
Nonparametric Density Estimation 

 Nearest Neighbors , KNN  



 Recall the generic expression for density 

estimation 

k-Nearest Neighbors  
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 In Parzen windows estimation, we fix V and that 
determines k, the number of points inside V 

 In k-nearest neighbor approach we fix k, and find 
V  that contains  k points inside 



 kNN approach seems a good solution for the 
problem of the “best” window size 
 Let the cell volume be a function of the training data 

 Center a cell about x and let it grows until it captures k 
samples  

 k are called the k nearest-neighbors of x 
 

k-Nearest Neighbors  

 2 possibilities can occur: 
 Density is high near x; therefore the cell will be small 

which provides a good resolution 

 Density is low; therefore the cell will grow large and  
stop until higher density regions are reached 
 



 Of course, now we have a new question  
 How to choose k? 

k-Nearest Neighbor  

 A good “rule of thumb“ is k =  n  
 Can prove convergence if n goes to infinity 

 Not too useful in practice, however 

 Let’s look at 1-D example  

 we have one sample, i.e. n = 1 
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 But the estimated p(x) is not even close to a 
density function: 



k-Nearest Neighbor: Density estimation 



k-Nearest Neighbor 



 Thus straightforward density estimation p(x) 
does not work very well with kNN approach 
because the resulting density estimate 

1. Is not even a density 

2. Has a lot of discontinuities (looks very spiky, 
not differentiable) 

3. Even for large regions with no observed 
samples the estimated density is far from zero 
(tails are too heavy) 

k-Nearest Neighbor  

 Notice in the theory, if infinite number of samples is 
available, we could construct a series of estimates that 
converge to the true density using kNN estimation.  However 
this theorem is not very useful in practice because the 
number of samples is always limited 



k-Nearest Neighbor  

 However we shouldn’t give up the nearest 
neighbor approach yet 

 Instead of approximating the density p(x), we 
can use kNN method to approximate the 
posterior distribution P(ci|x) 

 We don’t need p(x) if we can get a good 
estimate on P(ci|x) 

 



 How would we estimate P(ci | x) from a set of n 

labeled samples? 
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 Let’s place a cell of volume V around x and 

capture k samples 

 ki samples amongst k labeled ci  then:  
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 Using conditional probability, let’s estimate posterior: 
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k-Nearest Neighbor Rule  

 Thus our estimate of  posterior is just the fraction of 

samples which belong to class ci: 
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 This is a very simple and intuitive estimate 

  
 Under the zero-one loss function (MAP classifier) just 

choose the class which has the largest number of 

samples in the cell 

   Interpretation is: given an unlabeled example (that is 

x), find k most similar labeled examples (closest 

neighbors among sample points) and assign the most 

frequent class among those neighbors to  x   



k-Nearest Neighbor: Example 

 Back to fish sorting 

 Suppose we have 2 features, and collected sample points 

as in the picture 

 Let k = 3  

  

lightness 

length 

 2 sea bass, 1 salmon are the 3 
nearest neighbors 

 Thus classify as sea bass 



 kNN rule is certainly simple and intuitive, but does it 
work? 

 Assume we have an unlimited number of samples 

 By definition, the best possible error rate is the Bayes 
rate E* 

 Nearest-neighbor rule leads to an error rate greater 
than E* 

 But even for k =1,  as  n  , it can be shown that 
nearest neighbor rule error rate is smaller than 2E* 

 As we increase k, the upper bound on the error gets 
better and better, that is the error rate (as  n  ) for 
the kNN rule is smaller than cE*,with smaller c for 
larger k 

 If we have a lot of samples, the kNN rule will do very 
well ! 
  

kNN: How Well Does it Work? 



1NN: Voronoi Cells 



 Most parametric 

distributions would not 

work for this 2 class 

classification problem: 

  

kNN: Multi-Modal Distributions 

 Nearest neighbors will 

do reasonably well, 

provided we have a lot 

of samples 
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 In theory, when the infinite number of samples is 

available, the larger the k, the better is 

classification (error rate gets closer to the optimal 

Bayes error rate) 

  

kNN: How to Choose k? 

 But the caveat is that all k neighbors have to be 

close to x 

 Possible when infinite # samples available 

 Impossible in practice since # samples is finite 



kNN: How to Choose k? 

 In practice 

1. k should be large so that error rate is 

minimized 

 k  too small will lead to noisy decision 

boundaries 

2. k should be small enough so that only nearby 

samples are included 

 k too large will lead to over-smoothed 

boundaries 

 Balancing 1 and 2 is not trivial 

 This is a recurrent issue, need to smooth data, 

but not too much 



x1 

kNN: How to Choose k? 

 For k = 1, …,5 point x gets classified correctly 

 red class 

 For larger k classification of x is wrong 

 blue class 

x2 

x 



kNN: Computational Complexity 

 Basic kNN algorithm stores all examples. Suppose 

we have n examples each of dimension d 

 O(d) to compute distance to one example  

 O(nd) to find one nearest neighbor 

 O(knd) to  find k closest examples examples 

 Thus complexity is O(knd)  

 This is prohibitively expensive for large number of 

samples 

 But we need large number of samples for kNN to 

work well! 



removed 

Reducing Complexity: Editing 1NN 

 If all voronoi neighbors have the same class, a 

sample is useless, we can remove it: 

 Number of samples decreases 

 We are guaranteed that the decision boundaries 

stay the same 



Reducing the complexity of KNN 

 Idea: Partition space recursively and search for 

NN only close to the test point 

 Preprocessing: Done prior to classification 

process. 

 

Axis-parallel tree construction: 

1. Split space in direction of 
largest ‘spread’ into two equi-
numbered cells 

2. Repeat procedure recursively 
for each subcell,until some 
stopping criterion is achieved 



Reducing the complexity of KNN 

 Classification: 

    1. Propagate a test point down the tree. Classification is  
based on NN from the final leaf reached. 

     2. If NN (within leaf) is further than nearest boundary - 
retrack 

 Notes: 
  Clearly log n layers (and distance computations) 

suffice.  

 Computation time to build tree: O(dn log n) (offline) 

 Many variations and improvements exist (e.g. diagonal 
splits) 

 Stopping criterion: often ad-hoc (e.g. number of points 
in leaf region is k, region size, etc.) 

 



kNN: Selection of Distance 

 So far we assumed we use Euclidian Distance to 

find the nearest neighbor:  

 However some features (dimensions) may be 

much more discriminative than other features 

(dimensions) 
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 Euclidian distance treats each feature as equally 

important 



kNN: Selection of Distance 

 Extreme Example 

 feature 1 gives the correct class: 1 or 2 

 feature 2 gives irrelevant number from 100 to 200 

 Suppose we have to find  the class of x=[1  100] 

and we have 2 samples [1  150] and [2  110] 
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 x = [1  100] is misclassified! 

 The denser the samples, the less of the problem 

 But we rarely have samples dense enough  



kNN: Extreme Example of Distance Selection 

 decision boundaries for blue and green classes are in red 
 These boundaries are really bad because 

 feature 1 is discriminative, but it’s scale is small 
 feature 2 gives no class information (noise) but its scale is 

large  



kNN: Selection of Distance 

 Notice the 2 features are on different scales: 

 feature 1  takes values between 1 or 2 

 feature 2 takes values between 100 to 200 

 We could normalize each feature to be between 

of mean 0 and variance 1 
 If X is a random variable of mean m and varaince 

s2, then (X - m)/s   has mean 0 and variance 1 

 Thus for each feature vector xi, compute its 

sample mean and variance, and let the new 

feature be   [xi - mean(xi)]/sqrt[var(xi)] 

 Let’s do it in the previous example 



kNN: Normalized Features 

 The decision boundary (in red)  is very good now! 



kNN: Selection of Distance 

 However in high dimensions if there are a lot of 

irrelevant features, normalization will not help 
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 If the number of discriminative features is smaller 

than the number of  noisy features, Euclidean 

distance is dominated by noise 



kNN: Feature Weighting 

 Scale each feature by its importance for 

classification 

 Can learn the weights wk from the validation data 

 Increase/decrease weights until classification 

improves 
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kNN Summary 

 Advantages 

 Can be applied to the data from any distribution 

 Very simple and intuitive 

 Good classification if the number of samples is 
large enough 

 Disadvantages 

 Choosing best k may be difficult 

 Computationally heavy, but improvements 
possible 

 Need large number of samples for accuracy 
 Can never fix this without assuming parametric 

distribution 

 


