UNSUPERVISED LEARNING 2011

LECTURE :K-MEANS

Rita Osadchy

Some slides are due to Eric Xing, Olga Veksler
What is clustering?

- **Input:**
 - Training samples \(\{x_1, \ldots, x_m\} \in \mathbb{R}^n \)
 - No labels \(y_i \) are given

- **Goal:** group input samples into classes of similar objects – cohesive “clusters.”
 - high intra-class similarity
 - low inter-class similarity
 - It is the commonest form of unsupervised learning
First (?) Application of Clustering

- John Snow, a London physician plotted the location of cholera deaths on a map during an outbreak in the 1850s.
- The locations indicated that cases were clustered around certain intersections where there were polluted wells -- thus exposing both the problem and the solution.

From: Nina Mishra HP Labs
Application of Clustering

- Astronomy
 - SkyCat: Clustered 2×10^9 sky objects into stars, galaxies, quasars, etc based on radiation emitted in different spectrum bands.

From: Nina Mishra HP Labs
Applications of Clustering

- Image segmentation
 - Find interesting “objects” in images to focus attention at

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000
Applications of Clustering

- Image Database Organization
 - for efficient search
Applications of Clustering

- Data Mining
 - Technology watch
 - Derwent Database, contains all patents filed in the last 10 years worldwide
 - Searching by keywords leads to thousands of documents
 - Find clusters in the database and find if there are any emerging technologies and what competition is up to

- Marketing
 - Customer database
 - Find clusters of customers and tailor marketing schemes to them
Applications of Clustering

- gene expression profile clustering
 - similar expressions, expect similar function

<table>
<thead>
<tr>
<th>Gene</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>U18675 4CL</td>
<td>-0.151</td>
<td>-0.207</td>
<td>0.126</td>
</tr>
<tr>
<td>M84697 a-TUB</td>
<td>0.188</td>
<td>0.030</td>
<td>0.111</td>
</tr>
<tr>
<td>M95595 ACC2</td>
<td>0.000</td>
<td>0.041</td>
<td>0.000</td>
</tr>
<tr>
<td>X66719 ACO1</td>
<td>0.058</td>
<td>0.155</td>
<td>0.082</td>
</tr>
<tr>
<td>U41998 ACT</td>
<td>0.096</td>
<td>-0.019</td>
<td>0.137</td>
</tr>
<tr>
<td>AF057044 ACX1</td>
<td>0.268</td>
<td>0.403</td>
<td>0.679</td>
</tr>
<tr>
<td>AF057043 ACX2</td>
<td>0.415</td>
<td>0.000</td>
<td>-0.053</td>
</tr>
<tr>
<td>U40856 AIG1</td>
<td>0.096</td>
<td>-0.106</td>
<td>-0.027</td>
</tr>
<tr>
<td>U40857 AIG2</td>
<td>0.311</td>
<td>0.140</td>
<td>0.257</td>
</tr>
<tr>
<td>AF123253 AIM1</td>
<td>-0.040</td>
<td>-0.202</td>
<td>-0.040</td>
</tr>
<tr>
<td>X92510 AOS</td>
<td>0.473</td>
<td>0.560</td>
<td>0.914</td>
</tr>
</tbody>
</table>

Applications of Clustering

- Profiling Web Users
 - Use web access logs to generate a feature vector for each user
 - Cluster users based on their feature vectors
 - Identify common goals for users
 - Shopping
 - Job Seekers
 - Product Seekers
 - Tutorials Seekers
 - Can use clustering results to improving web content and design
The k-means clustering algorithm

1. Initialize cluster centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^n$ randomly.
2. Repeat until convergence: {
 For every i, set
 $$c_i = \arg\min_j \|x_i - \mu_j\|^2$$
 For each j, set
 $$\mu_i = \frac{\sum_{i=1}^{m} 1\{c_i = j\} x_i}{\sum_{i=1}^{m} 1\{c_i = j\}}$$
}
K-means, comments.

- k – the number of clusters
 a parameter of the algorithm.
- μ_i cluster centroids
 represent our current guesses for the positions of the centers of the clusters

Initialization: pick k random training samples.
 Other initialization methods are also possible.
K-means, intuition

- The inner-loop of the algorithm repeatedly carries out two steps:

 (i) “Assigning” each training example x_i to the closest cluster centroid μ_j.

 (ii) Moving each cluster centroid μ_j to the mean of the points assigned to it.
K-means, example
Coordinate Descent

- Minimize a multivariate function $F(x)$ by minimizing it along one direction at a time.
 - Choose search directions from the coordinate directions.
 - Minimizes the $F(x)$ along one coordinate direction at a time, iterating through the list of search directions cyclically.

- Given x^k, the ith coordinate of x^{k+1} is given by
 \[
 x_{i}^{k+1} = \arg \min_{y \in \mathbb{R}} f(x_{1}^{k+1}, ..., x_{i-1}^{k+1}, y, x_{i+1}^{k}, ..., x_{n}^{k}),
 \]
 - Thus one begins with an initial guess x^0 for a local minimum of F, and get a sequence $x^0, x^1, x^2, ...$ iteratively.
 - By doing line search in each iteration, we automatically have
 \[
 F(x^0) \geq F(x^1) \geq F(x^2), ...
 \]
 - It can be shown that this sequence has similar convergence properties as steepest descent.
Coordinate Descent Example

\[5x^2 - 6xy + 5y^2 - 0.0259 = 0 \]
K-means, convergence

- Define objective function:

\[J(c, \mu) = \sum_{i=1}^{m} ||x_i - \mu_{c_i}||^2 \]

- k-means is exactly coordinate descent on \(J \).

Inner-loop of k-means repeatedly
- minimizes \(J \) with respect to \(c \) while holding \(\mu \) fixed
- minimizes \(J \) with respect to \(\mu \) while holding \(c \) fixed.

Thus \(J \) must monotonically decrease \(\Rightarrow \) value of \(J \) must converge.