
Nonparametric Density Estimation

 Nearest Neighbors , KNN

 Recall the generic expression for density

estimation

k-Nearest Neighbors

 
V

n/k
xp 

 In Parzen windows estimation, we fix V and that
determines k, the number of points inside V

 In k-nearest neighbor approach we fix k, and find
V that contains k points inside

 kNN approach seems a good solution for the
problem of the “best” window size
 Let the cell volume be a function of the training data

 Center a cell about x and let it grows until it captures k
samples

 k are called the k nearest-neighbors of x

k-Nearest Neighbors

 2 possibilities can occur:
 Density is high near x; therefore the cell will be small

which provides a good resolution

 Density is low; therefore the cell will grow large and
stop until higher density regions are reached

 Of course, now we have a new question
 How to choose k?

k-Nearest Neighbor

 A good “rule of thumb“ is k = n
 Can prove convergence if n goes to infinity

 Not too useful in practice, however

 Let’s look at 1-D example

 we have one sample, i.e. n = 1

 
V

n/k
xp 

1xx2

1




x x1

1xx 

1dx
xx2

1

1








 But the estimated p(x) is not even close to a
density function:

k-Nearest Neighbor: Density estimation

k-Nearest Neighbor

 Thus straightforward density estimation p(x)
does not work very well with kNN approach
because the resulting density estimate

1. Is not even a density

2. Has a lot of discontinuities (looks very spiky,
not differentiable)

3. Even for large regions with no observed
samples the estimated density is far from zero
(tails are too heavy)

k-Nearest Neighbor

 Notice in the theory, if infinite number of samples is
available, we could construct a series of estimates that
converge to the true density using kNN estimation. However
this theorem is not very useful in practice because the
number of samples is always limited

k-Nearest Neighbor

 However we shouldn’t give up the nearest
neighbor approach yet

 Instead of approximating the density p(x), we
can use kNN method to approximate the
posterior distribution P(ci|x)

 We don’t need p(x) if we can get a good
estimate on P(ci|x)

 How would we estimate P(ci | x) from a set of n

labeled samples?





m

j

j

i

cxp

cxp

1

),(

),(

k-Nearest Neighbor

V

n/k
)x,c(p i

i 

 Let’s place a cell of volume V around x and

capture k samples

 ki samples amongst k labeled ci then:

 
V

n/k
xp  Recall our estimate for density:

 Using conditional probability, let’s estimate posterior:

 xp

cxp
xcp i

i

),(
)|(





m

1j

j

i

V

n/k
V

n/k





m

j

j

i

k

k

1

k

k i

x
1 1
1

2 2
2

3

3

k-Nearest Neighbor Rule

 Thus our estimate of posterior is just the fraction of

samples which belong to class ci:

k

k
xcp i

i )|(

 This is a very simple and intuitive estimate

 Under the zero-one loss function (MAP classifier) just

choose the class which has the largest number of

samples in the cell

  Interpretation is: given an unlabeled example (that is

x), find k most similar labeled examples (closest

neighbors among sample points) and assign the most

frequent class among those neighbors to x

k-Nearest Neighbor: Example

 Back to fish sorting

 Suppose we have 2 features, and collected sample points

as in the picture

 Let k = 3

lightness

length

 2 sea bass, 1 salmon are the 3
nearest neighbors

 Thus classify as sea bass

 kNN rule is certainly simple and intuitive, but does it
work?

 Assume we have an unlimited number of samples

 By definition, the best possible error rate is the Bayes
rate E*

 Nearest-neighbor rule leads to an error rate greater
than E*

 But even for k =1, as n  , it can be shown that
nearest neighbor rule error rate is smaller than 2E*

 As we increase k, the upper bound on the error gets
better and better, that is the error rate (as n  ) for
the kNN rule is smaller than cE*,with smaller c for
larger k

 If we have a lot of samples, the kNN rule will do very
well !

kNN: How Well Does it Work?

1NN: Voronoi Cells

 Most parametric

distributions would not

work for this 2 class

classification problem:

kNN: Multi-Modal Distributions

 Nearest neighbors will

do reasonably well,

provided we have a lot

of samples

?

?

 In theory, when the infinite number of samples is

available, the larger the k, the better is

classification (error rate gets closer to the optimal

Bayes error rate)

kNN: How to Choose k?

 But the caveat is that all k neighbors have to be

close to x

 Possible when infinite # samples available

 Impossible in practice since # samples is finite

kNN: How to Choose k?

 In practice

1. k should be large so that error rate is

minimized

 k too small will lead to noisy decision

boundaries

2. k should be small enough so that only nearby

samples are included

 k too large will lead to over-smoothed

boundaries

 Balancing 1 and 2 is not trivial

 This is a recurrent issue, need to smooth data,

but not too much

x1

kNN: How to Choose k?

 For k = 1, …,5 point x gets classified correctly

 red class

 For larger k classification of x is wrong

 blue class

x2

x

kNN: Computational Complexity

 Basic kNN algorithm stores all examples. Suppose

we have n examples each of dimension d

 O(d) to compute distance to one example

 O(nd) to find one nearest neighbor

 O(knd) to find k closest examples examples

 Thus complexity is O(knd)

 This is prohibitively expensive for large number of

samples

 But we need large number of samples for kNN to

work well!

removed

Reducing Complexity: Editing 1NN

 If all voronoi neighbors have the same class, a

sample is useless, we can remove it:

 Number of samples decreases

 We are guaranteed that the decision boundaries

stay the same

Reducing the complexity of KNN

 Idea: Partition space recursively and search for

NN only close to the test point

 Preprocessing: Done prior to classification

process.

Axis-parallel tree construction:

1. Split space in direction of
largest ‘spread’ into two equi-
numbered cells

2. Repeat procedure recursively
for each subcell,until some
stopping criterion is achieved

Reducing the complexity of KNN

 Classification:

 1. Propagate a test point down the tree. Classification is
based on NN from the final leaf reached.

 2. If NN (within leaf) is further than nearest boundary -
retrack

 Notes:
 Clearly log n layers (and distance computations)

suffice.

 Computation time to build tree: O(dn log n) (offline)

 Many variations and improvements exist (e.g. diagonal
splits)

 Stopping criterion: often ad-hoc (e.g. number of points
in leaf region is k, region size, etc.)

kNN: Selection of Distance

 So far we assumed we use Euclidian Distance to

find the nearest neighbor:

 However some features (dimensions) may be

much more discriminative than other features

(dimensions)

  
k

kk babaD
2

),(

 Euclidian distance treats each feature as equally

important

kNN: Selection of Distance

 Extreme Example

 feature 1 gives the correct class: 1 or 2

 feature 2 gives irrelevant number from 100 to 200

 Suppose we have to find the class of x=[1 100]

and we have 2 samples [1 150] and [2 110]

    5015010011)150
1,100

1(D
22












     5.1011010021)110

2,100
1(D

22














 x = [1 100] is misclassified!

 The denser the samples, the less of the problem

 But we rarely have samples dense enough

kNN: Extreme Example of Distance Selection

 decision boundaries for blue and green classes are in red
 These boundaries are really bad because

 feature 1 is discriminative, but it’s scale is small
 feature 2 gives no class information (noise) but its scale is

large

kNN: Selection of Distance

 Notice the 2 features are on different scales:

 feature 1 takes values between 1 or 2

 feature 2 takes values between 100 to 200

 We could normalize each feature to be between

of mean 0 and variance 1
 If X is a random variable of mean m and varaince

s2, then (X - m)/s has mean 0 and variance 1

 Thus for each feature vector xi, compute its

sample mean and variance, and let the new

feature be [xi - mean(xi)]/sqrt[var(xi)]

 Let’s do it in the previous example

kNN: Normalized Features

 The decision boundary (in red) is very good now!

kNN: Selection of Distance

 However in high dimensions if there are a lot of

irrelevant features, normalization will not help

      
j

2

jj

i

2

ii

k

2

kk bababa)b,a(D

discriminative

feature

noisy

features

 If the number of discriminative features is smaller

than the number of noisy features, Euclidean

distance is dominated by noise

kNN: Feature Weighting

 Scale each feature by its importance for

classification

 Can learn the weights wk from the validation data

 Increase/decrease weights until classification

improves

  
k

kkk bawbaD
2

),(

kNN Summary

 Advantages

 Can be applied to the data from any distribution

 Very simple and intuitive

 Good classification if the number of samples is
large enough

 Disadvantages

 Choosing best k may be difficult

 Computationally heavy, but improvements
possible

 Need large number of samples for accuracy
 Can never fix this without assuming parametric

distribution

