nearby
samples are included

= Kk too large will lead to over-smoothed
boundaries

= Balancing 1 and 2 is not trivial

= This Is a recurrent issue, need to smooth data,
but not too much

kKNN: How to Choose k?

R O
X2 00 %,
00.""

X
000
K
00 o .‘
o0 0® L

o0

= Fork =1, ...,5point x gets classified correctly
= red class

= For larger k classification of x is wrong
= Dblue class

- kNN: Computational Complexity

= Basic kNN algorithm stores all examples. Suppose
we have n examples each of dimension d

= O(d) to compute distance to one example

= O(nd) to find one nearest neighbor

= O(knd) to find k closest examples examples
= Thus complexity is O(knd)

= This is prohibitively expensive for large number of
samples

= But we need large number of samples for kNN to
work well!

~Reducing Complexity: Editing 1NN

= |f all voronoi neighbors have the same class, a
sample Is useless, we can remove lIt:

remove>

= Number of samples decreases

= We are guaranteed that the decision boundaries
stay the same

Reducing the complexity of KNN

= |dea: Partition space recursively and search for
NN only close to the test point

= Preprocessing: Done prior to classification
process.

| *
Axis-parallel tree construction:] .. o
1. Split space Iin direction of) '. Yl ",
largest ‘spread’ into two equi- ", "
numbered cells = . em ® ¢
2. Repeat procedure recursively e [o |* .

for each subcell,until some a |* |, =
stopping criterion is achieved . .

Reducing the complexity of KNN

= Classification:
1. Propagate a test point down the tree. Classification is
based on NN from the final leaf reached.

2. If NN (within leaf) is further than nearest boundary -
retrack

= Notes:

= Clearly log n layers (and distance computations)
suffice.

= Computation time to build tree: O(dn log n) (offline)

= Many variations and improvements exist (e.g. diagonal
splits)

= Stopping criterion: often ad-hoc (e.g. number of points
In leaf region is k, region size, etc.)

\ KNN: Selection of Distance

= So far we assumed we use Euclidian Distance to
find the nearest neighbor:

D(a,b) = \/zk:(ak —b,)

= However some features (dimensions) may be
much more discriminative than other features
(dimensions)

= Euclidian distance treats each feature as equally
Important

\ KNN: Selection of Distance

= Extreme Example
= feature 1 gives the correct class: 1 or 2
= feature 2 gives irrelevant number from 100 to 200

= Suppose we have to find the class of x=[1 100]
and we have 2 samples [1 150] and [2 110]

D([léo],[léo:l) = J@-1) +(100-150) =50 D([léo],[ﬁo]) = J@-2) +(100-110) =105

= x=[1 100] is misclassified!
= The denser the samples, the less of the problem

= But we rarely have samples dense enough

KNN: Extreme Example of Distance Selection

180;

S

feature2

—
o
o

—
Mo
o

0-@

12 14 16 18 >
feature 1

= decision boundaries for blue and green classes are in red
= These boundaries are really bad because

= feature 1 is discriminative, but it's scale is small

= feature 2 gives no class information (noise) but its scale Is
large

\ KNN: Selection of Distance

Notice the 2 features are on different scales:
= feature 1 takes values between 1 or 2
= feature 2 takes values between 100 to 200

We could normalize each feature to be between

of mean 0 and variance 1
If X Is a random variable of mean g and varaince

o2, then (X - y)/o has mean 0 and variance 1

Thus for each feature vector x;, compute Its
sample mean and variance, and let the new
feature be [x; - mean(x;)]/sqrt[var(x;)]

Let's do it in the previous example

KNN: Normalized Features

feature2
)

s
wn

n
T . T

P~
&
mm]4 s o '@

L3
n

| | | feature q
-1 -0.5 0 0.5

= The decision boundary (in red) is very good now!

\ KNN: Selection of Distance

= However in high dimensions if there are a lot of
irrelevant features, normalization will not help

D(a,b) = \/zk:(ak _bk)2 = \/Z(ai —b,)2 "‘Zj:(aj _bj)2

discriminative noisy
feature features

= |f the number of discriminative features is smaller
than the number of noisy features, Euclidean
distance is dominated by noise

- kNN: Feature Weighting

= Scale each feature by its importance for
classification

D(a,b) = \/Zwk(ak — by)2

= Can learn the weights w, from the validation data

= Increase/decrease weights until classification
Improves

k-NNR In action: example 1

= We have generated data for a 2-dimensional 3-
class problem, where the class-conditional
densities are multi-modal, and non-linearly
separable, as illustrated in the figure

= We used the k-NNR with

e k="five
+ Metric = Euclidean distance

m» The resulting decision boundaries and decision
regions are shown below

L %
- i i
‘l :

- J— _ ‘B-_,_'

i 22 E;
ﬁgi "I Th
naf l_‘_""ﬂ"l""h
Lfrqfﬁf@

;] E

s

1

et

Jﬂ 15 oA

&

o 1

k-NNR in action: example 2

= We have generated data for a 2-dimensional 3-class
problem, where the class-conditional densities are
unimodal, and are distributed in rings around a
common mean. These classes are also non-linearly
separable, as illustrated in the figure

= We used the kK-NNR with
e K="five
« Metric = Euclidean distance
= The resulting decision boundaries and decision

regions are shown below

kNN Summary

= Advantages
= Can be applied to the data from any distribution
= Very simple and intuitive

= Good classification if the number of samples is
large enough

= Disadvantages
= Choosing best k may be difficult

= Computationally heavy, but improvements
possible
= Need large number of samples for accuracy

= Can never fix this without assuming parametric
distribution

