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Abstract

Proteins are remarkably versatile macromolecules involved in essentially all biological

processes. The detailed three-dimensional structure of a protein encodes its function.

A fundamental computational challenge in the study of proteins is the comparison and

modeling of protein structure. Structural similarities of proteins can hint at distant

evolutionary relationships that are impossible to discern from protein sequences alone.

Consequently structural comparison, or alignment, is an important tool for classifying

known structures and analyzing their relationships. Efficient models are crucial for

structure prediction; in particular, for the generation of decoy sets (ab initio protein

folding) and loop conformations (homology modeling).

The first part of this work focuses on protein structural alignment, namely, the

comparison of two structures. We formalize this problem as the optimization of a

geometric similarity score over the space of rigid body transformations. This leads

to an approximate polynomial time alignment algorithm. Our result is theoretical,

rather than practical: it proves that contrary to previous belief the problem is not

NP-hard. We also present a large-scale comparison of six publicly available structural

alignment heuristics and evaluate the quality of their solutions using several geometric

measures. We find that our geometric measure can identify a good match, providing

a method of analysis that augments the traditional use of ROC curves and their need

for a classification gold standard.

In the second part, we present and use an efficient model of protein structure. Our

model concatenates elements from libraries of commonly observed protein backbone

fragments into structures that approximate protein well. There are no additional

degrees of freedom so a string of fragment labels fully defines a three–dimensional
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structure; the set of all strings defines the set of structures (of a given length). By

varying the size of the library and the length of its fragments, we generate structure

sets of different resolution. With larger libraries, the approximations are better, but

we get good fits to real proteins with less than five states per residue. We also describe

uses for these libraries in protein structure prediction and loop modeling.
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Chapter 1

Introduction

Proteins are molecules that govern virtually all aspects of life. Creighton [18] describes

very well their versatile roles:

Proteins store and transport a variety of particles ranging from macro-

molecules to electrons. They guide the flow of electrons in the vital pro-

cess of photosynthesis; as hormones, they transmit information between

specific cells and organs in complex organisms; some proteins control the

passage of molecules across the membranes that compartmentalize cells

and organelles; proteins function in the immune systems of complex or-

ganisms to defend against intruders (the best known are the antibodies);

and proteins control gene expression by binding to specific sequences of

nucleic acids, thereby turning genes on and off. Proteins are the crucial

components of muscles and other systems for converting chemical energy

into mechanical energy. They also are necessary for sight, hearing, and

other senses. And many proteins are simply structural, providing the fil-

amentous architecture within the cells and the materials that are used in

hair, nails, tendons, and bones of animals.

A protein has a unique three-dimensional structure, which carries out, or enables,

its function. Consequently, evolution conserves the structure of proteins significantly

more than it conserves their amino acid sequence. Thus, researchers can use structural
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CHAPTER 1. INTRODUCTION 2

similarity as a powerful “telescope” for looking back to early evolutionary history [14,

51].

Proteins are linear macromolecules — chains of smaller molecules called amino

acids; we refer to the molecules along the protein chain as ‘residues’. There are

twenty types of amino acids: all have the same backbone component and a type-

specific side-chain component. The backbone components connect the amino acids

to each other, forming a chain from which the side chains branch off. Each backbone

component has a central carbon atom denoted Cα. The structural elements along the

backbone between those Cα atoms are known as peptide groups; these are planar with

almost fixed bond lengths and bond angles between their atoms [6]. Equivalently, the

backbone has only two rotational degrees of freedom per amino acid: φ about the

N–Cα bond, and ψ about the Cα–C bond (see Figure 1.1). A protein is described

either by the sequence of its amino acids, or by its structure. The structure is the

three-dimensional positions of the backbone and side chain atoms. A common, viable

simplification, is to consider only the positions of the backbone atoms, or equivalently

the values of the (φ, ψ) angles. We often further simplify the model by using only

one atom per amino acid, most often the Cα atom; this makes the unit of structure

(a Cα atom) correspond to a unit of sequence (an amino acid).

Measurements of protein atom positions are inherently noisy. Most importantly,

proteins are generally flexible except for the peptide groups, and the coordinates of

their atoms vibrate about their mean positions [58]. In addition, these coordinates

are acquired via physical experiments, which are prone to measurement errors [12].

It follows that when dealing with functions defined over the coordinates of proteins,

there is not much point in seeking exact solutions. Rather, approximate solutions are

called for, and we do not assume that the approximation error tends to zero; instead,

we assume it is bounded from below by a small positive value.

1.1 Protein structural similarity

A fundamental task in structural molecular biology is comparing and detecting sim-

ilarity between protein structures. Perutz et al. [92] showed in 1960 that myoglobin
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Figure 1.1: Schematic view of a segment of the protein backbone: the backbone chain
is drawn in detail, and the side chains are marked by pink circles with the letter R.
Two of the resides are marked with a dashed line. The planar peptide groups between
the Cα atoms are shown in light gray, and the two rotational angles (φ, ψ) are marked.

and hemoglobin have similar structures, even though their sequences are different.

Functionally, these two proteins are similar and are involved with the storage and

transport of oxygen, respectively. Since then, researchers have continued to look for

structural similarity in hope of detecting shared functionality or origin.

There are many applications for automatic methods of protein structural com-

parison, and the rapid growth of the Protein Databank (PDB) [5] underscores the

need for fast and accurate comparison methods. Structural biologists have been mak-

ing intensive efforts to classify systematically all known protein structures, based on

their structural (and possibly sequence) similarity [36, 86, 87, 105]. These efforts led

to structural databases such as SCOP [81], FSSP [50] and CATH [87]. Identifying

similar known structures is also very useful when studying a newly determined struc-

ture [50]. Lastly, many studies (e.g., [119, 101]) use structural similarity as the ‘gold

standard’ for sequence alignment.
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1.1.1 Protein structural alignment

The structural alignment problem is the structural analog of the well-known sequence

alignment problem; it formalizes the problem of detecting similar sub-structures.

The input to the former consists of two protein structures, or chains, in the three-

dimensional space R
3. The desired output is a pair of maximal sub-chains, one from

each protein, that exhibit the highest degree of similarity. The sequential alignment

of the two sub-chains is a sequence of residue pairs, also called a correspondence.

Figure 1.2 is a two-dimensional illustration of the structural alignment problem.

(B)

(D)

(A)

(C)

Figure 1.2: Two-dimensional illustration of the structural alignment problem. The
input to the problem, shown in panel (A), is two chains; the black arrows give their
N-to-C direction. An example correspondence of four residues is colored in pink in
panel (B), with arrows associating the pairs of atoms from the two chains. We can
compare these two sub-chains using dRMS, in which case we consider corresponding
internal distances. Alternatively, if when using cRMS, we need to be rotate (panel
(C)) and translate (panel (D))one of the chains, such that corresponding atoms are
close in space.

There are two main methods to quantify similarity between sub-chains of two
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proteins. The first method computes internal distances between corresponding pairs

of atoms in the two sub-chains, and compares these distances in the two proteins under

consideration; this distance measure is denoted dRMS. The second method uses the

actual Euclidean distance between corresponding atoms in the two proteins under

comparison; this distance measure is denoted cRMS. To calculate the optimal cRMS,

the method must also determine the rigid transformation that optimally positions

the two structures vis-a-vis each other. In both cases the similarity is geometric, or

equivalently it is captured by the Euclidian distance between corresponding (generally

Cα) atoms or atom pairs.

These two methods of quantifying similarity give rise to two approaches for solving

the structural alignment problem. Investigators subscribing to the first approach

have developed heuristic algorithms that compare the internal distance matrices in

search of the optimal correspondence (e.g., [40, 48, 79, 104, 116, 117, 130]). An

advantage of these algorithms is that they bypass the need to find an optimal rigid

transformation. The most commonly used structural alignment server, DALI [48],

belongs to this group. Along the second approach, heuristic algorithms have been

developed to optimize the correspondence and the rigid transformation simultaneously

(e.g., [1, 21, 59, 61, 73, 75, 84, 112, 125, 128]). In addition there are hybrid approaches,

which use both representations (e.g., [129, 118]). Excellent reviews of these and other

methods can be found in [86, 70, 26, 63].

A prevailing sentiment in both research communities is that structural alignment

requires exponential computational resources, and thus investigations should concen-

trate on heuristic approaches [51, 26, 39, 104]. Indeed, none of the above mentioned

heuristics guarantees finding an optimal alignment with respect to any scoring func-

tion.

As a side note, notice that there can be several distinct solutions to the struc-

tural alignment problem (see Figure 1.3 for a two-dimensional illustration). A priori,

all solutions that are close to the optimum (depending on measurement errors) are

equally interesting. Moreover, as Zu-Kang and Sippl [132] noted, the multiple corre-

spondences that exist may be all equally viable from the biological perspective, and

hence deserve equal computational attention.
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(B)(A) (C)

Figure 1.3: Two-dimensional illustration of multiple solutions for structural align-
ment. The input to the problem is shown on top. Three possible alignments are (A),
(B), and (C). Especially when taking into account the noisy nature of the coordinates,
all solutions are a priori equally interesting.

1.1.2 Comparisons of sequence alignment and structural align-

ment heuristics

In 1970 Needleman and Wunsch [82] presented an efficient dynamic programming al-

gorithm that finds the optimal sequence alignment for a family of sequence alignment

scoring functions. The difficulty in aligning sequences lies in finding the parameters

of a scoring function that best captures the evolutionary similarity between amino

acids. A scoring function is defined via a substitution matrix, and many studies try

to specify matrices that produce biologically meaningful sequence alignments (e.g.,

[19, 46]). Another challenge is to develop fast heuristics that find sub-optimal yet

meaningful alignments. Similarly to their structural counterpart, sequence alignment

methods often scan databases of protein sequences in hope of detecting homologs, or

highly similar sequences, to a newly found sequence. The rapid growth in size of the

sequence databases has led to the development of fast heuristics such as BLAST [3]

and FASTA [90].
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It is hard to rely on sequence alignment scores for comparing sequence alignments

found by different programs, because they quantify the elusive concept of evolutionary

distance. Instead, researchers use structure similarity (often derived from a classifica-

tion) as the gold standard. For example, Brenner et al. [7] use the hierarchical protein

classification SCOP [81], which is based on structural and sequence similarity, as their

gold standard for comparing sequence alignment programs. Others [23, 32, 101] also

evaluate sequence alignment methods using structural alignment.

Previous evaluations of structural alignment heuristics use CATH [87] or SCOP [81]

classifications as a gold standard, and verify that pairs of structures that are classi-

fied the same are in fact similar, whereas all other structure pairs are not. Novotny

et al. [83] assess the performance of structural alignment methods, as part of their

evaluation of structural alignment (or fold comparison) servers. Their study uses

CATH as the gold standard, and queries the servers’ databases with approximately

seventy structures. Sierk and Pearson [107] compare ROC curves [41] to evaluate the

success of different methods in detecting domains of the same homology or topology,

as defined by CATH; they test one query in each of 86 families. Using SCOP as the

gold standard, Leplae and Hubbard [71] built a web-server that evaluates structural

alignment methods by comparing their ROC curves. Descriptions of structural align-

ment methods sometimes include evaluations of the methods. For example, Gerstein

and Levitt [34] evaluate STRUCTAL using SCOP; Shindyalov and Bourne [104] com-

pare CE to DALI; Shapiro and Brutlag [103] evaluate FoldMiner, VAST and CE by

comparing their ROC curves, using SCOP.

However, since structural similarity is a geometric concept rather than an evolu-

tionary one, judging which of several alignments for a pair of structures is best, is

easy; researchers have devised geometric match measures for this purpose. The signif-

icant properties of a structural alignment, which are used by these measures, are the

geometric similarity, the number of matched residues, and the number and length of

alignment gaps. Clearly, better alignments match more residues, have fewer gaps and

are more geometrically similar. These alignment properties are not independent (for

example, shortening the alignment or introducing many gaps can decrease the cRMS

deviation), and the alignment match measures attempt to balance these values. In
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this work, we consider the SAS [112], SI [62], and MI [62] match measures. Note that

deciding which alignment is the most geometrically similar is an easier question than

evaluating whether an alignment is biologically meaningful [111, 107].

1.2 Approximation nets for protein structure

We mention some concepts from the computational geometry community that influ-

enced our modeling in protein structure space [74]. Let X be a set; here, X is all

chains (up to some maximal length) in three-dimensional space. Formally, a probabil-

ity measure µ is defined on X, but since this is an intuitive discussion we sidestep this

point. A range space is a pair (X,R) where X is a set and R is a set of (µ-measurable)

subsets of X. A better way to describe a protein is as a subset of X, rather than a

point in X. This subset is the particular measured structure and all structures within

some cRMS deviation from it. Considering a set of subsets R rather than points in

X, captures the flexibility of protein structure as well as the presence of noise in the

measurements. The cRMS deviation that defines each subset in R varies depending

on the application – one may be interested in fairly accurate approximations (i.e.

within 1 Å cRMS), or less accurate approximations may suffice.

An epsilon net is a set that intersects all sufficiently large subsets in R. Formally, a

subset Y ⊂ X is called an epsilon-net for (X,R) if for all S ∈ R µ(S) ≥ ε implies that

Y ∩S 6= 0. Often when modeling protein structure, we seek an approximation to every

protein structure, or a representative within some cRMS deviation. Thus, we can

think of a subset that describes a protein as large when it includes all approximations

within a high cRMS value, and we seek an analog of an epsilon net for the subsets of

chains describing proteins.

Thinking of epsilon nets is useful because it maintains our desire to deal with finite

(and small) sets while exploiting the freedom offered by finding only approximate

solutions (see Figure 1.4). There are several requirements that we would like to

satisfy when constructing approximation nets. First, we would like a model that will

work for different applications or for different bounds on the accuracy. Second, we

would like the nets to be as small as possible (most economical). Lastly, we prefer
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that the description of the net is implicit — that is there is no need to list all its

elements.

1trk

1enh

1tim

Collision-Free Chains

Figure 1.4: Illustration of approximation nets for protein structure. The high-
dimensional space of self avoiding chains is drawn in yellow, and observed protein
structures are marked as black points; we specify three proteins - 1enh, 1tim, and
1trk. A better description of proteins is a set of structures that approximate the
measured structure. We illustrate the sets describing proteins with light blue and
green balls: the light blue approximations are more accurate than the green ones. An
approximation net is illustrated by all structures on the intersection points of a grid,
implicitly defined by the horizontal and vertical lines (marked with red points). In
this cartoon, the net approximates proteins well – every protein has a red net point
in the set of its green approximations.

1.3 Models of protein structure

Understanding the nature of protein structure has been a subject of intense study for

several decades. More than fifty years ago, Corey and Pauling [15] described the two

common types of local secondary structure, the α-helix and the β-sheet. Ten years

later, Ramachandran [93] ascribed the limited (φ, ψ) torsion angles of each residue



CHAPTER 1. INTRODUCTION 10

due to the interactions of the side chain with its backbone. In 1986, Jones and

Thirup [55] discovered that almost all regions of the protein backbone are comprised

of repeating canonical structures. These regions, up to ten residues long, provided

an efficient method for interpreting electron density maps. Unger et al. [121] fol-

lowed by classifying peptide backbone units 4 to 10 residues long, into a collection

of fragments. These building block units constitute an intermediate level of protein

structure representation between single residues and secondary structure. Since then,

many studies have investigated the classification of protein fragments in general, and

loop structures in particular [20, 127, 85, 78].

By restricting the local conformations of individual residues to a handful of states,

one can discretize protein conformation space, such that a fixed-length chain has

only finitely many spatial arrangements. Alternatively, when using continuous values

for the (φ, ψ) torsion angles, the protein chain has infinitely many conformations,

even if these angles are restricted to allowed regions. Intuitively, the discretization

defines sets of structures that serve as epsilon-nets of protein structure space. The

utility of a discrete model depends on the accuracy with which it models real protein

conformations as well as on its size. Here, the size of a model is a function of its

complexity or its average number of allowed states per residue. Rooman et al. [97]

and Park and Levitt [89] show that discrete models that take into account the uneven

(φ, ψ) distribution of single residue conformations in proteins are more accurate (for

a fixed complexity). Others (e.g., [47, 22, 131]) use lattice models to discretize

conformation space.

1.3.1 Applications of protein structure models to protein

structure prediction

Efficient models of protein structure are useful for the hard task of developing methods

for protein folding, or predicting structure from sequence. We denote by ‘target’, the

protein whose structure we want to predict. A determining factor of the prediction

difficulty is whether there is a homolog structure (i.e. the structure of another protein

with similar sequence) in the PDB. Cases where the target protein has no homologs
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of known structure are harder; this problem is called ab initio structure prediction.

When a homolog with known structure exists the prediction is easier because we

can modify that structure [9]; this is called homology or comparative modeling. The

portions in the structure that need to be removed and rebuilt are the misaligned

ones, and often correspond to exposed loop regions that connect secondary structure

elements. The missing loops are short chains of up to 14 residues; finding these chains

is also called ‘the loop closure problem’. It is, in effect, a mini ab initio problem.

Protein structure prediction is often decomposed into two sub-problems: (1) gen-

erating candidate structures (such candidates for ab initio folding are called ‘de-

coys’), and (2) devising a scoring function that discriminates between near native

structures and non-native structures. Clearly, the scoring function should separate

the native structure from non-native decoys in our candidate set. Many studies (e.g.,

[115, 110, 91, 31] of decoys, and [80, 30, 10, 11] of loop structures) consider the parallel

question of searching for conformations that have low energy; they use minimization-

based methods and search the landscape of the scoring functions. However, as Huang

et al. [53] pointed out, a clean separation of the two sub-problems is advantageous as

it allows an easier comparison between different energy potentials, without penalizing

scoring functions with a rugged landscape.

It is easier to generate candidate loop structures than to generate candidate folds

(full protein structures) because loops are shorter and constrained at their ends. As

expected, methods that were designed for generating short chains cannot generate

longer chains. Jones and Thirup [55] noticed that the PDB has sufficient sampling

of short loops, suggesting that a simple search for segments that satisfy the end

geometric constraints suffices. Researchers estimated differently the maximal loop

length for such a PDB search: Fidelis et al. [29] estimated four residues; later studies

estimated greater values: Vlijmen and Karplus [122] nine and Du et al. [24] fifteen. An

alternative approach that works only for short loops is placing a chain analytically by

solving the constraints implied by the fixed length segments and the end points (e.g.,

[38, 126]). As this approach is similar to the robotics problem of inverse kinematics,

advanced robotics techniques were also applied to this problem (e.g., [11]). A recent

review by Honig and co workers [2] surveys many loop building methods.
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1.4 Outline of research

This dissertation is organized as follows: We begin with defining some terms in Chap-

ter 2. Then, we describe three research projects. In the first one, detailed in Chapter 3

and summarized in Subsection 1.4.1, we address the problem of protein structural

alignment; this was published in [67]. In the second, described in Chapter 4 and

summarized in Subsection 1.4.2 we present a new methodology for comparing struc-

tural alignment heuristics and compare six publicly available programs (this has been

submitted for publication). The third, summarized in Subsection 1.4.3, is an econom-

ical model of protein structure. In Chapter 5 we present this economical model; this

was published in [64]. We also employ it in Chapter 6 to generate decoys and build

protein loops; this was published in [66, 65]. Lastly, Appendix A documents a novel

clustering heuristic that we use.

1.4.1 Protein structural alignment in polynomial time

First, we present a polynomial time algorithm to the structural alignment problem,

and prove that contrary to common belief [26, 39, 51, 104], finding ε-approximations

of the optimal solutions is computationally feasible, albeit too slow to be a useful

everyday tool. Our algorithm optimizes both the correspondences and rigid transfor-

mations, and it is not heuristic: it guarantees finding ε-approximations to all solutions

of the protein structural alignment problem. To bound the size of the solution space,

we first consider the complexity of searching rotation and translation space, and show

that it depends polynomially on the length of the longer protein, n, and on 1/ε for an

approximation parameter ε. On the other hand, the number of possible correspon-

dences grows exponentially with the length. Based on these observations we suggest

the following algorithm for structural alignment: place an epsilon net in the relatively

small space of all rigid transformations, and exhaustively search all its members for

an optimal alignment. Since the algorithm is exhaustive, when it fails to find a good

alignment, it is certain that none exists. We emphasize that our contribution is mostly

theoretical, rather than practical.

Our solution applies to a broad class of relevant scoring functions, including, most
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importantly, STRUCTAL [112] — a commonly used structural alignment score. The

above algorithm finds the optimal transformations and correspondences, as defined

by STRUCTAL score, in time complexity O(n10/ε6) for two globular proteins whose

length is at most n. We also point out some of the difficulties involved with the

(numerous) attempts to solve the structural alignment problem based on the internal

distance matrices of the two proteins.

This approach also offers a way to visualize the structural alignment score as

a function of the epsilon net of all rigid transformations. The visualization helps

developing intuitions for designing better optimization algorithms and heuristics for

protein structural alignment. We show scores of three examples: (a) two structures

with a unique good alignment, (b) two structures with several good alignments, and

(c) two structures that cannot be aligned. This work has been published in [67].

1.4.2 Comparison of structural alignment methods

The second research project is a large-scale computer experiment for comparing six

publicly available protein structural alignment (heuristic) methods. We consider a

set of 2,930 sequence diverse domains from CATH v.2.4 [87] and align all pairs of

structures. The methods we test are (listed chronologically): (1) SSAP [118] (2)

STRUCTAL [112, 34] (3) DALI [48, 49] (4) LSQMAN [61] (5) CE [104] and (6)

SSM [69]. Each alignment has a significance (or native) score assigned by the program

that found it and four geometric match measures (SAS, SI, MI, and GSAS – a variant

of SAS that penalizes for gap openings). We first evaluate the above methods by

comparing the ROC curves [41] based on their native score, and the four geometric

match measures. We take the view that structural alignment methods are, in effect,

optimizers of the geometric match measures, and create a better optimizer, the ‘Best-

of-All’ method, which takes the best alignment found by all methods. Thus, we

evaluate the performance of the programs by directly comparing the geometric match

measures of their alignments. We also elaborate on problems in assuming the lack

of structural similarity between structures that are classified differently by the gold

standard. The total computer time used in this experiment is over 20,000 hours on a
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2.8 GHz processor.

We argue that structural alignment methods should be evaluated by comparing

the alignments they find. In our opinion, ROC curves are of limited value since that

their ranking of the methods is not consistent with the ranking implied by the quality

of the alignments the methods find. Also, there are problems inherent to comparing

similarity of pairs of objects based on a hierarchical classification (namely a tree) of

those objects: a classification attempts to group objects that share some property but

does not guarantee that pairs of objects in different classes are indeed different. We

find that the objective geometric match measures provide more relevant information

than the native scores given by each particular method. Of the different measures

we use, GSAS and SAS perform best in separating good alignments from less good

ones. We consider the set of the pairs that are in the same CATH fold class as well

as the set of all pairs and find that certain structural alignment methods consistently

outperform other methods. More specifically we find that the ‘Best-of-All’ method

(i.e., a combination of all six methods under study) finds the best results, followed by

STRUCTAL and SSM. Finally, we identify a set of structurally similar pairs that are

found only by a single method, providing a useful test set that will allow structural

alignment methods to be improved. This work has been submitted for publication.

1.4.3 Efficient modeling of protein structure

In the third research project we construct economical approximation nets for protein

structure. We begin by following Unger et al. [121] and Micheletti et al. [78], who

use the unsupervised learning technique of clustering to identify small sets of protein

fragments. We use our own clustering heuristic (documented in Appendix A) and

find better libraries of fragments that approximate all proteins fragments well. These

libraries construct more economical discrete approximations, or approximation nets,

for protein structure. Indeed, as observed by Simon et al. [108], considering only pro-

tein models constructed from valid protein fragments yields smaller nets for structure

space.

We study many different sized libraries of fragments of length 4, 5, 6, and 7. The
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accuracy with which our discrete representations capture native structure depends

on average number of states per residue (complexity) and varies from 1.9 Å for a

4-state model based on fragments of length 7 to 0.76 Å for a 15-state model based

on fragments of length 5. With discrete representations a protein conformation is

reduced to a string of symbols that define the local states (alphabets of 4 and 15

letters, respectively, in the above examples). These strings completely specify the

conformation, and all conformations can be generated by considering all strings. Thus,

discretization associates a three-dimensional structure with one-dimensional strings

akin to the amino acid sequence. We find that longer fragments are more accurate

as they include more correlation than shorter fragments. However, the complexity

that can be explored with longer fragments is severely limited by the relatively small

number of known protein structures.

Using our efficient approximation nets of protein structure, we address the first

sub-problem mentioned above (Section 1.3.1) and generate candidate structures for

ab initio structure prediction. When considering full (albeit small) proteins, the ap-

proximation net is too large to exhaustively enumerate; thus we resort to sampling,

focusing on structures that admit to the secondary structure of the target protein.

Despite the extreme simplicity of this method, the sets of decoys include many struc-

tures that have a cRMS deviation smaller than 6 Å from the native conformation.

This method works well for small all-α proteins, and reasonably well for an α/β

protein.

We also use our approximation nets for building loops for homology modeling.

Since the loops are at most 14 residues long, we can exhaustively enumerate all

candidates. For longer loops, we mitigate combinatorial explosion by simultaneously

building from both ends of the gaps in the framework, and testing if the two parts

join. The approximation nets have structures that have local (along the backbone)

conformations that are similar to that observed in other proteins. Thus, our loops and

decoys have protein-like local conformations. Part of this work has been published [64,

66] and the remainder is in press [65].
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Preliminaries

For the present work, a protein is a chain of atoms in three-dimensional space. Con-

sider a protein A of n atoms, A = (a1, . . . , an), with ai ∈ R
3. When needed, we

assume without loss of generality that A is positioned with its center of mass at the

origin, and is bounded by a box of dimensions XA×Y A×ZA. It is known [43] that the

volume of a protein is linear in the number of its residues, that is, XA ·Y A ·ZA = O(n).

We also let RA denote the radius of the bounding sphere of the protein A. In the

special case of globular proteins, the size of the protein along all axis XA, Y A, ZA is

O(n1/3) and RA = O(n1/3).

A sub-chain of the protein A is a subset of its atoms, arranged by their order of

appearance in A. Denote the k-long sub-chain defined by P = (p1, p2, . . . , pk), where

1 ≤ p1 < p2 < . . . < pk ≤ n, by A(P ) = (ap1
, ap2

, . . . , apk
). A gap in the sub-chain is

two consecutive indices pi, pi+1 such that pi + 1 < pi+1.

Consider two proteins, A of n atoms and B of m atoms, and two sub-chains, P

of protein A and Q of protein B; we assume, without loss of generality, that n ≥ m.

We call two sub-chains P and Q of equal length, |P | = |Q|, a correspondence, or

a match. Thus, a correspondence associates pairs of atoms from two proteins that

appear in the same position in their respective sub-chains. Note that while the two

complete proteins can differ in length, the sub-chains cannot. In the world of protein

sequences, the analogous term is alignment ; at times, we use it here too, interchanged

with correspondence. The number of gaps in a correspondence, denoted GP,Q, is the

16
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sum of the number of gaps in P and Q.

Next, we describe the structural alignment problem, or detecting structural simi-

larities between two proteins. We begin with an imprecise description of the problem,

and follow with the details that allow a precise definition.

Structural Alignment Problem: Given two proteins A andB, find two sub-chains

P and Q of equal length such that

1. A(P ) and B(Q) are similar

2. The correspondence length |P | = |Q| is maximal under condition 1.

A protein can be rigidly transformed (i.e. rotated and translated) without affecting

its inherent structure. Rotations and translations are each specified by three param-

eters [17]. Since we are interested in the relative position and orientation of the two

proteins, we can hold A fixed, and only transform B; the rigidly transformed B is

denoted by B̂ = (b̂1, . . . , b̂m). The relative position and orientation of the proteins

are useful for solving the protein alignment problem.

There are various measures of similarity, or deviation, between two sub-chains.

Among the more commonly used are dRMS (distance root mean squared) deviation

and cRMS (coordinate root mean squared) deviation.

For sub-chains P and Q of length k, dRMS is defined as

dRMS =

(

2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

(‖api
− apj

‖ − ‖bqi
− bqj)‖)2

)1/2

(2.1)

and cRMS is defined as

cRMS = min
B̂

(

1

k

k
∑

i=1

‖api
− b̂qi

‖2

)1/2

(2.2)

where B̂ is the image of protein B under a rigid transformation. Given the correspon-

dence P and Q, the transformation that achieves the minimum cRMS can be found

in closed form. The closed form solution to this problem is known in different com-

munities under different names: in structural biology this is Kabsch’s procedure [57];
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in computer science this is attributed to Horn [52].

The general structural alignment problem gives rise to a family of concrete op-

timization problems. In these, we optimize a match measure that is based on the

geometric properties of the alignment. Intuitively, it should favor alignments with

many matched residues, that have small deviation of the two sub-chains, and few

gaps. Note that cRMS and dRMS measure only deviation and must, therefore, be

transformed to favor longer correspondences. These sought properties are not inde-

pendent. For example, a lower cRMS deviation can always be achieved by selecting

a shorter match; given the fixed inter-Cα distance there is the extreme case of many

alignments of just two residues that have cRMS deviation of 0 Å. Also, by allowing

additional gaps, the alignment can be lengthened without necessarily increasing the

cRMS deviation.

An important score, which we study in detail, is the STRUCTAL [112] score. It

is closer in spirit to cRMS in that it compares matching pairs of the correspondence,

and considers the rotated and translated position of the structures. It also penalizes

for gaps in the correspondence.

STRUCTAL-scoreP,Q = max
B̂

k
∑

i=1

20

1 + ‖api
− b̂qi

‖2/5
− 10 ·GP,Q (2.3)

It is an instance of a family of STRUCTAL-type scores:

STRUCTAL-type-scoreP,Q = max
B̂

k
∑

i=1

C1

C2 + ‖api
− b̂qi

‖2
− C3 ·GP,Q (2.4)

where C1,C2, C3 are positive constants (in STRUCTAL these are C1 = 100, C2 = 5

and C3 = 10). When using this score, we seek a rigid transformation and a corre-

spondence that achieves a maximal (rather than minimal) value.

We rely on four additional scores, or match measures: Similarity Index (SI) [62],

Match Index (MI) [62], Structural Alignment Score (SAS) [112] and a measure which

we define denoted Gapped SAS, or GSAS. These match measures are not necessarily

easy to optimize. However, given several alignments they are easy to calculate and
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can be used to evaluate alignments. The original Match Index (OMI) [62], has val-

ues between 0 and 1, with better alignments having higher values; instead we take

MI = 1 − OMI, so that lower values always imply better alignments. We also intro-

duce GSAS — a variant of SAS that penalizes gap openings. MI includes a normaliz-

ing factor w0 = 1.5 (following Krissinel’s suggestion, see http://www.ebi.ac.uk/msd-

srv/ssm/comparisons/cmp index.html).

The explicit definition of these measures in terms of cRMS, k, n, m and GP,Q

(n ≥ m) is:

SI =
cRMS ·m

k
(2.5)

MI = 1 − 1 + k

(1 + cRMS/w0) · (1 +m)
(2.6)

SAS =
cRMS · 100

k
(2.7)

GSAS =











cRMS · 100
k −GP,Q

if k > GP,Q

99.9 else

(2.8)

A GSAS value of 99.9 denotes worst possible value. The number “100” used

above is in units of number of aligned residues. Consequently, the units of SI, SAS

and GSAS are Å.



Chapter 3

Protein structural alignment

Alignment of protein structures is a fundamental task in computational molecular bi-

ology. Good structural alignments can help detect distant evolutionary relationships

that are hard or impossible to discern from protein sequences alone. We study the

structural alignment problem as a family of optimization problems and develop an

approximate polynomial time algorithm to solve them. For a commonly used scoring

function - STRUCTAL score [112], the algorithm runs in O(n10/ε6) time, for globular

proteins of length n, and detects alignments that score within an additive error of ε

from all optima. Thus we prove that this task is computationally feasible, though

the method we introduce is too slow to be a useful everyday tool. The measurement

of similarity between a pair of protein structures used by our algorithm uses the Eu-

clidean distance between the structures (appropriately rigidly transformed). We also

show that an alternative approach, which relies on internal distance matrices, must

incorporate sophisticated geometric ingredients if it is to guarantee optimality and

run in polynomial time. We use these observations to visualize the scoring function

for several real instances of the problem. Our investigations yield insights on the

computational complexity of protein alignment under various scoring functions; these

insights can be used in the design of new scoring functions for which the optimum can

be approximated efficiently, and perhaps in the development of efficient algorithms

for the multiple structural alignment problem.

In line with our perspective that this is mostly a theoretical study, we use the O

20
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notation freely. Recall that the notation g(n) = O(f(n)) means at most cf(n) for a

constant c independent of n.

We investigate scoring functions in Section 3.1. In Section 3.2 we consider the

space of alignments for three specific pairs of proteins and draw our conclusions in

Section 3.3.

3.1 Approximate structural alignment

We focus on scores that evaluate the similarity of two structures by explicitly applying

a rigid transformation to one, and then comparing the transformed structure with

the other. For such scores, the optimization problem is to find transformations and

correspondences of (near) optimal score.

The polynomial time algorithm we present, calculates the optimal score for a

substantial number of rotations and translations. It then sifts through these scores to

find the best ones, i.e., the pairs (transformation, correspondence) with near globally

maximum scores. For the algorithm to run in polynomial time, two conditions must

hold:

• Given a fixed transformation, it should be possible to find in polynomial time

an optimal correspondence. We elaborate on this in Subsection 3.1.1.

• The number of rigid transformations under consideration must be bounded by

a polynomial. This issue is addressed in Subsection 3.1.2.

Next, we define guidelines that can be used in designing novel scoring functions

for structural alignment; scores that follow these guidelines come hand in hand with

a polynomial time algorithm that finds all near optimal alignments. The following

guidelines are useful as researchers are still far from a thorough understanding of the

desirable characteristics of scoring functions for this problem. Examples of obvious

interesting options that are yet to be investigated include: variable gap penalties

depending on the gap’s location within the structure (e.g., higher penalty inside a

helix), and scores that take into account sequence information.
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3.1.1 Separability of scoring function

As mentioned above, we are assuming that for a fixed rotation and translation, the

optimal correspondence can be determined in polynomial time. This requirement

strongly points to scores that can be optimized using dynamic programming. When

applicable, a dynamic programming algorithm finds in polynomial time an optimal

solution among an exponential number of potential correspondences. Score functions

that are amenable to dynamic programming must satisfy two requirements: (1) Op-

timal substructure: the restriction of an optimal correspondence to any substructure

is itself an optimal correspondence of the substructure (2) The space of relevant sub-

problems is small (polynomial). For more details see [16]. Scores that satisfy these

conditions are called separable. STRUCTAL-type scores (defined in Equation 2.4)

and STRUCTAL in particular, are separable and the optimal correspondence can be

determined using dynamic programming in O(n2) time and space [112, 34].

3.1.2 Lipschitz condition on scoring functions

Here, we provide conditions on a scoring function under which its overall behavior

can be approximated by evaluating it only polynomially many times. Recall that a

scoring function assigns a value to every correspondence and rotation and translation.

We present a scheme for approximating all rotations and translations whose (local)

optimal correspondence is near the global optimum.

A rigid transformation in R
3 consists of a translation and a rotation. A translation

is parameterized by a vector (tx, ty, tz) in R
3. Here, it suffices to have tx, ty, tz range

over [−(XA + XB)/2, (XA + XB)/2], [−(Y A + Y B)/2, (Y A + Y B)/2] and [−(ZA +

ZB)/2, (ZA + ZB)/2] respectively (recall that XA, Y A, ZA and XB, Y B, ZB are the

sides of the bounding boxes of protein A and protein B, respectively). There are

many ways to parameterize the group of rotations SO(3). For the purpose of our

proofs we represent each rotation by three angles (r1, r2, r3) in the range [0, 2π] [17];

this constitutes a 4-fold cover of SO(3). For the purpose of sampling (see section 3.2),

we use the parametrization of rotations by means of unit norm quaternions (unit

vectors in R
4) [106]: a rotation by an angle θ about the normalized vector (nx, ny, nz)
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is described by (nx cos θ/2, ny cos θ/2, nz cos θ/2, sin θ/2). This representation has

the advantage that angular separation of quaternions captures the natural metric

of SO(3). In this representation, opposite points in S3 are identified, reflecting the

projective topology of SO(3). Equivalently it suffices to consider only half of S3.

Consider a specific correspondence between sub-chains P of protein A and Q of

protein B. Fix protein A in space. For every rigid transformation of protein B, one

can compute the correspondence-dependent scoring function, denoted CDS, using the

distances between corresponding atom pairs in space. We index the real-valued CDS

function by P and Q and denote it ScP,Q.

The CDS function is defined over the space of all rigid transformations. Note that

there are exponentially many correspondences and thus exponentially many CDS

functions defined in this manner. Specifically, there are
∑min(n,m)

i=1

(

n
i

)(

m
i

)

functions.

In this paper, we are concerned with a scoring function of the form:

F (r1, r2, r3, tx, ty, tz) = max
|P |=|Q|

ScP,Q(r1, r2, r3, tx, ty, tz) (3.1)

This is the upper envelope of all CDS functions (see Figure 3.1).

The following lemma gives conditions on the scoring function. When these hold, it

is possible to derive good approximations of all of the function’s near-optimal maxima

from only polynomially many evaluations of the function.

Definition 1. A CDS function ScP,Q satisfies a coordinate-wise Lipschitz conditions

with values cr and ct if for all rigid transformations ~p = (r1, r2, r3, tx, ty, tz) and for

all δ > 0,

|ScP,Q(~p+ δ · ~er) − ScP,Q(~p)| ≤ crδ

|ScP,Q(~p+ δ · ~et) − ScP,Q(~p)| ≤ ctδ

where ~e1, . . . , ~e6 are the standard basis vectors in R
6, ~er ∈ {~e1, ~e2, ~e3}, and ~et ∈

{~e4, ~e5, ~e6}.
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  Rigid Transformation (Rotation & Translation)

S
co

re

.
.
.

Sc
P,Q 


Figure 3.1: A schematic view of the scoring functions, parameterized by the rigid
transformation. The (exponentially many) correspondence dependent scoring (CDS)
functions are depicted in dark gray, and their upper envelope (defined by Equation 3.1)
is marked in black. We are concerned with all solutions in the light gray region: top
values in the upper envelope.

Lemma 3.1.1. Let the CDS functions satisfy coordinate-wise Lipschitz conditions

with values cr, ct. For every ε > 0, there exists a finite set G = G(ε) of rotations and

translations such that:

1. |G| = O
(

nc3rc3t
ε6

)

2. For every choice of a translation and a rotation ~p, there is a point ~pG ∈ G with

|F (~p) − F (~pG)| ≤ ε

We refer to the set G as an ε-net for the scoring function.

Proof. The set G(ε) is the product of 6 sets of equally spaced points in each of its

six dimensions. In the 3 dimensions of rotations, the spacing is δr = ε/3cr; the size

of the set in each dimension of rotation is O(cr/ε). Similarly, in the 3 dimensions of

translation the spacing is δt = ε/3ct and the size of the set is O((WA + WB)ct/ε),

where W = X,Y, Z respectively. Taking into account that a protein of n residues

satisfies X · Y · Z = O(n) (see Chapter 2), the total size of G follows.
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The coordinate-wise Lipschitz condition for each CDS function ScP,Q, implies that

the same condition holds for their upper envelope F . Given a point ~p in rotation and

translation space, the nearest point ~pG ∈ G can be reached by moving at most δr/2

along each of the 3 dimensions of rotation and δt/2 along each of the 3 dimensions of

translation. Because the upper envelope F satisfies Lipschitz, the change in value of

F induced by each such step is at most δcr/2 in the first case and δct/2 in the latter.

Thus, the overall change is at most 3crδr/2 + 3ctδt/2 = ε/2 + ε/2 = ε.

The above lemma suggests the following algorithm to find all points with near-

maximal values of the scoring function F . Let M be the global maximum of F , and

call a point ~p ε-maximal if F (~p) ≥M − ε. For every point ~p that is ε-maximal, there

is a nearby point ~pG ∈ G with F (~pG) ≥ F (~p) − ε. We would like every ε-maximal

point to be accounted for by a nearby point in G. Given ε, evaluate F on all points

of G(ε) defined above. Next, select the subset of these points within 2ε from the

maximal value found. This will guarantee finding approximations to all ε-maximal

points, satisfying our requirement.

The ε-net here is a slightly different from the one defined in the introduction. Let

M be the maximal value of F . We consider the connected components of the set

of rigid transformations with F values in the range [M − ε,M ] (often referred to as

F−1([M − ε,M ])). The set G intersects, or is a net for, all these sets.

STRUCTAL type scores

Lemma 3.1.2 guarantees that all STRUCTAL-type scoring functions (for definition

see Equation 2.4) are well behaved and can thus be approximated by a polynomial

sized net. Namely, STRUCTAL-type scoring functions can be approximated to ε-

accuracy with a net of size O(n8

ε6
) for globular proteins and O(n10

ε6
) for non-globular

ones. This, of course, also holds for the specific case of STRUCTAL score (defined in

Equation 2.3). In particular, we show

Lemma 3.1.2. Any CDS function of the form

∑

i∈correspondence

C1

C2 + ‖ai − bi‖2
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satisfies the Lipschitz condition of lemma 3.1.1 with ct = O(n) and cr = O(n4/3) in

case of globular proteins. For non-globular proteins cr = O(n2).

Proof. First consider a single pair of atoms a and b, and their contribution to the

scoring function. A translation of b by δ along any axis can change ‖a − b‖ by at

most δ. A rotation of b by δ around any axis can change ‖a − b‖ by at most Rδ.

The function φ(x) := C1/(C2 + x2) has a bounded derivative |φ′(x)| ≤ M(C1, C2) =

M . By the mean value theorem, it follows that a change of δ in any of the six

coordinates will result in a change of at most MRδ+Mδ in the scoring function, the

first term being due to rotations and the other to translations. There are at most

n contributions to a CDS-function (n is the number of atoms in the longer protein),

so the total change is bounded by nMRδ from rotations and nMδ from translations.

For globular structures, R = O(n1/3), and in general R = O(n). We have shown that

the coordinate-wise Lipschitz condition is satisfied with cr = O(n4/3) for globular

proteins and cr = O(n2) for non-globular ones.

Altogether, finding approximations to all ε-near optimal points for STRUCTAL-

type scoring functions takes O(n10/ε6) time for globular proteins. This is due to

O(n8/ε6) evaluations of the scoring function at the points of G(ε), each evaluation

taking O(n2) time. More generally, our scheme is an approximate polynomial al-

gorithm for every separable scoring function that requires only polynomially many

evaluation points (see Lemma 3.1.1). Notice that this scheme gives all near optimal

function values, rather than all near optimal alignments. It would be interesting

to determine whether the task of finding all near optimal correspondences can be

efficiently solved.

3.1.3 A closely related NP-hard problem

Associated with every protein chain A of n atoms is an n× n real symmetric matrix

D, where D(i, j) is the Euclidean distance in R
3 between the ith and jth atoms of A.

This matrix is called “the (internal) distances matrix” and is invariant under rigid and

mirror transformations of the protein. The internal distances matrix that corresponds
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to a sub-chain S of the protein A is the sub-matrix (minor) of D consisting of the

rows and columns indexed by the elements of S.

The two representations of a protein, by atomic coordinates and by the internal

distances matrix, are of course closely related. Calculating the distances matrix from

the atomic coordinates is easy (and takes quadratic time). It is also known that the

protein’s coordinates can be recovered in polynomial time from the distances matrix,

using distance geometry [45]. This calculation is possible because proteins lie in a

3-dimensional Euclidean space. The recovered atomic coordinates are the original

ones, modulo a rigid (and possibly a mirror) transformation.

It follows that any algorithm that uses either of these two representations can

be converted into one that uses the other. The conversion is straightforward: add a

pre-processing and a post-processing step that translate, in polynomial time, between

representations.

The internal distances matrix representation of proteins may seem attractive be-

cause it limits the search to the correspondences, without need to optimize on the

rigid transformations. Methods that use the internal distance matrix representation

directly compare pairs of sub-matrices and optimize a measure that is derived from

dRMS deviation (for definition of dRMS see Equation 2.1). Once the correspon-

dence is found, the rigid transformation that optimally superimposes the two sub-

structures can be recovered with Kabsch’s procedure [57]. It is generally considered a

minor problem that the final positioning and orienting of the structures optimizes the

cRMS deviation, while the correspondence optimized a different measure (dRMS).

We point out that a correct and efficient solution to the approximate structural

alignment problem must exploit the fact that proteins lie in 3-dimensional Euclidean

space. In particular we show that a slightly generalized problem, where the internal

distances come from a general metric space (not necessarily Euclidean) is NP-hard.

We define in Lemma 3.1.3 a particular scoring function to focus the discussion; a

similar argument applies to variants of this scoring function.

Intuitively, the problem is hard because all (exponentially many) pairs of sub-

chains are potential solutions. Notice, that if we restrict the number of gaps by a

constant, there are only polynomially many potential solutions, and this substantially



CHAPTER 3. PROTEIN STRUCTURAL ALIGNMENT 28

reduces the computational complexity of the problem. The CLIQUE problem is well-

known to be NP-hard [88]: the input is a graph and an integer k, the output should

be either a k-clique, or if there is no such clique, the answer ‘no’. We reduce the

CLIQUE problem to the problem at hand to demonstrate its hardness, that is we

show how an algorithm that finds an ε-approximation to the optimal solution, can be

efficiently used to solve CLIQUE.

Lemma 3.1.3. Let DA, DB be distance matrices of two metric spaces (think of them

as the internal distance matrices of chains A and B).

Let the score of two sub-chains P and Q, of equal length |P | = |Q| = k, be

ScP,Q =
k

∑

i=1

k
∑

j=1,j 6=i

2/(1 + (DA(pi, pj) −DB(qi, qj))
2).

For every 0 < ε < 1, it is NP-hard to find sub chains that are within ε from the

optimal score.

Proof. Given a graphG = (V,E), |V | = n we “construct” two chain structures and use

the algorithm for finding correspondences of near-optimal scores. The first structure,

denoted SA, has n “atoms” and encodes the graph G: each vertex is associated with

an atom (using some ordering) and the distance between two atoms is the length of

a shortest path in G between the two corresponding vertices. The internal distances

matrix associated with this structure is an n × n matrix DA where DA(i, j) is the

length of the shortest path from vi to vj. The second structure, denoted SB, has k

“atoms”; it encodes a clique of size k. The internal distances matrix in this case,

denoted DB has zeros on the diagonal and ones elsewhere. If the score is strictly

greater than 2(k)(k − 1) − 1 return the subset of SA (a k-clique); otherwise return

‘no’. Since SB has k atoms, the score is a sum of at most k(k − 1) terms. Also, the

distances are integers, and this restricts the possible values of the terms in the sum;

2 and 1 are the two largest values. Thus, if a good score is found it is greater or

equal to 2(k)(k − 1). This optimal value is achieved when a k-clique in SA is found;

otherwise, there is clearly no k-clique.

An algorithm that solves the approximate structural alignment problem using only
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the metric properties (and not the fact that is a three-dimensional Euclidean metric)

also solves the above generalized problem. This implies that it either fails to find

optimal approximations, or it is inefficient (or that P=NP which is generally viewed

as unlikely).

To summarize, the problem in finding good correspondences is that there are

(exponentially) many potential candidates. The number of possibilities can be greatly

reduced because the structures lie in three-dimensional Euclidean space and the scores

are separable. However, if these restrictions are removed, an exponential blow-up in

computational complexity seems unavoidable.
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Figure 3.2: Reducing the net of translations to T (ot) (the faster heuristic we use), for
1000 random rotations. The x-axis is the best score with respect to all translations
over a 50× 50× 50 net. The y-axis gives the best score when an atom of one protein
must be placed on top of an atom of the other. The inserted histogram shows the
distribution of (ST T − ST T (ot))/ST T . The proteins in this example are 5rxn & 1brf
and 1mjc & 1shf. This heuristic finds only very slightly worse scores, and behaves
well for practical purposes
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3.2 Visualizing the STRUCTAL score

We examine the properties of the STRUCTAL score for structural alignment of vari-

ous pairs of proteins; we focus on the domain of rotations, while optimizing the trans-

lation parameters. By the above observations, it suffices to calculate the STRUCTAL

score on a net in the space of transformations. Let R be a net for the space of rota-

tions, T a net for translations and R×T the net for all rigid transformations. Ideally,

we would like to visualize the STRUCTAL score over R × T to determine all (near)

maxima. Visualizing a function of six parameters is of course very hard. We thus

focus our attention on the three-dimensional space of rotations and define

STT (r1, r2, r3) = max
(tx,ty ,tz)∈T

(STRUCTAL(r1, r2, r3, tx, ty, tz)).

The advantage of focusing on STT is that it can be visualized; the disadvantage is

that multiple maxima due to translation changes alone, are hidden. Choosing r1, r2, r3

as the three function parameters is somewhat arbitrary; we could have alternatively

considered functions over different parameters, e.g.,

STR(tx, ty, tz) = max
(r1,r2,r3)∈R

STRUCTAL(r1, r2, r3, tx, ty, tz).

In order to reduce the time for exploring the scoring function over the space of

rotations we heuristically calculate the maximum over a smaller set of translations,

denoted T (ot). T (ot) is the set of translations that position an atom from protein

A exactly on top of an atom from protein B, |T (ot)| = O(nm). This speeds up the

calculation by a factor of O(n2). The sets T and T (ot) are different; the maximum

over T can be higher or lower than the maximum over T (ot). However, we assume

that the best translation in T positions at least one atom from A on top (or close to)

an atom from B, implying that STT (ot) and STT reasonably approximate each other.

In Figure 3.2 we compare of the values of STT for a set of size 50×50×50 and STT (ot)

for 1000 random rotations, and demonstrate that the two scores indeed approximate

each other well.

We parameterize the group of rotations using quaternions [106]. Notice that a
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Cartesian product of longitude and latitude nets is a net for a sphere S2 in R3.

Here, we use a longitude net that is uniformly spaced and a latitude net that uni-

formly spaces its cosine values. This net can be visualized in the plane by placing

the longitude values along the x axis and the latitude values along the y axis. Note

that unlike the sphere, this display does not show the wrapping around of the longi-

tude values; it also has a distortion around the poles. Figure 3.3 shows examples of

three-dimensional spheres, overlayed with their net points and a planar layout of the

nets. The two-dimensional spheres can be sampled more efficiently (e.g., [100]); our

sampling scheme allows easy planar visualization of the score function values on the

spheres.

We visualize the function STT (ot), for specific pairs of proteins, using short videos.

The position in the frame sequence serves as an additional dimension (aside of the

two planar coordinates). The data figures show an (ordered) subset of the video

frames. The full videos are available online1. Denote a unit quaternion in R
4 by

~q = (x, y, z, w) (‖q‖ = 1). The set of unit quaternions of a fixed w is a sphere S2 in

R3 of radius
√

1 − w2. Each frame in the video has a fixed w value, which determines

the width of the frame and its position in the sequence. Since we are concerned only

with half of S3, w is equally spaced in the interval [−1, 0]. Varying w, we place a

net on the corresponding sphere and evaluate the scoring function at all net points.

Then, the score values are visualized in the plane as described above, using a color

scale ranging from blue (low) to red (high). The number of points on a net varies

with the area it covers, totaling in approximately 106 points. Lastly, the width of the

displayed planar net depends on the radius of the sphere, as shown in Figure 3.3.

We examine three types of behaviors of the STRUCTAL scoring function when

aligning pairs of proteins. Figure 3.4 depicts the score when considering two pro-

teins with a single meaningful maximum: 5rxn and 1brf (SCOP fold classification

Rubredoxin-like). This figure shows a clear, single, high-scored maximum yielding a

good alignment. Figure 3.5 shows the scoring function for two proteins with several

meaningful maxima: 1mjc and 1shf-a (SCOP fold OB and SH3-like barrel respec-

tively). This example is listed in the work of Zu-Kang and Sippl [132]. Lastly,

1http://csb.stanford.edu/rachel/structal alignment
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Figure 3.6 shows the scores when aligning two structurally different proteins: 1jjd

and 1dme (both SCOP fold Metallotheionein). In this case, there are only rotations

with low scoring alignments, proving there are no good alignments. A closer exam-

ination of the different maxima in Figure 3.5 shows that the multiple high-scoring

orientations are due to an internal symmetry in the structures 1mjc and 1shf-a; these

alignments (sequences and superpositioning of the structures) are shown in Figure 3.7.

This symmetry, coupled with the two structures being fairly similar to each other,

accounts for the multiple orientations that position many atoms from one structure

near corresponding atoms from the other.
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Figure 3.3: Visualization of score values for a net of discrete rotations. We model
rotations using quaternions: each rotation is a 4-dimensional vector of unit length.
We consider a net that covers the space of quaternions, or the unit sphere S3 in R

4.
We use a net that is the union of nets on a discrete set of 3D spheres. For each 3D
sphere we use a Cartesian product of longitude and latitude values and plot it in
2D. The width of the 2D plot varies with the radius of its corresponding sphere. The
scores are described using color (specific values and colors are omitted from this figure,
but used in Figures 3.4, 3.5 and 3.6). Notice that there is a distortion associated
with this display, especially around the poles. Two spheres, overlayed with their net
points and their corresponding 2D plots are shown above.
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Figure 3.4: Example of a pair of structures with a single meaningful alignment. We
plot the STT (ot) score for aligning 5rxn (54 residues) and 1brf (53 residues) over
the space of rotations. These proteins have the same SCOP fold classification -
Rubredoxin-like, and each has 3 beta-strands and 3 helices. The STT (ot) score func-
tion has a single maximum, implying one meaningful way of aligning the pair. The
maximal score found is 993, aligning 53 residues to 0.797Å cRMS.

3.3 Discussion

We have presented a polynomial scheme for protein structural alignment. Exploring

the space of rigid transformations solves this problem efficiently because it exploits

the fact that proteins reside in a 3-dimensional Euclidean space. It seems unclear how

to incorporate this crucial information if one phrases the problem via internal dis-

tances matrices. Unless 3-dimensionality is taken into account the problem becomes

significantly harder (NP-hard). We found sufficient conditions for a scoring function

so that all optima can be found in polynomial time. Devising novel scoring functions

that detect biologically significant sub-structures is still an open area of research.

Experiments with the STRUCTAL scoring function on several pairs of proteins

suggest that this scoring function is “well-behaved” on the domain of rotations.

Studying the landscape of various scoring functions can prove valuable for the purpose

of developing robust and efficient tools for structural alignment.

Note that an immediate extension of this algorithm solves multiple structural

alignment. Namely, sampling the space of rigid transformations and finding the max-

imum using dynamic programming can find all approximate global maxima of the

upper envelope of the CDS functions. For a fixed, small number of globular proteins,

it is a polynomial algorithm (e.g., for three globular proteins it takes O(n19/ε12) time).



CHAPTER 3. PROTEIN STRUCTURAL ALIGNMENT 34

Figure 3.5: Example of a pair of structures with two meaningful alignments (this
example was noted by Zu-Kang and Sippl [132]). We plot the STT (ot) score for aligning
1mjc (69 residues) and 1shf (59 residues). The two maxima can be clearly seen, as
well as additional less significant maxima. One of the two best alignments scores
458, aligning 41 residues to 2.89Å cRMS; the other scores 454, aligning 38 residues
to 2.52Å cRMS. These proteins are of the same SCOP class - all-beta, and a different
SCOP fold (OB and SH3-like barrel respectively).

Multiple structural alignment is a wide open problem and, although the direct exten-

sion has prohibitive running time, the analysis described here offers means of tackling

it.
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Figure 3.6: Example of a pair of structures without a clear alignment. We plot the
STT (on) score for aligning 1jjd (52 residues) and 1dme (28 residues) over the space
of rotations. The scoring function landscape has two notable properties: (1) All
score values are low (less than 200) even when taking into account the length of the
proteins (2) There are no clear maxima, or equivalently, there are many bad solutions.
Although these proteins have the same SCOP fold classification - Metallotheionein
(SCOP class small proteins) it seems they cannot be aligned in a meaningful way.
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1mjc --------------------SGKMTGIVKWFNADKGFGFITPDDGSKDVFVHFSA

1shf VTLFVALYDYEARTEDDLSFHKGEKFQILNSSE-GDWWEARSLTTGETGYIPSNY



1mjc IQNDGYKSLDEGQKVSFTIESGAKGPAAGNVTSL-

1shf ------------------------------VAPVD

1mjc SGKMTGIVKWFNADKGFGFITPDDGSKDVFVHFSAIQNDGYKSLDEGQKVSF-TI

1shf --VTLFVALYDYEARTE--------------DD--------LSFHKGEKFQILNS



1mjc ESGAKGPAAGNVTSL-----------------

1shf SEG---DWWE-ARSLTTGETGYIPSNYVAPVD




(A)

(B)

Figure 3.7: The optimal structural alignments of 1mjc and 1shf (superimposed struc-
tures and sequence); these are the two significant peaks seen in figure 6. 1shf is drawn
in dark gray and 1mjc in light gray. Alignment (A) has STRUCTAL score 458, align-
ing 41 residues to 2.89 Å cRMS; alignment (B) has STRUCTAL score 454 aligning
38 residues to 2.52 Å cRMS. These alignments are equally significant, yet align dif-
ferent parts of the proteins. For clarity, both alignments are drawn in stereo and the
proteins backbone is depicted as coil. The figure was created by MOLSCRIPT [68]



Chapter 4

Comparison of structural

alignment methods

We report the largest and most comprehensive comparison of protein structural align-

ment heuristic methods. Specifically, we evaluate six publicly available structure

alignment heuristic programs: SSAP [118], STRUCTAL [112, 34], DALI [48, 49],

LSQMAN [61], CE [104] and SSM [69] by aligning all 8,581,970 protein structure

pairs in a test set of 2,930 protein domains selected from CATH v.2.4 [87] to ensure

sequence diversity. Evaluating structural alignment methods is not straightforward.

First, we compare the rates of true and false positives using Receiver Operating Char-

acteristic (ROC) [41] curves with the CATH classification taken as a gold standard.

This proves unsatisfactory in that the quality of the alignments is not taken into

account: sometimes a method that finds less good alignments scores better than a

method that finds better alignments. We correct this intrinsic limitation by using four

different geometric match measures (SI, MI, SAS, and GSAS) to evaluate the quality

of each structural alignment. With this improved analysis we show that there is a

wide variation in the performance of different methods; the main reason for this (as

discussed in Chapter 3) is that it can be difficult to find a good structural alignment

between two proteins even when such an alignment exists. Methods that do best in

our study are neither the most popular nor those that are generally accepted to work

well. We find that STRUCTAL and SSM perform best, followed by LSQMAN and

37
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CE. Our focus on the intrinsic quality of each alignment allows us to propose a new

method, called ‘Best-of-All’, that combines the best results of all methods.

4.1 Structural alignments data

We align all 4,290,985 pairs in a set of 2,930 sequence-diverse CATH v.2.4 domains

(as pairs (i, j) and (j, i) are treated once) using all six methods. The programs

output the alignment native score, the number of residues matched, and the cRMS

deviation (Equation 2.2). We count the number of gaps in both structures by in-

specting the alignment, which is available for all programs except for the standalone

version of SSM. Based on this data, we calculate the geometric match measures SI

(Equation 2.5), MI (Equation 2.6), and SAS (Equation 2.7) for all methods, and cal-

culate GSAS (Equation 2.8) for all methods except SSM. Using the geometric match

measures we create a seventh method denoted ‘Best-of-All’, which returns the best

alignment found by all the other methods.

There are two types of comparisons: (1) Alignments found by different programs

for the same pair(s) of structures. Here, we can only rely on the match measures,

which use the geometric and other properties of the particular alignments (cRMS,

number of matched residues, number of gaps, and length of the proteins). (2) Align-

ments found by the same program. Here, we compare different alignments for the

same pair of protein structures, as well as different alignments for different pairs of

structures. In the second case, the geometric match measures can be used in addition

to the native score provided by the particular protein structure alignment program.

Clearly, native scores cannot be used when comparing alignments found by different

programs as the scores may be in different units and on different scales.

4.1.1 Set of structures to be aligned

The set of structures aligned in this study consists of 2,930 sequence-diverse CATH

v.2.4 domains, each with a CATH classification. As we focus on three-dimensional

structures, we consider only the top three levels of CATH, Class, Architecture, and
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Topology to give a CAT classification. We refer to a set of structures with the same

CAT classification as a fold class. There are 769 fold classes in the set that fit the

Class categories as follows: 218 ‘Mainly-α’ class, 132 ‘Mainly-β’ class, 345 ‘Mixed

α-β’ class and 74 ‘Few Secondary Structures’ class. A list of the names of the CATH

domain of all these structures is available online1.

Using a set of structures with sufficient sequence diversity ensures that the set

is duplicate-free and that the problem of structural alignment is non-trivial for all

pairs. Here, we select the structures as follows: (1) Sort all 34,287 CATH v.2.4

domains by their SPACI score [8]. (2) Select the domains from the list, starting with

the one with the best SPACI score (most accurately determined). (3) Remove from

the list the selected one and all domains that share significant sequence similarity

with it (FASTA [90] E-value < 10−4). (4) Continue until there are no domains left for

selection. This is the same method used by Brenner et al. [7] to produce a sequence-

diverse set of SCOP structures.

4.1.2 Running the alignments

Each of the programs compared in this study aligned all 8,581,970 pairs of structures

from the above set (i.e. 2,930 × 2,929 = 8,581,970 pairs). As our focus is evaluating

the performance of the structural alignment methods, and due to the scope of the test,

we ran the standalone Linux versions of the programs that implement the methods in-

house using i386 Intel processors. Unless otherwise noted, each structural alignment

program took as input the coordinates for all atoms (all lines starting with ATOM,

TER or END in the pdb file). Each of the programs tested output the alignments and

their cRMS values; from the alignment, we then calculated the number of matched

residues and the total number of gaps (for SSM we could not derive the number of

gaps). We stored the values of the geometric properties of the alignment together

with the native score for further analysis. Each pair of structures has two alignments

and we consider the one with the better native score (i.e. we use only 4,290,985

alignments). In cases where a particular method finds more than one alignment for a

1http://csb.stanford.edu/rachel/comparison/subset list web
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given pair of proteins, we consider the alignment with the best native score. Lastly,

we recorded the computing times.

The structural alignment methods that we evaluate are (1) SSAP [118], (2) STRUC-

TAL [112], (3) DALI [48], more specifically DaliLite (v.1.8) [49], (4) LSQMAN [61],

(5) CE [104], and (6) SSM [69]. In CE, we change the source code so that the z-

threshold value is 0 rather than 3.5, to ensure that the optimization block is always

invoked. For CE, we also add the SEQRES fields to the input files to insure proper

parsing of multi fragment chains. Since the ROC curve of CE based on SAS was sig-

nificantly better than the one based on the native score, we select the best alignment

for a pair of structures based on the one with highest SAS score. In LSQMAN, we

use ‘Brute force’ mode, following the O macro procedure published in align2.omac2.

4.2 ROC curves Analysis

We first evaluate the methods (i.e. the six individual programs mentioned above,

and the ‘Best-of-All’ method) by comparing their ROC (Receiver Operating Char-

acteristic) curves [41]; this is the traditional method of evaluating the performance

of structural alignment programs. ROC curves quantify how much a scoring scheme

agrees with a gold standard; the gold standard indicates for every pair if it is simi-

lar or not. Here, we derive a binary (similar or not similar) gold standard from the

CATH hierarchy: we consider a structure pair to be a positive (similar) if both struc-

tures have the same CAT classification, and to be a negative (not similar) otherwise.

The alignments found by each program are sorted according to a quality measure,

either one of the four geometric measures or the native score of the program. For an

ordering that is based on a particular measure, we consider varying thresholds: for

each threshold, all pairs below the it are assumed positive, and all above it negative.

Among those pairs, the ones that agree with the standard are called true positives

(TP) while those that do not are false positives (FP). The ROC curve plots the frac-

tion of FPs (1-specificity) against the fraction of TPs (sensitivity). These fractions

are calculated at every increasing threshold of the measure, starting from the most

2downloaded from ftp://xray.mc.uu.se/pub/gerard/omac/align2.omac
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significant in the pair list sorted by the measure. A perfect predictor will have a ROC

curve that climbs up the y-axis turning right at the left-topmost corner, with area 1

below it; a completely random predictor will have a curve that follows the diagonal,

with area 0.5 below it. A method that best agrees with the gold standard will have

the uppermost curve, or equivalently, the one with the largest area under it. It can

be argued that we are more concerned with comparing the agreement of the methods

with CATH when the percentage of FPs is low. We do this by plotting the x-axis of

the ROC curve in log scale, that is, log10 of fraction of FPs against the fraction of

TPs.

Panel A of Figure 4.1 shows the ROC curves of all the methods; we sort the

alignments either by their native score (dashed lines) or by the SAS geometric match

measure (solid lines). Panel B shows the same ROC curves with log10 (fraction of

FP) vs. fraction of TPs. Table 4.1 lists values quantifying these ROC curves: the area

under the curve and the number of TPs when the fraction of FPs is 1% (numbering

42,910).

When sorting the alignments by their SAS measure, the ROC curve analysis sug-

gests that DALI, CE, STRUCTAL, and SSM are the strongest methods. When sort-

ing the alignments by their native scores, the methods DALI and STRUCTAL are

strongest. At low false positives rates (Panel B), DALI, CE, SSAP and STRUCTAL

do well. It is somewhat surprising that the programs CE, SSM, LSQMAN and SSAP

do much better when using the geometric measure than when using their own na-

tive score. DALI performs similarly when using the two measures, but the geometric

score does better in the lower FP rates. STRUCTAL also performs similarly using

these two measures, although the STRUCTAL native score, which was specifically

designed to be better than the SAS measure [35], does increase the area under the

ROC curve from 0.93 to 0.94. Clearly, a program can be successful in finding good

alignments and less successful in evaluating them. Another surprising result is that

the ‘Best-of-All’ method does not perform better, in terms of its ROC curve, than

the individual methods.
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4.2.1 Comparing ROC curves and geometric match measures

In Panels C and D of Figure 4.1 we plot the average SAS measure of the TPs and the

FPs below increasing thresholds against the fraction of TPs. This compares directly

the quality of the alignments found by different methods in equally sized sets of pairs.

Here, successful methods find alignments with lower SAS values, represented by curves

that are shifted to the left. The average SAS of the TPs is lower than the average SAS

of the FPs. As expected from a list sorted by increasing SAS values, this difference

is small and subtle in the parts of the curve corresponding to a low TP fraction. The

‘Best-of-All’ method finds the best alignments, followed by STRUCTAL and SSM.

Surprisingly, the ranking of the structural alignment methods based on their average

SAS values differs from that implied by their ROC curves. For example, DALI and

CE have almost identical ROC curves ranking them similarly, yet their SAS curves

show that CE finds consistently better alignments. Another example is SSAP that

performs well by its ROC curve, while its average SAS curves suggests otherwise.

This means that the best alignments found by SSAP, although generally not as good

as those found by other methods, often correspond to proteins in the same CATH

fold class. Clearly, a particular method can seem as, or more, successful than another

method based on its ROC curve, while the actual alignments it finds are inferior.

We have also plotted the same figures when sorting the alignments by their SI, MI

and GSAS measures (data not shown but available online3). In general the relative

performance of the methods is similar when judged by the average values of the four

geometric match measures. When examining the curves of average values of SI, MI,

and GSAS, we see that similarly to Figure 4.1 (Panels C and D) the implied ranking

of the methods is different from that suggested by the methods’ ROC curves.

3http://csb.stanford.edu/rachel/comparison/
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Measure SSAP STRU- DALI LSQ- CE SSM Best

CTAL MAN of

ALL

ROC Area (native score) 0.83 0.94 0.94 0.70 0.89 0.80 -
ROC Area (SAS score) 0.91 0.93 0.94 0.87 0.94 0.93 0.93
ROC Area (GSAS score) 0.91 0.94 0.94 0.84 0.94 - 0.93
ROC Area (SI score) 0.80 0.79 0.84 0.72 0.81 0.79 0.76
ROC Area (MI score) 0.80 0.78 0.84 0.72 0.79 0.82 0.78
TP at 1% FP (native score) 0.09 0.42 0.50 0.004 0.29 0.03 -
TP at 1% FP (SAS score) 0.48 0.32 0.47 0.29 0.46 0.25 0.22
TP at 1% FP (GSAS score) 0.48 0.30 0.47 0.20 0.46 - 0.15
TP at 1% FP (SI score) 0.16 0.02 0.16 0.04 0.09 0.008 0.01
TP at 1% FP (MI score) 0.16 0.03 0.16 0.07 0.10 0.04 0.03
% CAT -CAT at GSAS = 5 Å 19 68 37 29 50 - 74.0
% CAT -CAT at SAS = 5 Å 25 80 62 54 61 73 85.7
% CAT -CAT at SI = 5 Å 16 56 36 36 37 45 60.4
% CAT -CAT at MI=0.8 26 62 44 28 50 53 65.5
% All pairs at GSAS = 5 Å 0.6 5.6 1.5 2.6 2.4 - 8.5
% All pairs at SAS = 5 Å 0.8 9.4 3.5 5.6 3.5 7.1 13.5
% All pairs at SI = 5 Å 1.4 17.2 4.7 11.1 6.1 13.8 24.2
% All pairs at MI = 0.8 2.6 21.7 7.0 6.9 12.2 13.6 25.2

Table 4.1: Quantifiers of the ROC curves and the cumulative distributions that dis-
tinguish structural alignment methods. A high value is always better: the best scores
for each measure are shown in bold, as are the scores for ‘Best-of-All’ when they are
the best.

4.3 Direct comparison of the methods using geo-

metric match measures

We calculate the four geometric match measures (SI, MI, SAS, and GSAS) for all

alignments found by all the methods. In all four measures, better alignments corre-

spond to lower values. Using this data, we calculate the cumulative distributions of

the geometric measures, over the set of 104,309 structure pairs, that have the same

CAT classification (the CAT-CAT set) and over the set of all structure pairs (the full

set). In both cases, we normalize to 100% the total number of pairs in the set.

Figure 4.2 shows the cumulative distributions of the geometric match measures.
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Here, better performance corresponds to finding more alignments (greater values

along the y-axis) with better geometric match measures (lower values along the x-

axis). In the case of GSAS, SAS, and SI, we focus on good alignments: the cutoff

value is 5 Å in all three cases. Even though all programs were given the same set

of pairs, the maximum value on each curve varies, since there are many alignments

of match measure greater than 5 Å that are not shown. For each method, Table 4.1

lists, for both the CAT-CAT set and full set, the number of pairs for which good

alignments are found (expressed as a percentage of pairs in the set).

We see that the ‘Best-of-All’ method finds the greatest number of good alignments,

both in the CAT-CAT set and the full set, for all four geometric measures; the

second best performer is STRUCTAL in both sets and for all geometric measures;

the third best performer is SSM (except when using GSAS). Among the programs

compared, SSAP performs the worst. When using GSAS, a version of SAS that

penalizes alignment gaps, the relative performance is flipped in two cases: CE vs.

DALI and CE vs. LSQMAN. This implies that CE finds less fragmented alignments

than those found by DALI and LSQMAN. We also see that LSQMAN finds more

highly similar alignments, and less moderately similar alignments, than all other

methods except STRUCTAL.

When using the similarity cutoff value 5 Å, even the best methods find good

alignments for no more than 80% of the CAT-CAT pairs. At the same threshold

level, there are good alignments for about 10% of all pairs, even though the CAT-

CAT pairs account for only 2.5% of these pairs. This shows that there is a significant

amount of structural similarity between structures in different fold classes. The GSAS

measure of an alignment will generally be larger than its SAS measure because we

reduce the denominator (k) by the number of gaps; for this reason the percentage

of pairs below the 5 Å threshold is smaller for GSAS than for SAS. Similarly, the

relative size of the values of SI and SAS depends on how the typical length of the

shorter structure relates to the value 100. We see that the percentage of pairs below

the 5 Å threshold is greater for SI than SAS, implying that the typical length of the

shorter structure is less than 100 (we estimate 70 residues). This means that SAS is

generally larger than SI.
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Total SSAP STRU- DALI LSQMAN CE SSM

CTAL

275547 832 189871 5868 54606 24370 NA
GSAS ≤ 5Å (100%) (0.3%) (69%) (2.1%) (20%) (8.8%)

539755 498 286972 15648 103408 15844 117385
SAS ≤ 5Å (100%) (0.09%) (53%) (2.9%) (19.2%) (2.9%) (21.8%)

978531 3745 497330 24767 201202 17142 234345
SI ≤ 5 Å (100%) (0.4%) (51%) (2.5%) (21%) (1.8%) (24%)

880503 4579 573542 31402 63088 72974 134918
MI≤ 0.8 (100%) (0.5%) (65%) (3.6%) (7.2%) (8.3%) (15.3%)

Table 4.2: Contributions to ‘Best-of-All’ Method. The absolute number of alignments
contributed by each method is listed and the percentage of alignments is given in
parentheses. The largest contributor is shown in bold.

Table 4.2 lists the proportional contribution of each of the methods to the ‘Best-

of-All’ method, when considering good alignments. In all cases, STRUCTAL is the

leading contributor, contributing more than 50%. SSM is the second largest contrib-

utor, with more than 15%, followed by LSQMAN with over 7%. SSAP, DALI and

CE contribute less to the combined effort; if one of the top contributors were to be

omitted these methods could contribute more.

4.3.1 Analysis of the good alignments found by ‘Best-of-All’

For each pair of structures we find the best structural alignment, as determined by its

GSAS, SAS or SI value. This set of structure pairs is partitioned into four sets: (1)

pairs that agree on the three CATH classifiers: Classification/ Architecture/ Topology

(the CAT set) (2) pairs that agree only on the first two classifiers (the CA set) (3)

pairs that agree only on the first classifier (the C set) and (4) Others. In Figure 4.3 we

plot, for several threshold values of the geometric similarity measures (less than 2.5 Å,

3 Å, . . ., 5 Å), the number of alignments found at that level of similarity (upper panel)

as well as the percentage of each of the four sets found at that level (lower panel).

The rightmost panels show the same analysis for the subset of long alignments (more

than 50 residues matched). The threshold values we consider describe structural

alignments that vary from highly similar (less than 2.5 Å) to moderately similar (less
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than 5 Å).

Figure 4.3 shows that there are many cases of very similar structure pairs that

are in different CAT classes; in some cases they are even in different C classes. For

example, with a GSAS threshold of 5 Å, less than 40% of the pairs of proteins found

are in the same CAT class, even when considering only the long alignments (more

than 50 residues matched). Note, that at this level of similarity, only 80% of all the

pairs of proteins with the same CAT classification are detected by any of the programs

(see Figure 4.2). For both GSAS and SAS, the fraction of the alignments for which

both structures are in the same CAT class is biggest for the highly similar pairs (less

than 2.5 Å), and lowest for the moderately similar pairs (less than 5 Å). This expected

behavior is even more pronounced when we consider only long alignments. Figure 4.3

also shows that the number of good alignments is greatly reduced (by more than a

factor of 2) when restricting our attention to long alignments.

4.3.2 Additional evaluation criteria

Challenging alignments for each protein structure alignment method. Ta-

ble 4.3 lists the total number of pairs of proteins that only the particular method

was able to identify as structurally similar. We include only those pairs of struc-

tures for which one of the methods found a good alignment (SAS less than 4 Å and

more than 35 residues matched), and all other programs found only bad alignments

(SAS greater than 6 Å for any length of match). These alignments are by definition

challenging for all programs but the successful one. We also present in Table 4.3 a

breakdown of these cases according to the C classification of the structures aligned.

The complete list of these pairs, along with the best cRMS, the alignment length and

the SAS values for all the programs is available online4. STRUCTAL contributes the

largest number of alignments, followed by LSQMAN and SSM. For all three methods,

a significant number of the contributed pairs corresponds to similarities between a

‘Mainly α’ protein and a ‘Mixed α-β’ protein. In the case of STRUCTAL, there is

also a significant number of pairs involving a ‘Mainly β’ protein and a ‘Mixed α-β’

4http://csb.stanford.edu/rachel/comparison/table 3 web



CHAPTER 4. COMPARISON OF STRUCTURAL ALIGNMENT METHODS 47

Category Total SSAP STRU- DALI LSQMAN CE SSM

CTAL

All α-All α 369 0 103 2 212 0 52
(same CAT)a (8) (5) (0) (2) (1)
All α-All β 61 0 57 0 2 0 2
All α-Mixed α-β 610 0 275 0 243 0 92
All α-Few Sec. Str. 13 0 7 1 4 0 1
All β-All β 37 1 24 1 10 0 1
(same CAT)a (5) (0) (4) (0) (1) (0)
All β-Mixed α-β 318 0 260 1 39 0 18
All β-Few Sec. Str. 0 0 0 0 0 0 0
Mixed α-β-Mixed α-β 292 0 130 1 111 0 50
(same CAT)a (8) (4) (0) (1) (3)
Mixed α-β-Few Sec. Str. 4 0 2 0 2 0 0
Few Sec. Str.-Few Sec. Str. 0 0 0 0 0 0 0
Total 1704 1 858 6 623 0 216

Table 4.3: Categorization of structure pairs with good alignments found only by one
method, according to their class (C) classifiers. Good alignments are defined as those
where one of the methods finds a good alignment (SAS < 4 Å and matches more
than 35 residues), while all other methods find bad alignments (SAS > 6 Å for any
length of match). We also tested other definitions of difficult alignments (e.g., longer
matches, or less stringent SAS values) and found a similar distribution amongst the
different methods (data not shown).
aIn parenthesis, we list the number of difficult alignments found with structures of
the same CAT classification.
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Program SSAP STRUCTAL DALI LSQMAN CE SSM
CPU Hours 9042 1906 4515 1790 2642 633

Table 4.4: Total running time of each program on all 2,930 × 2,929 = 8,581,970
pairs. The programs run on an Intel Xeon 2.8 GHz processor with 512 Mbytes of
RAM memory.

protein.

Analysis of the performance of the methods on different CATH classes.

Figure 4.4 compares the relative success of each structural alignment method on CAT

pairs in the four classes of protein structure (level C of CATH hierarchy). This is

done for alignments with SAS values between 2.5 Å and 5 Å. We see, that α-α pairs,

and α-β pairs are over-represented when the match is good (SAS value less than

3.5 Å), and, consequently, the β-β pairs are under-represented. When the match

is less good (SAS value between 4 Å and 5 Å) each method behaves as expected

finding different classes of pairs with a frequency that is proportional to the fraction

of the pairs in the entire CAT set (shown by the horizontal lines in each panel).

Most methods behave similarly in that at a particular SAS value, they detect similar

percentages in each of the four classes. Such common behavior is unexpected, as the

methods do not necessarily find the same pairs or even similar numbers of pairs. The

LSQMAN method is unusual in that it finds more β-β pairs when the match is good

(low SAS value) and consequently under-represents α-β pairs. Most of the pairs in

CAT are ‘Mixed α-β’ pairs (71%), followed by ‘Mainly β’ pairs (23.5%), ‘Mainly α’

pairs (6.2%) and ‘Few Secondary Structures’ (0.45%). The fact that most methods

detect relatively few β-β pairs of high match quality may mean that matches between

β proteins are less good possibly due to the greater deformability of β strands.

Running times. Table 4.4 lists the total amount of central processor unit time

(CPU hours) used to compute all the structural alignments for each of the programs.

All programs were run under the Linux operating system (RedHat 7.3) on a cluster

of dual 2.8 MHz Intel Xeon processor machines, each with 1 Gigabyte of memory.

SSM is the fastest method, followed by LSQMAN; SSAP and DALI are the slowest

methods.



CHAPTER 4. COMPARISON OF STRUCTURAL ALIGNMENT METHODS 49

4.4 Discussion

Reservations about ROC curves. In our opinion, the number of disadvantages

of using the ROC curves methodology for comparing structural alignment methods

exceeds the number of potential advantages. ROC curves seem like a reasonable way

to compare structural alignment methods because each curve evaluates a method with

respect to an agreed gold standard (in the case of this study, CATH [87]); moreover,

self-evaluation of the methods (i.e. their native scores) can be used without needing

any additional geometric match measure. The gold standard, however, is based on a

classification, rather than a direct reflection of a similarity measure. For use in a ROC

curve, the CATH classification must be converted to a binary similarity measure and

this only allows two levels of similarity: “similar” if in the same C, A and T class,

and “not similar” if not in the same C, A, and T class. Clearly, the scale of structural

similarity is far richer, and this binary view introduces a great deal of “noise”. For

example, a pair of structures with the same C and A classifiers and another pair

with completely different classifiers will both be treated as unrelated structure pairs.

More generally, there is a significant amount of similarity between structures that

have a different CAT classification; this phenomenon was also observed by Harrison

et al. [44] and by Kihara and Skolnick [60]. However, the ROC curve analysis ignores,

and even penalizes, methods that find these similarities.

As previously pointed out [7, 107], the creators of CATH use information from

some of the structural alignment methods; this implies that some of the methods

under study are influencing the evaluation procedure. In this regard, it is of particular

interest that two methods seem to agree best with the CATH classification but do

not produce the best geometric matches. Another interesting detail is that one of

these methods, SSAP, which was developed by some of those involved in defining

the CATH classification, scores very badly when using its native score but does much

better when using the SAS geometric match measure. The other method that seems to

have influenced the CATH classification is DALI, the most commonly used alignment

program, which has been available for many years through its web server.
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When comparing two methods, there are cases in which one of the methods per-

forms better and the ROC curve analysis fails to detect it. This can happen when

one of the methods consistently finds better alignments, yet both methods order the

alignments similarly. Since ROC curves use only the order of the alignments, the

performance of these two methods will appear similar. Indeed, when comparing the

ROC curves of DALI and CE using SAS to sort the alignments, we observe this

phenomenon. Another example of this is that there are methods that perform well

by the ROC curve criteria (i.e. the order of their alignments is consistent with the

gold standard), yet find relatively poor alignments as evidenced by their geometric

match measures. Lastly, although the ‘Best-of-All’ method finds the best alignments

by definition, its ROC curve suggests that it is a poor performer.

Structural alignment as a geometric optimization problem. We suggest

treating structural alignment as an optimization problem in which alignments with

the best geometric match measure are sought. This leads naturally to a definition

of a combined effort, or the ‘Best-of-All’ method. It also suggests a methodology for

comparing methods: given several different structural alignments of the same pair of

structures, it is easy to evaluate which is best based on the geometric properties of

these alignments. Equivalently, when a particular method aligns two structures in

such a way that it lines up many residues with a small cRMS deviation, the alignment

itself serves as proof of its significance; it cannot be considered as an error or a false

positive. A method can only fail to find good alignments that are known to exist.

The main observation of this work is that different alignments of a pair of struc-

tures found by different programs can be compared directly and evaluated using ge-

ometric match measures. This direct comparison also applies to a set of alignments.

Thus, the overall quality can be measured via cumulative distributions of the quality

of alignments of sets of protein pairs. This also suggests a way to examine cases in

which one method succeeds while others fail.

Restricting the evaluation to the alignments. We believe that the prin-

cipal quality of a structural alignment method is finding a good alignment. Thus,

an evaluation of alignment methods should focus on the quality of the alignments.

Most notably, the evaluation should not depend on the scoring of the alignments that
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the programs provide. Indeed, we show that most methods (apart from DALI and

STRUCTAL) are better in finding alignments than in scoring them, or equivalently,

do not distinguish good alignments from bad ones. This is consistent with the findings

of Sierk and Pearson [107] that many alignment programs greatly overstate the sig-

nificance of structural alignments. Similarly, comparing all-against-all structures in

a selected set avoids the pitfall of coupling the evaluation of the alignment programs

and the database of structures used by a server. Since Novotny et al. [83] evaluate the

aligners and the databases simultaneously, it is hard to directly compare our results

with theirs. Furthermore, using servers rather than the standalone versions can give

misleading results in terms of the time performance of the programs, as it depends on

many extraneous factors (e.g., the network and server loads and the server hardware).

Direct comparison of structural alignment methods Our analysis shows that the

combined, ‘Best-of-All’, method finds the best alignments. Among existing methods

STRUCTAL finds the best alignments. The second best method is SSM, but due to

a limitation in the program’s output, we could not evaluate if the alignments found

by the latter have many or few gaps. In terms of speed, SSM is the fastest method,

followed by LSQMAN. Clearly, the computing time for the ‘Best-of-All’ method is

the sum of computing time of all the methods it uses. When designing a combined

structural alignment method, such as ‘Best-of-All’, STRUCTAL, SSM and LSQMAN

are important contributors, both in terms of quantity, i.e. percent of contribution,

and quality, i.e. they excel in finding difficult alignments.

Sierk and Pearson [107] evaluate (among others) CE, DALI and LSQMAN; Novotny

et al. [83] also evaluate SSM. The ranking by Novotny et al. is different from ours;

we believe that there are two reasons for this difference: (1) our experiment is sig-

nificantly larger, and (2) we focus on the structural alignment methods, while their

evaluation also depends on the server’s database of structures. Our results confirm

the observation by Sierk and Pearson that when considering only the ROC curves and

using CATH as a gold standard, DALI appears to be the best performer. We also

confirm the observation of Shindyalov and Bourne [105] that CE produces alignments

with fewer gaps compared to DALI.

Future directions. Understanding protein function and protein evolution are
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key aims in structural biology. Both are furthered by detecting all known protein

structures that are geometrically similar to a given query structure. The straightfor-

ward way of doing this is to maintain a database of all (representative) structures, and

compare the query structure to each of the structures in the database, using a struc-

tural alignment method. In this study, we evaluate the structural alignment methods

that can be “plugged” into this procedure. Following homology modeling [37] one

can construct a method that calls different structural alignment methods, and selects

the best alignment(s). The geometric match measures are reasonable criteria for this

selection. Unfortunately, as the database is fairly large, this is computationally expen-

sive. Ideally, we would like a fast filter that rules out some of the structures. Many

approaches are currently tested in order to design such filters, including methods

that consider geometric properties of protein backbone [96], as well as probabilistic

methods based on contact maps describing protein structures [13]. Certifying that a

structure cannot be structurally aligned to another structure is a hard because the

certifier must prove that no alignment can be found (for reasons other than the failure

of the heuristic search). Designing such filters remains an important area of research.

We touched upon the fundamental difference between classification of protein

structures and measuring the similarities amongst them. In particular, we argue that

converting a classification gold standard to a binary gold standard similarity measure

is too crude of an approximation. It would be interesting to study similarities among

structures that are classified differently and cases in which the classification is the

same, yet all methods indicate that there is no similarity. This can be due to classi-

fication errors, or, more interestingly, due to protein structures that are intrinsically

hard for structural alignment methods.
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Figure 4.1: ROC curves for the structural alignment methods SSAP, STRUCTAL,
DALI, LSQMAN, CE, and SSM. For varying thresholds, the fraction of true positives
(TP) are the alignments below the threshold that have the same Class/ Architecture/
Topology CATH classification; the fraction of false positives (FP) are those below the
threshold that have a different CAT classification. Here the alignments are sorted by
their native scores, (those given by the programs and shown as dashed lines) or by the
geometric match measure SAS (solid lines). In solid black, we plot the ROC curve of
the ‘Best-of-All’ method, the best alignments (in terms of SAS) found by all methods.
In Panel A, we plot the fractions of FP against the fractions of TP, and in the Panel
B we plot log10(fraction FP) against fractions of TP, to better see performance at low
rates of false positives. In Panels C and D we plot for every threshold the average SAS
value of the TP and the FP alignments below that threshold. Methods that perform
better in terms of their ROC curves climb to high TP values very quickly (i.e. at
low FP values). We see, that the performance of the methods depends on whether
the alignments are sorted by the SAS geometric match measures or the native scores.
Furthermore, some of the best methods as judged by the ROC curves (such as DALI
and SSAP) do not produce the best alignments as indicated by the Average TP SAS
value; they seem to do well because they find even worse Average FP SAS values.
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Figure 4.2: Comparison of the quality of the alignments produced by the methods
SSAP, STRUCTAL, DALI, LSQMAN, CE, and SSM, using four geometric match
measures: GSAS, SAS, SI, and MI. For each geometric measure and for each method,
we plot a cumulative distribution. This gives the number of alignments (expressed
as a percentage of the total number of alignments in the set considered) that is
found with a geometric match score better than the particular threshold plotted
along the x-axis. A lower value of the geometric match measure is better in all
cases. In the upper panels, we consider the set of 104,309 pairs that have the same
Class/Architecture/Topology (CAT) classification; in the lower panels we consider
all pairs (these number 4,290,985). Better performing methods find more alignments
(greater values along the y-axis) with better scores (smaller values on x-axis). The
MI measure is always between 0 and 1, whereas the other measures are unbounded.
For GSAS, SAS, and SI, we use a cutoff value 5 /AA, to focus on good matches. The
figure also shows the cumulative distribution of the ‘Best-of-All’ method - a method
that returns the best alignment found by any of the above methods. This method
is clearly the best performer in all categories. Among the existing methods, for each
of the geometric match measures, STRUCTAL is the best performer; the next best
method is SSM.
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Figure 4.3: The composition of the set of structure pairs that have good alignments
demonstrates the significant amount of structural similarity across CATH fold classes.
These ‘Best-of-All’ alignments are divided into four categories depending on the sim-
ilarity of the CATH classification of the two aligned structures. These four categories
(color-coded from black to light gray) are: (1) both structures have the same C, A
and T classifiers (CAT set), (2) both structures have only the same C and A classifiers
(CA set), (3) both structures have only the same C classifier (C set), and (4) both
structures have different C classifiers (Other pair set). We consider all good align-
ments, i.e. of low GSAS, SAS or SI value (left hand 6 panels), as well as the subset
of good alignments with more than 50 matched residues (right hand 6 panels). The
upper panels give the number of good alignments, and the lower panels plot the per-
centage of alignments found at that level of similarity for each category. All methods
find many examples of highly similar structures that CATH classifies differently.
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Figure 4.4: Comparing the performance of the different structural alignment programs
when aligning different classes of structures. We consider all 104,309 pairs of the same
fold class (i.e. same CAT), and partition them according to their C classification into
four classes: ‘Mainly α’, ‘Mainly β’, ‘Mixed α-β’ and ‘Few Secondary Structure’ (from
left to right). For each of the programs, and for each SAS threshold value, we plot
the percent of alignments found below it. The percent of pairs of each group, among
all pairs, is the horizontal line. We see, that ‘Mainly α’ pairs, and ‘Mixed α-β’ pairs,
are over-represented in the high geometric similarity region, while the ‘Mainly β’
pairs are under-represented. Generally, all methods have similar behavior, with the
exception of LSQMAN, which is less successful, compared to all the other methods
at detecting ‘Mixed α-β’ pair similarity when the geometric similarity is high (this
leads to a compensatory increase in recognition of alignments of ‘Mainly α’, ‘Mainly
β’, and ‘Few Secondary Structures’ pairs).



Chapter 5

Efficient approximations of protein

structure

We represent the polypeptide chain by a sequence of fragments that are concatenated

without any degrees of freedom. The fragments are chosen from a library of fragments

that are representative of the PDB and fitted to the native structure using a greedy

build-up method. This gives a one-dimensional representation of native protein three-

dimensional structure whose quality depends on the parameters of the library. Here

we construct libraries by clustering the fragments observed in the PDB and selecting

one representative from each cluster. Each library is characterized by the quality

of fit (accuracy) and the number of allowed states per residue (complexity). We

find that the accuracy depends on the complexity and varies from 2.9 Å for a 2.7-

states per residue model based on fragments of length 7 to 0.76 Å for a 15-states

per residue model based on fragments of length 5. Our goal is to find representations

that are both accurate and economical (low complexity). The models defined here are

substantially better in this regard: with 10 states per residue we approximate native

protein structure to 1 Å compared to over 20 states per residue needed previously.

57
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5.1 Small libraries of protein fragments

We cluster fragments of protein backbone and select one representative per cluster

to form a library. The libraries1 have fragments of different lengths f , varying from

four to seven residues, and different sizes s (i.e., different number of clusters) varying

from 4 to 300.

5.1.1 Fragments data sets

A set of proteins from the PDB with the most reliable structural data served as our

initial data set for the clustering analysis. We use 200 unique protein domains as

defined by SCOP version 1.57 [81] with the highest-ranking SPACI [8] scores (see

Table 5.1). The 200 domains, all with a SPACI score greater than 0.534, have a total

of 36,397 residues. Here, we approximate the chain path describing the fold of each

of these proteins by the atomic coordinates of its Cα atoms. We extract four training

sets of protein backbone fragments, of fragment lengths ranging from four to seven

residues. Each of these sets is comprised of all consecutive non-overlapping fragments

of the appropriate fixed length, starting at a random initial position. It is not ad-

vantageous to include overlapping fragments in these sets, as any two neighboring

fragments are very close to each other solely because they have a large overlapping

part. This structural overlap introduces noise into the training set and makes the clus-

tering task significantly harder. The numbers of fragments in our data sets are 8949,

7123, 5910, and 5029 for the four, five, six, and seven residue data sets, respectively.

Two special characteristics of our fragment data sets that need to be considered

before clustering are the outlier fragments and the very high concentration of α-

helical fragments. Outliers are fragments that have a relatively large cRMS deviation

from all other fragments; these cannot represent common structural protein motifs.

Thus, we facilitate the clustering task by weeding out these outliers according to a

threshold. In all cases approximately 10% of the fragments are discarded using the

threshold values 0.074 Å, 0.307 Å, 0.487Å, and 0.755 Å for the data sets of fragments

of length four, five, six, and seven residues, respectively. Namely, we eliminate all

1available online at http://csb.stanford.edu/rachel/fragments



CHAPTER 5. EFFICIENT APPROXIMATIONS OF PROTEIN STRUCTURE 59

dlgci 0.78 1.33 d1rhs 1.36 0.72 d1a4ia2 1.50 0.62 d1d3va 1.70 0.57
d1cbn 0.83 1.23 d1qh4a2 1.41 0.72 d1c1ka 1.45 0.62 d7odca1 1.60 0.57
d3pyp 0.85 1.20 d1qh4a1 1.41 0.72 d1byqa 1.50 0.62 d1vns 1.66 0.57
d1rb9 0.92 1.17 d1qaua 1.25 0.72 d1aie 1.50 0.62 d1ctf 1.70 0.57
d2pvba 0.91 1.15 d3ebx 1.40 0.71 d1dpta 1.54 0.62 d1czfa 1.68 0.57
d3lzt 0.92 1.15 d2eng 1.50 0.71 d1bx4a 1.50 0.62 d1rzl 1.60 0.57
d1bxoa 0.95 1.10 d1qhva 1.51 0.70 d1qgua 1.60 0.62 d1tx4a 1.65 0.57
d2fdn 0.94 1.10 d2end 1.45 0.70 d1c3wa 1.55 0.62 d1ako 1.70 0.57
d7a3ha 0.95 1.09 d1bsma2 1.35 0.70 d1hfes 1.60 0.61 d3cla 1.75 0.57
d1nls 0.94 1.07 d1bsma1 1.35 0.70 d1hfel1 1.60 0.61 d1burs 1.80 0.56
d1b0ya 0.93 1.07 e1pid1b 1.30 0.70 d1qgwa 1.63 0.61 d1kid 1.70 0.56
d1byi 0.97 1.07 e1pid1a 1.30 0.70 d1orc 1.54 0.61 d2cpga 1.60 0.56
d1cex 1.00 1.07 d3euga 1.43 0.69 d1qsaa1 1.65 0.61 d2bbkl 1.75 0.56
d1ixh 0.98 1.06 d3vub 1.40 0.68 d1dpsa 1.60 0.61 d1qipa 1.72 0.56
d1a6m 1.00 1.05 d1qfma1 1.40 0.67 d1nox 1.59 0.61 d1ttba 1.70 0.56
d1aho 0.96 1.04 d1bgf 1.45 0.67 d1b3aa 1.60 0.61 d1qhfa 1.70 0.56
d1cxqa 1.02 1.03 d1aba 1.45 0.67 d1cipa1 1.50 0.61 d1dhn 1.65 0.56
d2erl 1.00 1.02 d1qtsa2 1.40 0.67 d1kpf 1.50 0.60 d2ahja 1.70 0.56

d1mfma 1.02 1.01 d1sgpi 1.40 0.67 d1lam 1 1.60 0.60 d3stda 1.65 0.56
d1lkka 1.00 1.00 d1di6a 1.45 0.67 d1krn 1.67 0.60 d1yvei1 1.65 0.56
d3sil 1.05 0.99 d1utg 1.34 0.67 d1gai 1.70 0.60 d1pda 2 1.76 0.56
d2igd 1.10 0.98 d7atja 1.47 0.66 d1bfg 1.60 0.60 d1vcc 1.60 0.56
d1qj4a 1.10 0.94 d1yge 2 1.40 0.66 d1d7pm 1.50 0.60 d1pdo 1.70 0.56
d5pti 1.00 0.92 d1yge 1 1.40 0.66 d1moq 1.57 0.60 d1utea 1.55 0.55
d1rgea 1.15 0.92 d1tc1a 1.41 0.66 d1qq5a 1.52 0.60 d1ush 1 1.73 0.55
d1bkra 1.10 0.92 d1mla 1 1.50 0.66 d1ubpc1 1.65 0.60 d1cjca2 1.70 0.55
d1nkd 1.07 0.92 d1poa 1.50 0.66 d1ubpa 1.65 0.60 d1b2pa 1.70 0.55
d1swua 1.14 0.91 d2cba 1.54 0.65 d3cyr 1.60 0.59 d3btoa1 1.66 0.55
d1a7s 1.12 0.88 d3pte 1.60 0.65 d2ilk 1.60 0.59 d1kpta 1.75 0.55
d1mun 1.20 0.88 d1pina 1.35 0.65 d1ppn 1.60 0.59 d1gsoa3 1.60 0.55
d1vfya 1.15 0.85 d1g3p 1 1.46 0.65 d1kapp1 1.64 0.59 d1gsoa2 1.60 0.55
d1jhga 1.30 0.83 d1cyo 1.50 0.64 d2cpl 1.63 0.59 d1gsoa1 1.60 0.55
d1d4oa 1.21 0.82 d1qrea 1.46 0.64 d1b6a 2 1.60 0.59 d1dmr 2 1.82 0.55
d1qu9a 1.20 0.82 d1dgfa 1.50 0.64 d1b6a 1 1.60 0.59 d1atza 1.80 0.54
d3chbd 1.25 0.82 d1whi 1.50 0.64 d3grs 3 1.54 0.59 d1fnd 2 1.70 0.54
d1mroa1 1.16 0.81 d1ezm 2 1.50 0.64 d1qqqa 1.50 0.59 d1fnd 1 1.70 0.54
d1ifc 1.19 0.81 d1ezm 1 1.50 0.64 d1mrj 1.60 0.59 d1a44 1.84 0.54
d7rsa 1.26 0.80 d1dcia 1.50 0.64 d1aop 3 1.60 0.59 d1vhh 1.70 0.54
d1dcs 1.30 0.79 d1b67a 1.48 0.64 d1php 1.65 0.59 d1aoha 1.70 0.54
d2pth 1.20 0.79 d1qh5a 1.45 0.63 d1csh 1.60 0.58 d1doza 1.80 0.54

d1amm 1 1.20 0.78 d1b4va2 1.50 0.63 d1t1da 1.51 0.58 d1db1a 1.80 0.54
d2lisa 1.35 0.78 d1b4va1 1.50 0.63 d1ajsa 1.60 0.58 d1thw 1.75 0.54
d1cy5a 1.30 0.77 d8abp 1.49 0.63 d1qs1a1 1.50 0.58 d1tfe 1.70 0.54
d1aac 1.31 0.77 d1ah7 1.50 0.63 d1a1ia1 1.60 0.58 d1svy 1.75 0.54
d1qdda 1.30 0.76 d1ptf 1.60 0.63 d1smd 1 1.60 0.58 d1mjha 1.70 0.54
d1dg6a 1.30 0.76 d1rie 1.50 0.63 d1b8za 1.60 0.58 d1bm8 1.71 0.54
d1msi 1.25 0.75 d3ezma 1.50 0.63 d1ay7b 1.70 0.58 d2gsta1 1.80 0.53
d1qksa2 1.28 0.75 d1bfd 2 1.60 0.63 d1fmk 3 1.50 0.58 d1pcfa 1.74 0.53
d256ba 1.40 0.73 d1ra9 1.55 0.62 d1phc 1.60 0.58 d1mtyg 1.70 0.53
d1bi5a1 1.56 0.72 d1dfma 1.50 0.62 d1qgxa 1.60 0.57 d1iiba 1.80 0.53

Table 5.1: PDB identifiers of the training set proteins, the structure resolution and
SPACI [8] score. The training set is the 200 polypeptides with the highest SPACI
scores from SCOP v.1.57 [81].
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1.1bmv A.2hhb 2sod 1fdx B.1grc 4tln 1rei I.1tec A.1rbb
2fd2 1bp2 A.2taa 3adk 1lh4 B.2pka 5tnc 2aat P.2tmv
A.2ccy 2pcy 1cse A.4mdh 3icd 1pcy C.2dfr A.1csc 2cna
1.1rmu A.2hla 2ssi 1fx1 B.2at1 5cpa 1rhd I.4sgb A.1tnf
2gbp 1cc5 A.2tbv 3b5c 1lz1 B.2sod 6acn 2act R.1wrp
A.2dfr 2pgk 1cts A.5xia 3pgm 1phh E.4er4 A.1fc1 2cpp
1.2mev A.2hmg 2stv 1hip B.2dfr 5cpv 1rnt L.1f19 A.2.4ts1
2gn5 1cd4 A.2utg 3blm 1mba B.3hmg 8adh 2alp 2cyp
A.2dhf 2rsp 1cy3 A.7cat 4ait 1pp2 E.4tmn A.1grc A.256b
1abp A.2pab 3.2mev 1hoe B.2hhb 5ebx 1sgt L.1prc
2i1b 1cla A.2ypi 3ca2 1mbd B.8api 8cat 2aza
A.2gap 2sga 1eca B.1coh 4ape 1ppt H.1prc A.1p09
1acx A.2pka 3.2r06 1l12 B.2hla 5ldh 1tim M.1prc
2liv 1cms A.4dfr 3fxc 1ovo C.1fc2 9pap 2cab
A.2gls 2sns 1est B.1csc 4sbv 1pyp I.1cho A.1pfk
1bds A.2rsp 351c 1lh1 B.2kai 5mbn 2.1bmv O.2gd1
2lzm 1crn A.4hvp 3gpd 1paz C.1prc A.1.4ts1 2cdv

Table 5.2: PDB identifiers of the Park and Levitt [89] test set

fragments whose cRMS deviation from the closest other fragment in the data set is

greater than the threshold value. Another unique characteristic of our training set is a

highly populated region of fragments from α-helices, which complicate the clustering

procedure.

5.1.2 Clustering the fragments

A distance measure in structure space. We use cRMS (Equation 2.2) to measure

structural deviation between two fragments. For three equal fragments of equal length

A, B, and C, cRMS satisfies the triangle inequality:

cRMS(A,C) ≤ cRMS(A,B) + cRMS(B,C)

and thus a reasonable choice for use in clustering [25]. We considered using other

measures such as:

1. the root mean square value of the f residue (φ, ψ) torsion angles, where f is

the fragment’s length

2. the root mean square deviation of the f − 3 chain α angles (the torsion angle

defined by 4 consecutive Cα atoms [72])

3. dRMS deviation (Equation 2.1).
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None of these alternatives were satisfactory as the (φ, ψ) torsion angles were too

noisy and reflective of local change, the a angles were too coarse a description of the

fragment shape and the dRMS deviation does not discriminate a right-handed from

left-handed structure.

Simulated annealing k-means. We cluster each of the different length frag-

ment data sets using k-means simulated annealing, a clustering heuristic that uses

simulated annealing to find better cluster centroids in k-means clustering. K-means

simulated annealing repeatedly runs k-means clustering and then merges two clusters

and splits another, in a Monte Carlo fashion. The clusters to be merged are selected

at random, with nearby clusters more likely to be chosen; the cluster to be split is

also selected at random, with disperse clusters more likely to be selected. We tried

a number of different scoring functions and the one that performed best was total

variance of the clustering (the sum over all clusters of the square of the distance

of any fragment to its cluster centroid). The desired number of clusters is given to

the clustering procedure as input and the improvement step described maintains the

number of clusters. This scheme surpasses normal k-means by its improved handling

of the wide range of fragment concentrations (there are many more α-helical frag-

ments), and by its insensitivity to the initial choice of cluster centers. It even works a

little better than the much more time-consuming hierarchical clustering method that

merges clusters based on the maximum distance between any members of the dif-

ferent clusters. In appendix A we detail the simulated annealing k-means clustering

heuristic and compare it to other clustering methods.

5.1.3 Complexity of a library

The complexity of a library measures the size of the space of structures that can

be built using the library, normalized so that it is independent of the lengths of the

approximated proteins. Intuitively, it is the “density” of the approximation net, where

a more complex library generates a denser net. Let L be a library of s fragments,

each f residues long. The complexity of L is defined as s1/(f−3), and is a property of

the library that varies with its size and fragment length. For the detailed calculation
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of the size of the space see Section 5.3.1.

5.2 Evaluating the fragment libraries

We consider a library “good” if it approximates real protein structure accurately. The

clustered fragments create a library that represents well all fragments in the training

set. We aspire to a set of fragments that also represents well all protein motifs (of

this length) found in real proteins. Thus, we fit the library fragments to a test set of

protein structures that is independent of the training set to evaluate the quality of

the library.

We use the test set suggested by Park and Levitt [89]. It has 145 proteins of

different structural motifs varying in length from 36 to 753 residues. For completeness,

Table 5.2 lists their PDB identifiers. As with the training set, we simplify the chain

paths of the test set folds by the atomic coordinates of their Cα atoms. In addition

to its completeness, using the Park and Levitt facilitates the comparison with their

results.

5.2.1 Local fit

Here, we measure the fit of the library fragments to the local conformation of the test

set proteins; we denote this measure by ‘local fit’. For this purpose, we break each

protein structure to all its overlapping fragments of the specified length, f . The best

local fit approximate structure for a protein is constructed, in linear time, by finding

for each of the protein fragments the most similar fragment in the library (in terms

to cRMS). Averaging this cRMS value over all the fragments in all the proteins in

the test set, gives the local fit score for the particular library.

Table 5.3 summarizes the accuracy of the best local fit approximations for all

libraries studied. Figure 5.1 plots this data as a function of the complexity. We also

calculate the average cRMS deviation of the best local fit approximations of the test

set proteins using the five and six residue fragment libraries published by Micheletti

et al. [78]. Figure 5.1 shows that the fragments of the proteins in the test set can be
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described very well by any of the libraries considered: the average cRMS deviation

is below 1 Å in all cases. For libraries of a fixed fragment length, the accuracy of

the local fit approximations is improved when the complexity (or the library size) is

increased. This makes intuitive sense: libraries with a greater variety fit the fragments

of the test set proteins better. For a library of the same complexity, the accuracy

of the local fit approximations is improved with shorter fragments. This also makes

sense: shorter fragments give a better local fit as there are fewer Cα atoms involved

in each fragment-to-fragment comparison. Stated differently, there are six additional

degrees of freedom for the rigid body rotation and translation of each fragment. With

shorter fragments, there are therefore, more degrees of freedom to locally approximate

a given length protein structure.

Dependency on the polypeptide length. We also consider the dependency

of the fit on the length of the approximated protein. Figure 5.2(a) plots the cRMS

deviation of the local fit approximations of all the proteins in the test set versus the

lengths of the proteins, for one representative library of 20 fragments, five residues

each. We see that the accuracy does not vary with the chain length. Similar behavior

was observed in other libraries (data not shown).

5.3 Approximating proteins using libraries of frag-

ments

One possible, yet unsatisfactory, way to construct contiguous three-dimensional struc-

tures from the library fragments is to concatenate the best local fit library fragments

found in Section 5.2.1. If the first Cα atom of each fragment is superimposed on

the last Cα atom of the preceding fragment, one would need to specify the relative

orientation of the two fragments. This could be done using two polar coordinates but

is, in any case, unsatisfactory as the reconstruction would not be discrete in that one

would need to specify the list of fragments as well as the values of the continuous

polar angles. More succinctly, it does not suffice because it does not offer a one-

to-one correspondence between the string of library fragment codes and the global
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three-dimensional structure.

5.3.1 Global fit

Instead, we use a scheme denoted ‘global fit’ for constructing chains from protein

fragments: when adding a fragment, we position it by best superimposing its first

three Cα atoms onto the last three Cα atoms of the already constructed prefix of the

chain. Even if the two Cα triplets do not match perfectly, this will uniquely define the

relative orientation of the fragments provided that the atoms of each Cα triplet do not

lie along a line. In polypeptide chains, the distance between consecutive Cα atoms

is fixed at 3.8 Å and the angle formed by three consecutive Cα atoms is between 90◦

and 130◦ [72].

Figure 5.3 illustrates a two-dimensional analog of this scheme for constructing two

structures from fragments of a four-element library. Notice that in two dimensions,

any two (rather than three) consecutive amino acids can be superimposed on any

two consecutive amino acids in another fragment. We emphasize that the library

fragments are used as mere templates — any fragment can be used repeatedly along

the constructed chain. In this global fit scheme, a structure is completely described by

the list of library fragments that construct it. There is a one-to-one correspondence

between the space of all approximations and the space of all strings of library labels.

Therefore, the space of all approximations constructed using a library is discrete, and

when the length of the target structure is fixed it is also finite.

The number of structures that can be constructed using a library L depends on the

number of fragments s and their length f . When constructing a chain from fragments,

each library fragment extends the chain by f − 3 residues, because 3 overlap it with

the previously constructed part of the chain. The number of fragments nf needed to

build an n residues chain is the first integer larger than or equal to n/(f − 3). Thus,

a string of nf fragment labels from the library L fully defines an approximating

structure of n residues. The size of the approximation space is equal to the number

N of such strings where N = snf = sn/(f−3) = (s1/(f−3))n. For the purpose of defining

the complexity of the library, we normalize this size, so that it is independent of the
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lengths of the approximated chains. Thus, the complexity is the average number of

states per residue, or equivalently the n-th root of N : s1/(f−3). This definition of

complexity follows the convention set by Park and Levitt [89], and offers an extension

to their results regarding the complexity and accuracy of discrete approximations of

protein structures.

Finding good global fit approximations. While the best local fit approxima-

tion is easily found by finding the library fragment that best fits each local fragment,

the sequence library fragments needed for the global fit is much harder to find. The

optimal sequence of library fragments must define the three-dimensional structure

with the minimal cRMS deviation from the real structure of the target protein. The

number of possible sequences of fragments is, unfortunately, exponential in the length

of the protein. Thus, it is impossible to consider all sequences in search for the best

global fit approximation. Therefore, we follow Park and Levitt [89] and use a greedy

algorithm for finding a good rather than the best global fit approximation. Starting

at the N-terminus, we construct approximations for increasingly larger segments of

the protein. Given a partial approximation, we extend it using the best library frag-

ment, i.e., the one whose concatenation yields a structure of minimal cRMS deviation

from the corresponding segment in the protein. Recall, concatenation is achieved by

superimposing the first three residues of the added fragment on the last three residues

of the already constructed segment so that f − 3 residues are added each time. We

repeat this process until the C-terminus of the target protein is reached. This process

is deterministic and takes linear time.

An important property of this model-building method is that each step is local,

while the evaluation criterion of its goodness of is global. A fragment used in the

construction of the approximating structure influences the overall accuracy of the ap-

proximation not only via the accuracy of the local protein segment it describes, but

also through the positioning it determines for its following fragments. Consequently,

it may be beneficial to be less greedy: a less well-fitting library fragment may al-

low better positioning of subsequent fragments, improving the overall quality of the

approximation.

We improve our algorithm by keeping a set of candidate structures for extension,
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rather than a single one as described above. Specifically, we make the algorithm

slightly less greedy and keep a set (or heap) of the best Nkeep greedily constructed

approximations for the segment of the protein approximated thus far. At each step,

we extend each of the Nkeep approximations with all possible library fragments, and

then greedily keep the best Nkeep approximations. This algorithm is still greedy, and

therefore does not guarantee the globally optimal solution, yet it explores a slightly

bigger part of the approximations space. Greedy algorithms like this were first used

in computational biology by Vasquez and Scheraga [123, 124] to build-up low energy

conformations of polypeptide chains.

The search procedure of the global fit approximations uses a heap storing the best

approximations found so far; the heap size should be selected to balance between the

desire to explore a greater (polynomial) portion of approximation space and the reality

of run time and memory constraints. The number of possible global fit approximations

to a target protein is exponential and therefore it is impossible to explore them all,

instead only a heap of Nkeep best approximations is maintained. The running time

of the procedure is linear O(Nkeepn|L|), and maintaining the heap requires O(Nkeep)

memory.

Figure 5.4 plots the average accuracy of the best global fit approximations found

for the proteins in the test set, versus the heap size used in the construction procedure,

for one representative library of 20 fragments, five residues each. As expected, better

approximations are found when using a larger heap. However, the accuracy improves

dramatically with increasing heap size for small heaps and remains relatively constant

for larger values. Therefore, in this study we used a heap size of 4000 when searching

for global fit approximations, which is an appropriate balance between the quest for

accuracy and the limitations on running time. Similar behavior was observed in all

libraries we considered.

Global-fit approximations. Table 5.3 also summarizes the accuracy of global

fit approximations constructed from the libraries considered in this study. Figure 5.5

plots this data as a function of the library complexity. The average cRMS deviation of

the global fit approximations over the test set varies from 2.58 Å for the lowest com-

plexity library to 0.76 Å for the highest complexity library. The insert in Figure 5.5
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plots this data in a log scale along with linear regression lines. We also compare our

results to those of: (1) Park and Levitt [89], where the test set and the complex-

ity measure are the same, so their results are just quoted here; and (2) Micheletti et

al. [78]. In the latter case we use the libraries of 5 and 6 residues published online [77],

construct global fit approximations for the test set and calculate the average cRMS

deviation between the test set and its approximations.

Figure 5.5 offers insight to the relationship between libraries of fixed fragment

length and varying complexity, as well as the relationship between libraries of fixed

complexity and varying fragment length. For a fixed fragment length, more complex

libraries offer better global fit approximations. This observation is expected: the

complexity of libraries of fixed length depends on the number of fragments in the

library and libraries with greater variety will result in more accurate approximations.

More surprisingly, for a fixed complexity, libraries of longer length fragments give

better global fit approximations. All the global fit cRMS data from our libraries of

different complexity, c, and fragment length, f , can be well fit by a single function:

global fit cRMS = e(0.094f+1.373)(Complexity)−0.1039f−0.280,

or more simply

(global fit cRMS) ∝ (Complexity)(−0.1039f−0.280)

and

(Complexity) ∝ (global fit cRMS)(0.1039f+0.280).

Park and Levitt [89] found that for model that used non-optimized (φ, ψ) torsion

angle states

(global fit cRMS) ∝ (Complexity)−0.5.

For a fragment length of 4, which is most like the (φ, ψ) states, the corresponding

dependence is

(global fit cRMS) ∝ (Complexity)−0.7.
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For longer fragments, the power become more negative so that for a length of 7, the

dependence is

(global fit cRMS) ∝ (Complexity)−1.0.

This more rapid fall-off of global fit cRMS with Complexity for longer fragments

means that the models based on longer fragments can model proteins better for a

given complexity.

Figure 5.6 plots the average cRMS deviation of the local fit approximations from

the proteins in the test set, versus the same measure of global fit approximations, for

all libraries considered in this study. For any particular library, the local fit cRMS

is always smaller than the corresponding global fit cRMS. This is to be expected as

the local fit completely ignores the connection between adjacent fragments along the

chain. These results show that local fit approximations can be used to predict the

accuracy of the global fit approximations: libraries that provide accurate local fit

approximations will also provide accurate global fit approximations. It is clear that

for the same level of global fit cRMS deviation, the local cRMS deviation decreases

sharply with fragment length.

Dependency on the polypeptide length. We also consider the dependency

of the accuracy of the approximations on the length of the approximated protein.

Figure 5.2(b) plots the cRMS deviation of the global fit approximations of all the

proteins in the test set versus the lengths of the proteins, for one representative

library of 20 fragments, five residues each. We see that the accuracy of the global fit

approximations is only very slightly dependant on the chain length. Similar behavior

was observed in other libraries.

Finally, to demonstrate the range in quality of fit, Figure 5.7 shows three approx-

imations of 1tim to various accuracies.

5.4 Discussion

Independence of test set. The training set used to compile the libraries and the

test set used to evaluate them are independent of one another. The training set
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Fragment Library Complexity Average local fit Average global fit
length Size (States/ residue) cRMS (Å) cRMS (Å)

4 4 4.00 0.39 2.23
4 6 6.00 0.35 1.64
4 7 7.00 0.33 1.48
4 8 8.00 0.32 1.39
4 10 10.00 0.30 1.12
4 12 12.00 0.28 1.01
4 14 14.00 0.26 0.92
5 10 3.16 0.57 2.57
5 20 4.47 0.47 1.85
5 30 5.48 0.43 1.59
5 40 6.32 0.40 1.41
5 50 7.07 0.39 1.28
5 60 7.75 0.37 1.20
5 80 8.94 0.35 1.06
5 100 10.00 0.34 0.99
5 150 12.25 0.31 0.86
5 225 15.00 0.29 0.76
6 40 3.42 0.65 2.30
6 60 3.91 0.59 2.02
6 70 4.12 0.58 1.92
6 80 4.31 0.56 1.87
6 100 4.64 0.54 1.72
6 200 5.85 0.48 1.41
6 300 6.69 0.45 1.26
7 50 2.66 0.85 2.89
7 100 3.16 0.76 2.41
7 150 3.50 0.72 2.16
7 200 3.76 0.68 2.04
7 250 3.98 0.66 1.91

Micheletti et al. fragment libraries [78]
5 40 6.32 0.48 1.64
6 100 4.64 0.57 1.88

Table 5.3: Average accuracy of global and local cRMS deviations. The complexity
is the average number of states per residue: for a library L of s fragments, each f
residues long, the complexity is s1/(f−3).
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for our procedures is a collection of fragments extracted from proteins with accurate

structural data (based of their SPACI [8] scores), while the test set is an accepted

set for testing questions of this type. Although lack of overlap was not a criterion

used to select the training set, there is only one protein (256b) that is in both sets.

This independence of these two sets assures that the results presented do not follow

from learning a specific set of proteins, but rather from learning properties of protein

structure.

Local-fit approximations. Local fit approximations are interesting even though

the resulting structures consist of disjoint fragments that can only be found by fitting

a known protein backbone. In building these local approximations we seek, as studies

before us [78, 121], a short list of fragments that is representative of all fragments

of known proteins. Local fit approximations capture this notion of similarity, and

offer an efficient, linear time method of evaluating libraries of fragments. Comparison

between the accuracy of local fit approximations using libraries found in this study

and those previously constructed by Micheletti et al. [78] indicates that the elaborate

clustering scheme used here leads to better results. In addition, local fit approxi-

mations serve as predictors to the accuracy of the computationally more expensive

global fit approximations.

Building better approximation models. Park and Levitt [89] and Rooman et

al. [97] showed that discrete approximation models for protein structure that take the

uneven distribution of residue conformations in real proteins into account are more

accurate than models of comparable complexity that do not. The discrete models they

constructed treat all residues along the chain equally, in the sense that each residue

can have any one of c conformations (where c is the complexity of the model). These

conformations are described by the pair of angles (φ, ψ) that defines the positioning

of the residue with respect to the previous residue along the chain.

The discrete approximations we construct with libraries of four residue fragments

are equivalent to the optimized models considered in earlier studies [89, 97]. Indeed,

the complexity of the library Ls
4 of size s is s1/(4−3) = s, or simply the number of its

elements. In effect, the library fragments encode the (φ, ψ) angle pairs of their last

residue with respect to the previous parts of the approximation, while the first three
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residues position the fragment. The results we achieve with libraries of fragments of

four residues are similar to those obtained previously by others. Park and Levitt’s

best four state model has an accuracy of 2.22 Å when approximating the test set of

proteins, while the best four state model we found achieves an accuracy of 2.23 Å.

Rooman et al. found a six state model with an average accuracy of 1.74 Å over the

proteins test set, compared with an average accuracy of 1.64 Å in our six state model.

The conformations of consecutive residues along the backbone of proteins are cor-

related to one another. Under the reasonable assumption that the libraries we find

of a specific size and fragment length are optimal, our results show this correlation

between conformations of neighboring residues. For illustration purposes consider

the correlation of conformations of pairs of neighboring residues, which is reflected

in the relative accuracy of models from libraries of four and five residue fragments,

respectively. Imagine that the conformation of two consecutive residues is indepen-

dent and without any correlation. If Ls
4 is an optimal s-element library of four-residue

fragments, it can be used to construct equivalent library Ls′

5 of five residue fragments

(concatenate all pairs of four residues with a three residue overlap to give a new li-

brary containing s′ = s2 five residue fragments). Clearly, Ls
4 and Ls′

5 span exactly the

same space of approximating structures and have the same complexity, s. If the con-

formation of two consecutive residues along the chain was independent of one another,

and Ls
4 is optimal, then Ls′

5 is optimal too. This would mean that global fit models

would have the same accuracy for libraries of four and five residue fragments. Here we

find that for the same complexity, models with five-residue fragments are significantly

more accurate than those with four residue fragments (In Table 5.3 for a complexity

of 10, the five-residue fragments fit to 0.99 Å whereas four-residue fragments fit to

1.12 Å) indicating very significant correlations.

Our use of fragment libraries in construction of approximation nets of protein

structure space exploits the correlations of conformations along the backbone to

achieve better low complexity models. This effect is particularly important if one

wants to reproduce native structures to better than 1 Å. Here we can achieve such

accuracy with a complexity of 12 for a four-residue fragment or 10 for a five-residue

fragment. By comparison, the Park and Levitt model would require a complexity of
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over 50 states-per residue to achieve an accuracy better than 1 Å. As the number

of possible conformation for a chain of length n residues, depends on (Complexity)n,

these differences have a huge impact on the size of the particular protein’s conforma-

tion space. We expect to be able to get even better results with libraries of six or

seven-residue fragments. Unfortunately, very large data set of refined protein coordi-

nates are needed to make reliable libraries for the longer fragments. Here, we have a

250 fragment library of length 7 that has a complexity of 4 and attains a global fit

cRMS of 1.91 Å. To obtain a global fit cRMS value better than 1 Å, would require a

complexity of about 8 and a library of 84 = 4096 fragments. With the rapid pace of

protein structure determination, we believe that such a library may soon be possible.
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Figure 5.1: The average local cRMS deviation of test set proteins constructed using
various libraries is plotted against the complexity of the library. The libraries vary
by size and are of fragments of lengths 4 (squares), 5 (circles), 6 (triangles) and 7
(diamonds), respectively. The complexity is determined by the library size and the
fragment length as s1/(f−3). For fixed fragment length, f , more complex libraries with
more members, s, give more accurate approximations. The insert shows the same
data in log scale: the linear fit of this data is y = −0.313x − 0.450, y = −0.427x −
0.103, y = −0.518x + 0.186 and y = −0.633x + 0.459 for fragment lengths of 4, 5, 6,
and 7, respectively. More generally, local fit cRMS depends on library Complexity
and fragment length, f , as: log(local fit cRMS) = A × log(Complexity) +B, where
A = −0.1051(f − 1) and B = 0.3016f − 1.6358



CHAPTER 5. EFFICIENT APPROXIMATIONS OF PROTEIN STRUCTURE 74

0
 100
 200
 300
 400
 500
 600
 700
 800

0


0.2


0.4


0.6


0.8


Polypeptide length


cR
M

S
 d

ev
ia

tio
n


(A) LocalFit Approximations


0
 100
 200
 300
 400
 500
 600
 700
 800

0


0.5


1


1.5


2


2.5


Polypeptide length


cR
M

S
 d

ev
ia

tio
n


(B) GlobalFit Approximations





Figure 5.2: Accuracy of global fit and local fit approximations as a function of the
chain length. We see, that the local fit accuracy is independent of the chain length,
while the global fit accuracy decreases slightly when approximating long chains.
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(1) A   

(4) ADCC  

  CBA D

4-MER LIBRARY

(2) AD   (3) ADC   

(5) ADCCB  

Figure 5.3: A simple two-dimensional example showing the construction of a chain
formed by superimposed fragments. The 4-state library contains 4 fragments, each 4
residues long and is enclosed in the box. The fragments have library labels of A, B,
C, and D. The first two residues of any fragments can be superimposed on the last
two residues of the preceding fragment thus determining the position of the fragment.
The construction process of the chain ADCCB is shown.
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Figure 5.4: cRMS deviation of best approximation, averaged over the Park and
Levitt [89] data set as a function of Nkeep size. The library used to compile this
data is of 20 fragments each 5 amino acids long. The insert shows the log(global
fit cRMS) as a function of log(heap size). This same functional behavior is ob-
served in other libraries as well, making Nkeep = 4000 a reasonable choice for
reconstruction from all libraries. From the log-log plot in the insert, we find:
log (global fit cRMS) = −0.013 log(Nkeep) + 0.742 or global fit cRMS = 2.1N−0.013

keep
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Figure 5.5: The average global cRMS deviation of the test set proteins is plotted as
a function of the complexity of the library used for constructing the approximations.
The libraries vary in size and are of fragments of lengths 4 (squares), 5 (circles),
6 (triangles) and 7 (diamonds), respectively. The libraries compiled in this study
are shown in opaque shapes, while the libraries of Park and Levitt [89] (libraries
with 4 residue fragments) and Micheletti et al. [78] (libraries with 5 and 6 residue
fragments) are shown in hollow shapes. The insert shows the same data in log scale:
the linear fit of this data is y = −0.712x+1.78, y = −0.78x+1.80, y = −0.895x+1.93
and y = −1.016x + 2.05 for fragment lengths of 4, 5, 6, and 7, respectively. More
generally, the global fit cRMS depends on library Complexity and fragment length,
f , as: log(global fit cRMS) = A log(Complexity) +B, where A = −0.1039f − 0.280
and B = 0.094f + 1.373.
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Figure 5.6: Global fit accuracy as a function of local fit accuracy. The average cRMS
deviation of the global fit approximations is plotted as a function of the average
cRMS deviation for local fit approximations for all proteins in the data set. Libraries
of fragments of length 4, 5, 6 and 7 of various sizes are plotted here. The data in this
figure is the same data of figures 5.1and 5.5, re-plotted for illustration. When fitting
a line to the data, we have: y = 10.277x− 1.874, y = 6.5x− 1.2, y = 5.45x− 1.21 and
y = 5.066x− 1.443 for fragment lengths of 4, 5, 6 and 7, respectively.
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0.91A by 10 states/residue�
 1.85 A by 4.5 states/residue�
 2.78 A by 2.7 states/residue�


Figure 5.7: Three global fit approximations to the alpha-beta barrel protein with PDB
identifier 1tim. The protein is drawn [68] in black and the approximations in gray.
The libraries used when modeling the protein in: (a) has 100 fragments 5 residues
each and achieves an overall cRMS distance of 0.9146 Å (10 states per residue); (b)
has 20 fragments 5 residues each and achieves an overall cRMS distance of 1.8454 Å
(4.47 states per residue), and (c) has 50 fragments of 7 residues each and achieves an
overall cRMS distance of 2.7805 Å (2.66 states per residue). The clear improvement
in global fit with increasing library complexity is apparent.



Chapter 6

Applications of Structure

Approximations

We rely on the efficient approximation nets defined by the fragment libraries for gen-

erating candidate structures for protein structure prediction. As shown in Chapter 5,

the fragment libraries give a set of structures that approximates real proteins well

and whose local conformation is common in the PDB. Also, the set of structures

that can be constructed by a library has a one-to-one correspondence with the set of

strings of labels (up to some fixed length) of the library’s fragments. Indeed, we can

generate decoys by sampling these structures, and do so by sampling strings (or the

fragments added when constructing the chain). Also, we can exhaustively enumerate

all short chains for constructing loops. We conclude the chapter by pointing to other

(unimplemented) applications of these approximations.

6.1 Decoy Generation

To assist in predicting protein structure, we propose candidate structures, or decoys,

that are self-avoiding and compact structures. We sample them from the approxi-

mation net implied by a library, by randomly choosing the extending fragments. In

this scheme, we only use the geometric nature of the protein (including its secondary

structure properties), while ignoring all specific details of its amino acid sequence.

80
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Despite the extreme simplicity of this method, the sets of decoys generated include

many structures that have a cRMS deviation smaller than 6 Å from the native con-

formation. This method works well for small all-α proteins, and reasonably well for

an α/β protein.

6.1.1 Methods

We use a specific library of 20 fragments, each five residues long1. We build the de-

coys chain by repeatedly extending the chain with library fragments, until reaching n

residues. When adding a fragment, the first three residues of the fragment are used

for positioning and orienting the fragment in space (with respect to the already con-

structed prefix of the chain), thus extending the chain by 5 − 3 = 2 residues. Recall

that a string of nf fragments encodes a unique structure of 5 + 2(nf − 1) = 2nf + 3

residues; equivalently, a structure of n residues that is constructed from library frag-

ments is encoded by a string of (n−3)/2 library elements. The structures constructed

from this library are protein-like in that their local chain conformations are similar to

those observed in real proteins: the average local-fit deviation on the Park and Levitt

test set is 0.47 Å. This library also generates structures that approximate proteins:

the average global-fit deviation on the test set is 1.85 Å (See Table 5.3).

Sampling decoys. The total number of structures of n residues that can be

constructed using this fragment library is 20(n−3)/2 ≈ 4.47n. This set grows exponen-

tially with the protein length, making enumeration tractable only for short chains

(see Section 6.2). Instead, we add fragments at random, either uniformly or with a

preference that is based on the “predicted” secondary structure sequence of the target

protein.

In the biased scheme, denoted biased sampling, we choose the next fragment of the

chain at random, according to a distribution of the library elements of the secondary

structure sequence of the two residues that are added by this fragment. Secondary

structure offers a coarse description of the backbone shape and can be predicted

fairly well [56]. For a protein p of n residues, to a first approximation the secondary

1available at http://csb.stanford.edu/rachel/fragments/libs/libs dat/lib 20 z 5.txt
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structure sequence t(p) is a string of symbols H, E and C, which indicates, for each

residue, whether it is a part of a helix (H for helix), a strand (E for extended) or

neither (C for coil). More formally: t(p) ∈ {H,E,C}n, and ti(p) is the secondary

structure at the ith position. We assume a perfect secondary structure predictor

and use STRIDE [33] to calculate it from the protein’s solved native structure. We

emphasize that the protein sequence influences the decoy generation process only via

the use of the “predicted” secondary structure sequence.

We associate with every fragment e a two-letter secondary structure string t2(e).

We use the last two residues, because unlike the first three which position the frag-

ment, these extend the constructed chain. Unfortunately, it is hard to associate a

longer secondary structure sequence with each fragment (of three residues or more)

due to insufficient statistics. By our experiments, other positions of the two residues

in the fragment achieve similar results (data not shown). t2(e) is the last two letters

of the full secondary structure string of a fragment t(e), which is the segment in the

secondary structure string of the originating protein that corresponds to the position

of the fragment in the protein chain. We calculate the secondary structure string of

the protein using STRIDE [33].

Next, we estimate the conditional probability P (l|σ) for every library element l,

and every two-letter secondary structure sequence σ ∈ {H,E,C}2. These values are

calculated from Bayes’ law and P (l), P (σ|l) and P (σ), that is, P (l|σ) = P (σ|l)P (l)
P (σ)

. We

estimate these probabilities from the observed frequencies in the clusters of fragments.

Denote by cluster(l) the cluster of fragments with fragment l as its centroid. P (l) is

the probability a fragment is from cluster(l), and it is estimated by the fraction of

the cluster’s fragments in all fragments. P (σ|l) is the probability that a fragment e

in cluster(l) satisfy t2(e) = σ. This is estimated by

P (σ|l) =
|{e ∈ cluster(l)|t2(e) = σ}|

|cluster(l)| .

As we are estimating probabilities by frequencies, the probability of an event may

be too small for our sampling: when we do not observe any instances of a secondary



CHAPTER 6. APPLICATIONS OF STRUCTURE APPROXIMATIONS 83

structure sequence σ in the cluster of a library fragment l, we assign a small prob-

ability P (σ|l) = ε (rather than 0, the observed frequency) to compensate for the

finite sampling. Finally, P (σ) is an easily calculated normalizing factor. Thus, the

probability of sampling the sequence of library fragments l1, l2, . . . , l(n−3)/2, given the

secondary structure sequence t(p) is

P (l1, l2, . . . , l(n−3)/2|t(p)) = Π
(n−3)/2
i=1 P (li|ti(p)).

Self-avoiding and compact decoys. Our decoy structures satisfy two necessary

geometric properties of proteins: self-avoidance and compactness. Self-avoidance

requires a lower bound on the separation of any two Cα atoms, here we use 2.5 Å.

Compactness requires an upper bound on the separation of any two Cα atoms, here we

use B Å, where B varies from 20 Å to 60 Å. As could be expected, the majority of the

structures are either not compact or self-intersecting, and this phenomenon is more

pronounced in the more compact structures (smaller B). Since construction of a decoy

structure is an expensive computation (constructing an n residue structure involves

(n − 3)/2 superpositioning steps, this could be problematic. Simply constructing

decoy chain prefixes and discarding all the ones that fail to satisfy these geometric

properties is too wasteful. Instead, we follow Rosenbluth and Rosenbluth [99] and

use Monte-Carlo chain growing to sample only allowed chains.

Monte-Carlo chain growing. This technique considers only viable, or compact

and self avoiding, extensions to the chain. As we construct the chain, we update

the statistical weight of each chain to account for the altered distributions. For

l = 1, . . . , 20 define vi(l) to be 1 if l is valid as the ith fragment in the chain and

0 otherwise. For every extension of the chain, vi(l) is computed for all l values,

increasing the computational cost of every chain extension by 20 superpositioning

computations. We sample the extending fragment, either uniformly or with a bias,

from the subset of valid fragments for the ith position, namely from {l|vi(l) = 1}.
If no library fragment is valid at the ith position, we discard the chain and restart

the decoy generation process. Here, the already constructed chain is maintained un-

less we encounter a “dead end”. In cases where some of the library fragments are
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non-valid, we re-normalize the probabilities to sum to 1 by dividing the probability

by wi =
∑20

i=1 v
i(l)P (l|ti(p)), the total weight of all valid fragments for that posi-

tion. Note that when sampling uniformly the secondary structure sequence does not

influence the probability value (P (l|ti(p) = 1/20 for all ti(p)).

Sampling only valid structures, implies that the sampling is from a different distri-

bution than the one intended. Consequently, when estimating the value of a random

variable, we need to account for the restricted sampling (only from a subset of all

fragments) in different positions along the chain. The random variable of a sampled

chain should be weighted by the portions of space we restricted ourselves to during

the construction process. The weight of a decoy structure is w = Π
(n−3)/2
i=1 wi, or the

product of all the constraints enforced along the way. The estimate for a random

variable r from N samples should therefore be 1
N

∑N
k=1 rkwk , where rk is the random

variable value for the k-th constructed chain and wk is its weight.

6.1.2 Results

We generate decoys for four proteins with PDB codes 1enh, 4icb, 2cro and 1ctf, all

are relatively short (54, 76, 65 and 69 residues respectively). The first three proteins

are all alpha: 1enh has three helices, 4icb and 2cro each have four helices; 1ctf is

an alpha and beta protein with three helices and three strands. Using the greedy

procedure described in Chapter 5, we construct approximations to the structures of

these proteins using the library of 20 five residue fragments. Since this procedure uses

the known native structure, it is clearly not a valid for generating protein decoys.

Nonetheless, it assures us that the discretized conformation space generated from

this library has structures that are sufficiently similar to the structures of the target

proteins. The best approximations we found are of 1.41 Å, 1.60 Å, 1.41 Å, and

1.43 Å cRMS from the native structures of 1enh, 4icb, 2cro and 1ctf, respectively.

Figure 6.1 shows the histograms of the cRMS deviations of the structures from

several 1enh decoy sets from the native conformation. Each decoy set has 400, 000

decoys; we use the following thresholds for the maximal distance constraints: 20 Å

(panel (A)) , 30 Å (panel (B)), 40 Å (panel (C)), and 50 Å (panel (D)); the maximal
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Figure 6.1: Distribution of the cRMS deviations (in Å) of 400,000 decoys for protein
1enh when enforcing maximum distance constraints of (A) 20 Å (B) 30 Å (C) 40 Å
and (D) 50 Å, using biased and uniform sampling. The most native like decoys are
the compact one that are sampled using a bias based on the protein’s secondary
structure.

distance in the native structure of 1enh is 26 Å. In each case we construct two sets:

one using uniform sampling (dashed line), and one by biased sampling (solid line).

Here, better decoys sets have lower cRMS deviations or their histograms are shifted

to the left.

Figure 6.1 shows that the decoys sets with a tighter compactness constraint have

more native-like structures. Biased sampling generates better decoy sets, as compared

to uniform sampling, when the structures are relatively compact (maximal distance

less than 30 Å). Surprisingly, biased sampling generates worst decoy sets when the

structures are relatively open (maximal distance greater than 40 Å). In the case of
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1enh, the open structures that biased sampling produces are open chains with rigid

helical parts embedded in them. These open structures are all fairly far from the

native state, yet the more compact ones seem to be more native-like (even though

they do not actually resemble the protein’s structure). The decoys sampled with bias,

are constrained by the rigid parts along the chain, and have fewer positions (the non-

rigid ones) in which they may turn back to make a compact structure. Thus, they

appear less native-like. The different shapes of the histograms further support this

explanation: the uniform sampling histogram is broader when the maximal distance

constraint is relaxed, while the biased sampling histogram is of the same width only

shifted to the right; this behavior is even more pronounced when considering larger

maximal distances (e.g., 80 Å; data not shown). Similarly, the best decoy sets gener-

ated for the other proteins were the ones generated using biased sampling, enforcing

highly compact structures.




(A)
 (B)
 (C) 


Figure 6.2: Three decoy structures for 1enh: (A) A typical uniform sampling decoy
(5.94 Å cRMS deviation from native structure). (B) A typical biased sampling decoy
(5.72 Å cRMS deviation). (C) The best decoy, generated by biased sampling, super-
imposed on the native structure (3.9 Å cRMS deviation, the decoy is in the darker
tone).

The biased sampling generates decoys with secondary structure, which appear

more “protein-like”, while the uniform sampling generates decoys with a more “scram-

bled” look. Figure 6.2 shows examples of sampled decoys: Panel A shows a typical

“scrambled” decoy, Panel B shows a typical decoy generated with biased sampling.

The best decoy is 3.9 Å cRMS from the native structure and both are superimposed
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in Panel C. We see similar behavior in all four decoy sets.
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Figure 6.3: The number of good decoys (cRMS deviation < 6 Å) as a function of the
compactness constraint for 1enh, 4icb, 2cro and 1ctf. Each of the graphs shows the
number found when generating decoys using biased (solid line) and uniform sampling
(dashed line).

Following Reva et al. [95] we consider a decoy “good” if its cRMS deviation is less

than 6 Å from its target protein native structure. Figure 6.3 shows the number of good

decoys found by the two sampling procedures, for the proteins 1enh, 4icb, 2cro, and

1ctf. The maximal distance between two Cα atoms in the native structures of these

proteins is 26 Å in 1enh, 30 Å in 4icb, 26 Å in 2cro and 30 Å in 1ctf. In all cases, biasing

the sampling generates more good decoys than sampling uniformly; this effect is strong

for 1enh and more subtle for 1ctf. Also, enforcing strict compactness constraints

generates better decoys. The total number of good decoys found is encouragingly

high at 1507, 280, 269 and 30 structures out of 400,000 generated for 1enh, 4icb, 2cro

and 1ctf, respectively, when using a compactness constraint of 30 Å. For 1enh, the
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results are even better with a compactness constraint of 20 Å with 4849 good decoy

structures.

The cRMS deviation of the best decoys found was less than 5.0 Å cRMS from

the corresponding native structures: 3.94 Å for 1enh, 4.23 Å for 4icb, 4.94 Å for

2cro and 4.95 Å for 1ctf. In all cases, the best decoy structure is found with a 30 Å

compactness constraint and biased sampling.
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Figure 6.4: The estimation of distribution of radius of gyration for 1enh decoys with
biased sampling. The maximum distance constraint is (A) 20 Å (B) 30 Å (C) 40 Å,
and (D) 50 Å.

Figure 6.4 shows the estimated distribution of the radius of gyration of the decoy

structures generated with biased sampling for 1enh. The distribution also normalized

by 400,000 so that the integral of the histogram gives an estimation of the fraction

of structures occupied by geometrically valid decoys. As expected, decoys generated
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with a smaller maximal distance constraint have smaller radii of gyration. We can

also see that the fraction of space occupied by the valid decoy structures decreases

dramatically as the maximal allowed distance is decreased.

6.1.3 Discussion

We generate decoys by sampling a discrete and relatively small space of conformations

that approximates proteins well. As the space is far larger than our sampling set,

we try to sample the relevant regions, i.e., compact, self-avoiding structures with the

secondary structure similar to the target protein. The two prominent characteristics

of our decoy generation scheme are: (1) the amino acid sequence of the target proteins

is not considered — only its secondary structure is used, and (2) the construction is

based on the local geometry of other native proteins.

Almost all decoy generation techniques incorporate the amino acid sequence of

the target protein. The information flow from the amino acid sequence into the con-

struction of the decoys varies: some import it via the scoring function [115] while

others search the PDB for structures with similar amino acids and generate decoys

with resembling structural pieces. In particular, Simons et al. [110] seek structures

with similar consecutive triplets of amino acids while Huang et al. [53] consider non-

consecutive pairs of residues with similar amino acids. Here, we explore the bound-

aries of decoy generation schemes by asking: “How good are decoys when using only

secondary structure information?”. Surprisingly, although we use significantly less

information about the proteins, the decoys we generate are qualitatively very similar

to those found by others. For instance, the best decoy for 4icb found by Huang et

al. [53] has a cRMS deviation of 5.0 Å from the native conformation of the protein

(compare with our value of 4.9 Å). Simons et al. [110, 109] found better decoys than

ours: the best 2cro decoy at 4.2 Å (compare with 4.9 Å), the best 1ctf at 3.46 Å

(compare with 4.9 Å) and the best 5icb decoy at 3.74 Å (compare with 4.2 Å).

This decoy generation method uses only the local geometric properties of protein

backbones as implied by the shape of the fragments in the library. We do not employ

any observations regarding common geometric structures of non-consecutive residues.
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The method works best when generating decoys for all alpha proteins, and not as well

for alpha and beta proteins. This suggests that conforming to correct local geometric

features along the chain may suffice to imply the structure of an all-alpha protein. In

a way, it is complementary to the work of Fain and Levitt [27], which showed that

conforming to correct non-local geometric features suffices to imply the structure of

an all-alpha protein. Indeed, the stabilizing interactions in helices are close along

the chain, while those that involve beta strands are not, and hence are not captured

correctly by our scheme.

These observations suggest several directions for improving the generation of de-

coys from fragment libraries: (1) incorporate non-local geometric features; (2) incor-

porate a scoring function into the scheme allowing searching rather than sampling;

(3) enrich the library with amino acid sequence information, and use this information

to bias the sampling.

6.2 Loop Building

Homology (or comparative) modeling techniques address the easier task of predicting

protein structure given the structure of a closely related (homolog) protein. The pre-

dicted structure uses the structure of the homolog protein as a template and modifies

it in the regions in which the two differ [9]. Initially, we align the sequences of the tar-

get and template proteins, and the parts of the template structure corresponding to

conserved regions in this alignment are copied, defining the three-dimensional frame-

work for the structure of the target protein. The variable regions in the alignment

correspond to the gaps in the framework. These are usually the results of substitu-

tions, insertions and deletions of residues between members of the same structural

family, and frequently corresponds to exposed loop regions that connect elements of

secondary structure in the protein fold. In the regions that do not align well, we

remove existing parts and reinsert new structures of the appropriate length that fit

between the end points. Figure 6.5 gives an overview of homology modeling.

As in ab initio structure prediction, we assume a scoring function that can score

the generated structures and separate the native like structures from the unrelated
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ones. We emphasize that the framework is not exact, and we are only looking for

approximate solutions. Thus, in testing the fitness of a candidate loop in a gap of

the framework, we tolerate 1 Å in the positions of its end points. This 1 Å should be

compared to the length of each link of the loop, i.e., 3.8 Å. Despite this approxima-

tion, loop building remains a very difficult, unsolved problem in comparative protein

modeling.

6.2.1 Methods

We build protein loops by concatenating fragment from several fragment libraries,

all five residues long. For longer loops, we mitigate the combinatorial explosion by

building in two parts, one starting at each of the ends of the gaps in the framework and

testing for closure where the two parts should join. The coarseness of the sampling

is defined by the size of the library of fragments used to build the loop. This method

combines the advantage of exhaustive enumeration, with the ability of the database

approach to generate segments that are locally physically reasonable.

Searching the database for loops. For comparison, we search for existing loop

structures, following a procedure suggested by Jones & Thirup [55] and Summers &

Karplus [114]. We search in a non redundant set of 3,307 SCOP 1.63 [81] domains,

whose structures were accurately determined using X-ray crystallography (R < 2 Å);

this set can be retrieved from the ASTRAL compendium [8]. The representative set

has diverse sequences: no two have a BLAST [3] E-value greater than 0.0001. A loop

fits a template when we can accurately superimpose the anchor residues of the loop on

the anchor residues of the gap in the template. The anchor residues are the three Cα

atoms immediately preceding and following the candidate loop (note that this filter

is sequence independent) and the gap in the template, respectively; we consider their
(

6
2

)

= 15 interatomic distances, denoted RNn in the loop and TDn in the template

structure. We quantify the agreement of the loop and the template by the root mean

square deviation:
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RMS(TDn,RNn) =

√

√

√

√

1

15

15
∑

i=1

(TDn(i) −RNn(i))2

The selected loops must also match specific conformational restrictions related to

the sequence of the chain. Non-Gly residue conformations must satisfy (ΦNon−Gly < 0,

ΨNon−Gly > 0). Pro residue conformations are restricted to ΦPro ∈ [−90◦,−30◦] and

ΨPro ∈ [−85◦, 0◦] or ΨPro ∈ [115◦, 175◦], and residues X preceding a Pro must be

characterized by ΦX ∈ [−210◦,−30◦] or ΦX ∈ [30◦, 90◦], and ΨX ∈ [60◦, 180◦] [114].

All loops that satisfy all these criteria and that agree with the anchor residues with

RMS ≤ 1 Å are returned by the database search.

Generating loops using libraries of small protein fragments. We use

libraries2 of L = 20, 40, 60, 80 and 100 fragments, each five residues long. Recall

that the fragment libraries do not contain any information about the sequence of the

proteins from which they were built. We construct all loops generated by the library

fragments, and select the ones that fit between the anchor residues. Unfortunately,

most loops do not fit. Note that due to the noisy nature of experimentally determined

structures, we accept loops that fit within 1 Å in the atomic position.

Strategy A: Unidirectional construction (for short loops). There are sev-

eral (essentially equivalent) ways for enumerating all loops of length l. We can con-

struct a chain of l+ 5 atoms, starting by overlapping 3 residues on the anchor points

on the N terminal side of the gap in the framework, and test the position of the last

two atoms of the chain, with respect to the position of the first two anchor points of

the anchors at the C terminal side of the loop. Overlapping the last 2 atoms guaran-

tees the “protein-like” structure at the attachment point. Similarly, we can construct

a loop from the C-terminus towards the N-terminus. Alternatively, we can construct

systematically all chains of l+4 atoms and try and overlap 2 anchor residues on each

end. Among these, we use the first strategy described above; a two-dimensional ana-

log of this option is depicted in Figure 6.6. The total number N of chains of length

2available at http://csb.stanford.edu/rachel/fragments/
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ll to consider is

N = sd ll
2
e+1, (6.1)

where s is the number of fragments in the library. Only a small fraction of N corre-

sponds to valid loops, i.e., chains that solve the loop closure problem.

Strategy B: Bidirectional construction (longer loops). While strategy A

is well adapted for short loops (ll < 9), it fails for longer loop because of the combi-

natorial explosion in the number N of chains to generate (see Equation 6.1). Instead,

we generate half loops starting from the two anchors in the framework, and assemble

the half loops that (approximately) overlap at their end points. Using this procedure,

we enumerate chains of length that is only half the length of the loop, resulting in

a reduction of the running time by a factor of 2 in the exponent. Two half-loops

meet when the last 2 Cα atoms of the first half-loop are approximately positioned

on the first 2 Cα atoms of the second half-loop. Overlapping 2 atoms, guarantees

that the positioning of the residues around the meeting point is “protein-like”. A

two-dimensional analog of this type of construction is described in Figure 6.6. Since

storing all half-loops is impractical, we generate loops via three steps:

(i) Mark all positions in space that are end points of the last two Cα atoms of a

half loop generated from the N-terminal anchor. Since the data points are noisy,

voxels with 1 Å resolution suffice to describe the three-dimensional space. The

amount of memory used to store these end pairs can be further reduced if we

take in account the fact that the distance between two consecutive Cα atoms is

fixed.

(ii) Enumerate all half loops generated from the C-terminal anchor, and store those

that are part of a valid loop. These are the half loops with end points that fall

in the same voxel as previously marked positions. We also mark voxels that are

the meeting points of two half-loops.

(iii) Re-generate the first half-loops. For every half-loop that ends in a marked voxel,

lookup the complementing half-loops and assemble the full loops.
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We implemented both methods and observed similar results for short loops.

6.2.2 Results

Accuracy of loop predictions. There will generally be a range of accuracy in

predicting loop conformation for different loops. It is therefore necessary to assess

the quality of a method by testing it on a large selection of loops. Our test set, which

we refer to as the SALI set, contained 427 loops selected from the list reported by Sali

and co-workers [30]. The length of the loops ranged from four to fourteen residues,

and it defines the residue numbers of the target loops. The initial SALI set contained

40 proteins for each loop length; we remove proteins that are now considered obsolete

in the PDB.

The accuracy of a single loop prediction is measured by comparing it to its native

conformation. A large variety of criteria for comparing loop conformations exist.

They range from cRMS measures on different sets of atoms (Cα only, or all main chain

atoms), to dihedral angle and dihedral angle class comparison. Here, we use cRMS,

computed over Cartesian coordinates, which is sometimes called “global” cRMS [30].

It is computed by finding the optimal superposition [57] of the anchor residues of the

test loop and native loop, respectively, and summing the subsequent differences in the

positions of the Cα of the two loops. The global cRMS provides both a measure of

the local fitness of the candidate loop with respect to the native loop, and a measure

of the quality of its positioning in the framework.

We compare our approach to naively searching the database for loop candidates of

appropriate length and selecting the candidates with well-fitting anchor residues. This

is different from our approach of systematically exploring a discrete approximation

of the conformational space accessible to the loop considered. Note that the tests

described in this study do not reproduce true homology modeling experiments as we

use the native conformation of the protein as the framework to build the loop.

Figure 6.7 shows the average cRMS of the best fitting fragment-based loop com-

puted over all target loops of a given length ll, for different libraries of fragments.

Table 6.2.2 gives the range of cRMS for best fitting loops over all target loops of a
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Loop Number of fragments in Library (s)
Length 20 40 60 80 100 DB

4 NA NA NA 0.31–4.75 0.32–4.21 0.21–2.47
5 NA NA 0.93–4.87 0.54–4.66 0.28–3.02 0.38–3.33
6 NA NA 0.46–4.60 0.34–3.90 0.38–3.42 0.28–3.51
7 0.43–4.84 0.56–4.49 0.45–2.85 0.34–2.54 0.41–2.69 0.40–4.79
8 1.15–4.97 0.53–3.89 0.47–2.75 0.37–2.45 NA 0.57–4.74
9 1.51–4.98 0.76–3.44 0.75–2.68 0.82–2.62 NA 0.40–6.58
10 1.92–4.95 1.01–3.55 0.82–2.68 NA NA 0.47–6.45
11 1.78–4.89 1.29–3.52 1.14–2.51 NA NA 0.65–6.90
12 1.41–4.18 1.05–2.83 NA NA NA 1.14–8.33
13 2.17–4.72 1.04–3.50 NA NA NA 0.65–7.37
14 2.15–4.28 1.46–3.10 NA NA NA 1.32–7.66

Table 6.1: Range of cRMS (Å) for the best fragment-based loops

given length. Finally, Table 6.2 shows the average number of fragment–based loops

generated within 3 Å and 4 Å of their target loops; the average is computed over all

target loops of the same length.

Figure 6.7 shows that the quality of the fragment-based loops improves as the

size s of the fragment library increases. This improvement however comes at a cost.

For long loops, the use of large libraries results in significantly more candidate loops,

since the total number generated by this procedure is a high order function of s (see

Equation 6.1). Also, it is not possible to generate fitting loops using all combinations

of library size and loop length. For short loops and small fragment libraries, most if

not all candidate chains do not close, within the 1 Å tolerance we have set (see 6.2.1).

For example, we can only build loops of 4 residues with libraries of 60 or more

fragments.

For very short loops (ll < 6), the database approach described in 6.2.1, selects

better loops than those built from the fragments (see Figure 6.7). This result is not

surprising: Recall that fragment libraries are “compressed” versions of the database

of structures, or equivalently, the database has a better sampling of these short loops.

Conversely, the fragment-based approach to loop building performs much better than
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the database approach for loops larger than 6 residues, and this occurs even for small

fragment libraries. Table 1 shows also that systematic sampling provides more consis-

tent quality of the best fitting loops between target loops of the same length. Table

6.2 illustrates that even with libraries of small size, the systematic search reliably

builds candidate loops within 3 Å of their target, for loop length up to 14 residues.

Loop Length Number of fragments in Library (L)
20 40 60 80 100

4 NA NA NA 40 (57) 66 (91)
5 NA NA 4 (7) 12 (26) 36 (71)
6 NA NA 1.7 (3.9) 5.6 (14) 14 (32)
7 0.3 (0.3) 2.5 (6.7) 18 (46) 56 (162) 123 (368)
8 1.3 (3.8) 27 (108) 258 (1016) 1354 (5355) NA
9 0.8 (2.6) 14 (82) 163 (800) 845 (4358) NA
10 0.3 (1.3) 4.2 (34) 49 (339) NA NA
11 0.5 (4.1) 26 (220) 203 (1640) NA NA
12 6.8 (53) 420 (4448) NA NA NA
13 1.7 (20) 129 (2135) NA NA NA
14 0.8 (13) 63 (1257) NA NA NA

Table 6.2: Average number of fragment–based loops within 3 Å (4 Å) of their target
loop

Running Times. Table 6.3 lists the average (over the test set) amount of central

processor unit time (CPU minutes) needed to enumerate and evaluate all loops. All

programs were run under the Linux operating system (RedHat 7.3) on a cluster of

dual 2.8 GHz Intel Xeon processor machines, each with 1 Gigabyte of memory. As

expected, it takes more time to enumerate all longer loops, and larger libraries offer

more possibilities, again running longer.

6.2.3 Discussion

Loop closure is an essential element of many protein structure prediction problems. It

is nearly always needed in homology modeling, where the framework for the structure

of the target protein is derived from highly homologous regions in a template protein,

leaving gaps between these regions that need to be filled in with protein segments
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Loop Length Number of fragments in Library (L)
20 40 60 80 100

4 NA NA NA 0.0303 0.0435
5 NA NA 0.0202 0.0307 0.0448
6 NA NA 0.0210 0.0320 0.0462
7 0.0182 0.0818 0.0973 0.1525 0.1847
8 0.0359 0.0896 0.1639 0.3534 NA
9 0.0382 0.1074 0.1850 0.4415 NA
10 0.0376 0.1022 0.1753 NA NA
11 0.0778 0.3803 2.2904 NA NA
12 0.1387 2.6720 NA NA NA
13 0.1439 3.5776 NA NA NA
14 0.1579 4.9761 NA NA NA

Table 6.3: Average CPU minutes per loop on a 2.8 GHz processor

(see Figure 6.5).

Searching the PDB for loops that satisfy a geometric fitness criteria [114] assumes

that there exists a least one segment from a known protein structure that matches

the target loop. In 1994, Fidelis et al. [29] showed that unfortunately this assumption

is not valid for loops longer than 4 residues. We observe, similarly to vanVlijmen

and Karplus [122] that the database approach performs well for all loops shorter than

9 residues. In a recent study, Du et al. [24] showed that for a protein chain of 15

residues, there is a 91% probability of finding a non homologous protein segment in

the PDB within 2 Å cRMS. Based on these results, they concluded that the database

approach to loop building should perform well up to 15 residues. We argue that, in

fact, their results are similar to ours for loops of 9 residues. The search in the PDB of

candidate segments that fit in a gap of a protein is successful when the segment found

is structurally similar to the native conformation of the target loop, and if the flanking

regions of the segment in the protein to which it belongs, matches the anchors on both

sides of the gap. The geometric filter applied to the candidate segments enforces the

second condition and defines the proper orientation of the segment in the framework.

A successful segment for a loop of nine residues must therefore match the target loop

and its stem regions, giving a total of 15 residues in our procedure.

Even with the steady increase in size of the PDB, it is not clear that one can expect
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to find longer loop structures in the database in the near future. Specifically, our

results use the current database, and are similar to those achieved in 1997 [122]. The

number of conformations that a protein loop can adapt grows exponentially with its

length. For long loops (i.e. longer than 9 residues), it may be too large to be properly

sampled in the PDB, even if we was to multiply its size by an order of magnitude. Our

results indicate that there is in fact no need to wait for much better statistics in the

distribution of long protein segments. As previously reported [24], the current PDB

provides a good sampling of the conformations of protein fragments of 5 residues,

and we can cluster these fragments into libraries. Since these libraries contain only

a small number of fragments, we can exhaustively enumerate all loop conformations

obtained by concatenating these fragments. The size of the library controls the trade-

off between feasibility and accuracy. Loop building based on libraries with a large

number of fragments generates accurate loops of length up to 8 residues. For longer

loops, the procedure is more costly in computing time, in which case the smaller

libraries still provide satisfactory loops, at a much reasonable computing cost.

Our method is reminiscent of the PDB based loop prediction method of Su-

darsanam et al. [113], which constructs a chain based on a φi+1, ψi dimer database.

Their results on the construction of short target loops of 5 residues are compara-

ble in quality to those reported here. As they did not cluster their large database

of dimers, they could not perform exhaustive construction of candidate loops. An-

other difference is that unlike our sequence independent approach, Sudarsanam et al.

binned the dimers into 400 categories, based on the amino acid pair. Lastly, their

database of φi+1, ψi dimers was built selectively from residues belonging to loops re-

gions in proteins, removing all residues that belong to an α-helix or β-sheet. We

have tried a similar approach by designing loop-specific fragment libraries, which are

used to generate candidate loops that can fit in a gap in a protein framework. These

structure-specific libraries did not perform better than the general libraries used above

(results not shown).

Our approach combines the advantages of ab initio and database search methods.

Similarly to ab initio, we can enumerate all approximation structures that satisfy the

end-to-end constraint of the target loop. Similarly to database searches, using libraries
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of fragments guarantees that the backbone conformations are physically reasonable.

By varying the size of the library of fragments used to build the loops, we control

the trade-off between accuracy and feasibility in terms of computing time. Previous

database approaches to the loop prediction problem were limited to loops of up to 9

residues. Here, we extend it to loops of 14 residues.

6.3 More applications of approximation nets

The approximations to protein structure that are generated by the fragment libraries

are fully described by strings of fragment labels. Thus, we can describe sets of protein

structures (e.g., the PDB) by their corresponding strings. This may allow importing

tools that were developed for string analysis to structure analysis; a good review of

string analysis tools can be found in [42].

String analysis tools help investigate properties of DNA sequences. It is possible,

that similar properties of protein structure can be studied using our structural strings.

For example, we can investigate structural entropy following studies of the entropy

of DNA sequences [28, 102]. Alternatively, studies of the statistical composition of

DNA, and in particular, of unusually common and uncommon sequences [94] suggest a

method for analyzing structural composition. Another potentially useful tool is suffix

trees [120], which may find structural motifs by identifying long common strings.

When using our string representation for protein structure, one must keep in mind

a few additional details. There are many equally good approximating structures for

a protein and different approximations are specified by different fragment labels.

Namely, the string representation of structure is not unique. Furthermore, the string

representation is found using a greedy heuristic. For almost identical structures,

we may find different string representations because of the greedy search procedure.

Also, the string representation of structure effectively encodes the angles along the

backbone of the protein, implying that a small change in a single position may result

in a large change in the Cartesian coordinates. Thus, a naive comparison of strings

can identify between almost similar strings that define very different structures.
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Figure 6.5: Homology modeling demonstrated on the toy experiment of predicting
the structure of 1fus. Homology modeling has 3 steps: (A) identifying a ”template”
structure. 1rds is a close homolog of 1fu (their sequences are very similar; FASTA [90]
E-value: 10−22, and 57.8 % sequence identity in 102 amino acid overlap). For illus-
tration, we use STRUCTAL [112] and structurally align the structures of 1fus and
1rds (in grey and black respectively); only residues 20− 50 shown. Indeed, conserved
regions in the sequence correspond to conserved regions in the structural (cRMS =
0.8 Å over 102 residues). The two structures differ in the loop region between two
secondary structures (highlighted in bold in the sequence alignment), and the loop in
1fus is two residues longer. (B) Building the framework. The framework for 1fus is
the backbone regions of 1rds, that correspond to the conserved secondary structure.
This framework has a 9 residues gap. The three residues preceding and following
the gaps are the “anchors” of the constructed loops (marked with balls centered at
their Cα) (C) Loop building. Fragments of 9 residues with appropriate end-to-end
geometry are selected in a database of protein segments, or built using small libraries
of protein fragments. The native loop is shown in a dashed line, the best loop found
in the database is in grey (5.6 Å) and in white the best one using fragments (2.7 Å).
This figure was generated using MOLSCRIPT [68].
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Figure 6.6: Loop construction using a library of fragments. We demonstrate building
a two-dimensional loop of 7 residues using a library of four-residue long fragments.
The anchors of the loop in the framework are shown with dashed lines (two anchor
points on each side), and labels Nter and Cter, corresponding to the N terminal and
C terminal ends of the loop. In Strategy A we construct the loop from the left anchor.
In this example, the loop ACDA ends (approximately) on the first right-hand anchor
point. In Strategy B, we build the loop from both ends of the gap. In this example, the
last residue of extension AC and the first residue of extension BD (approximately)
overlaps. Notice that library fragments can be re-used, and that the chain has a
direction. Because this is a two-dimensional example, positioning a new fragment
on an existing extension requires only 2 residues, and loop closure is checked over
1 residue. In three dimensions, positioning requires 3 residues, and loop closure is
checked over 2 residues.
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Figure 6.7: A fragment-based approach to the loop building problem. We build can-
didates for each of the 427 target loops in the set, using small libraries of protein
fragments of five residues. The quality of these candidates is measured by the cRMS
deviation from the target loop, computed over all loop Cα atoms, after superposition-
ing the flanking regions of the native and candidate loops. For each target loop, we
consider only the cRMS of the best fitting loop, and average over all target loops of
that length. The figure shows these average <cRMS> values as a function of loop
length, for different library size L. For comparison, the solid line shows the average
cRMS of the best loops found in the database of known structures.



Appendix A

Fragment clustering

A.1 Simulated annealing k-means

The simulated annealing k-means clustering heuristic (abbreviated SA k-means) in-

corporates the “probabilistic rejection” principle of simulated annealing into the k-

means algorithm. This heuristic better avoids entrapment in unfavorable local min-

ima. SA k-means repeatedly executes the following three-step procedure: (1) run

k-means [25] until convergence (2) modify the clustering into a potentially better

one. (3) accept or reject the transformation probabilistically. Figure A.1 lists the

pseudo code.

The modification step merges two clusters and splits a cluster, maintaining the

total number of clusters. It is designed to escape a local minima with two very close

clusters. Both the merged cluster pair and the split cluster are selected at random,

where pairs of closer clusters are more likely to be merged and a larger cluster is

more likely to be split. The distance between a pair of clusters is measured by the

cRMS deviation of their centroids, where a centroid is the element with minimal sum

of distances to all other elements in the cluster. We use the density function 1/x2

(normalized), where x is the distance between clusters. The size of a cluster is the

maximal cRMS deviation of two elements in the cluster. Here, we use a linear density

function.

The total variance serves as the clustering score. We accept the modifications

103
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Figure A.1: Pseudo code for simulated annealing k-means algorithm

in a Monte Carlo fashion [76]: if the score improves, it is accepted. Otherwise, it

is accepted with some probability. An unfavorable modification is more likely to be

accepted if it worsens the score only slightly. Also, the system has a temperature,

and unfavorable modifications are more likely to be accepted in higher temperatures.

The system cools as the algorithm progresses, making it more conservative (i.e., it

rejects more unfavorable steps).

A.1.1 Comparison to other clustering techniques

We compare the quality of the clusters found using SA k-means and other clustering

methods: (1) k-means (2) agglomerative hierarchical (3) top-down (random and de-

terministic flavors). In all cases, we assume that the number of clusters k is given as

input. We survey the compared clustering methods here briefly for completeness; a

detailed description can be found in reference [25].



APPENDIX A. FRAGMENT CLUSTERING 105

k−means clustering

Initially, k random elements are selected as cluster centers. The algorithm then

iterates between two steps: (1) associate each element with the cluster with the closest

center, and (2) re-evaluate the cluster centers based on the elements associated with

them in the last phase. Here, the center of each cluster, is the centroid. K-means is

guaranteed to converge [4].

Agglomerative hierarchical clustering

The algorithm repeatedly merges the two closest clusters, decreasing the total number

of clusters by one. In the initial state, each element is a cluster of its own (n clusters);

the algorithm halts when there are k clusters. The inter-cluster distance used to

determine the closest cluster pair is either (1) the minimum (single-link clustering),

(2) the maximum (complete-link clustering) or (3) the average (average-link) distance

between the elements of two clusters. Here, we compare to complete-link clustering.

Top down clustering

The algorithm repeatedly splits clusters into two, increasing the total number of

clusters by one. Initially, all n data set points are in one cluster, and the algorithm

stops after k − 1 rounds, with k clusters. The algorithm can be deterministic or

random:

1. Deterministic top down always splits the cluster with the maximal internal

distance. The cluster points are split to those closer to e1 versus those closer to

e2, where e1, e2 are the two most distant points in the cluster.

2. Random top down selects the cluster for splitting randomly, such that clusters

with greater maximal internal distance are more likely to be split. The split

consists of clustering the elements of this cluster into two new clusters using

k-means algorithm.
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A.2 Results

To evaluate SA k-means, we cluster the set of fragments of length 5 into 20 clusters

using different clustering methods and compare the results. We consider the meth-

ods SA k-means, k-means, Agglomerative hierarchical, and Deterministic top-down

(random and deterministic variants). For each of the non-deterministic clustering

methods, we initialize the random seed and execute the procedure 50 times. Fig-

ure A.2 shows the quality of the clusters found by the different methods. On the

x-axis we plot the total variance; this is the score that the procedure is optimizing.

On the y axis we plot the average local-fit cRMS when fitting the Park and Levitt [89]

test set; this validates externally the quality of the clusters found. Along both axis,

better results have lower values. We see that SA k-means best partitions this data set.

Also, SA k-means is robust, that is almost all random seeds result in good clusters.
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Figure A.2: The performance of clustering methods for clustering the data set of 5
residue fragments into 20 clusters. The value along the x-axis is the total variance,
and along the y-axis the average local-fit cRMS on the Park & Levitt set. SA k-means
finds the best clusters.
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A.3 Discussion

Clustering the data set of fragments is tricky because of dense regions in the data.

Specifically, approximately 50% of the fragments originate in α-helical regions. Since

helices are well defined, their fragments are almost identical to each other. When the

data has dense regions, the initial choice of the cluster centers for k-means clustering

is critical. A dense region typically corresponds to a single cluster. However, if

several centers are initially selected in this region, k-means will maintain the number

of clusters in the that region, optimizing the partitioning of the points in this region

into clusters. In this data set a random selection of initial cluster centers will include

approximately k/2 helical fragments, implying that k-means will find k/2 clusters

that are the same one. Moreover, the rest of the fragments will be described, less

accurately, using only k/2 clusters instead of k − 1.

Simulated annealing k-means is a heuristic that finds better clusters of the frag-

ments data, by using k-means and optimizing the choice of fragments used for the

initial cluster centers. This simple optimization can be modified to use any score.

Jane & Dubes [54] and Duda & Hart [25] list many possible scores. Alternatively,

the optimization can use an external criterion, e.g. the performance on a test set.

Rose [98] did a rigorous analysis of a similar (deterministic annealing) heuristic.
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