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Abstract. A general paradigm for recognizing 3D objects is offered, and applied to some geometric primitives
(spheres, cylinders, cones, and tori). The assumption is that a curve on the surface, or a pair of intersecting curves,
was measured with high accuracy (for instance, by a sensory robot). Differential invariants of the curve(s) are then
used to recognize the surface. The motivation is twofold: the output of some devices is not surface range data, but
such curves. Also, a considerable speedup is obtained by using curve data, as opposed to surface data which usually
contains a much higher number of points.

We survey global, algebraic methods for recognizing surfaces, and point out their limitations. After introducing
some notions from differential geometry and elimination theory, the differential and “semi-differential” approaches
to the problem are described, and novel invariants which are based on the curve’s curvature and torsion are derived.

Keywords: curves, differential invariants, elimination theory

1. Introduction and Previous Work [1, 18, 26], to solve this problem. These are quantities
that do not change under certain transformations (Eu-
One task an intelligent system should be able to ac- clidean, affine, projective), and therefore can be used
complish isrecognition Usually, a recognition system  to recognize an object even after it had been altered by
derives some characteristics of an object it examines, such transformations.
and tries to match them against similar characteristics Here, a different problem is addressed—recognizing
in a data base. Suppose, for instance, that one is deal-a surface in 3D space, while the information we have
ing with 2D objects, and tries to recognize them, given is one-dimensional. Specifically, we assume that some
their boundary. Typically, there is a finite data base measuring device has sampled a curve, or a pair of in-
these boundaries are matched against; variowesi- tersecting curves, on the surface. Given the curve(s),
antshave been derived, some global and some local the goal is to recognize the surface. Typical sensors
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the curve does not lie on a single “primitive” (sphere,

cylinder etc.), but “crosses over” between two or more
T primitives (see Section 2.1 and Fig. 3). Inthat case, the
(G global algebraic fit will give us a meaningless result.
|4 i A very rich theory oflocal, or differential invariants,

3 was developed to solve this problem [4, 5, 16, 24, 25].
In Section 2 we quickly survey the global approach as
applied to our problems, but the focus of this paper is
on the local approach.

Natural curve characteristics to use for recognition
Figure 1 High-accuracy measuring device and a curve itmeasured gre curvature and torsion, as they do not change un-
on a cylinder. der rigid transformations. Since we're dealing with 3D

, . data, a rigid transformation is usually a general enough
which are the source of such curves are measuring de-mqdel. So, the goal is to discover invariants depending
vices, such as coordinate measuring machines, manu-gp g curve’s curvature and torsion, which will provide
factured by the Brown & Sharpe Company (Fig. 1), or 3 necessary condition for it to lie on a certain type of
the IBM RS/1 Cartesian robot. Such devices can mea- g rfgce.
sure 3D curves with very high accuracy (for instance, | gt us demonstrate this by a simple, 2D example: a
prical error range for a coordinate measuring machine plane curve can be embedded in a circle if and only if
is 0.01 mm). its curvature is constant. So, in this case, the invari-

In [3], an algorithm is presented for determining the gt is the curvature’s derivative. Naturally, we don't
axis of a surface of_revolunon, using the mforma‘_uon expect to find such simple invariants for curves lying
measured_by_a tactile sensor which can also estimatey, 3p surfaces; one trivial example is the well-known
the two principal curvatures (see Section 3.2). Here, cqngition for a 3D curve to be planar—that its torsion
we assume that only the data points are given. In [6], equals zero—but this is an exceptional case.
the parameters of a cylinder are computed from struc- | the sequel, we derive invariants which are a nec-
tured light patterns. essary condition for a curve, or an intersection of two

Some previous work has addressed the problem ¢,es, to lie on a sphere, cylinder, cone, or torus.
of recognizing various surfaces given their occlud!ng These depend only on the curvature and torsion at a
contours [8, 14]. However, the aggregate of possible hqint on the curve (or the curvature and torsion of two

curves on a surface is, usually, much larger than the ¢ ryes at their intersection point). We also derive some
aggregate of its occluding contours, and may contain «gemi_gifferential” invariants, which use not only the

far more complicated curves; for instance, the occlud- itferential properties of the curve, but a few points
ing contour of a sphere is always a circle, while there qp i Sych invariants have been widely used in com-
areagreatmany3D curves—some of which have ratherputer vision for recognizing plane and space curves
complicated structure—on a sphere. [4, 16, 19]; their main advantage is that they allow to

Clearly, we are facing a different type of recognition ;se derivatives of lower order than the “purely differ-
problem from the one previously described, which is gntial” invariants necessitate.

usually solved by matching against a data base. It is

impossible to build a data base which contains, say,

all the curves on a sphere, or even a dense sampling2. The Algebraic Approach

of these curves. Therefore, we have to discover curve

characteristics which will enable to answer a question Implicit polynomials can be used to describe 2D and

such as “can this curve, after a certain transformation, 3D objects. Some works which address the fitting of

be embedded on a sphere?”, as opposed to “can thisimplicit polynomials are [2, 12, 21-23]. One can then

curve, after a certain transformation, be superimposed use polynomial invariants to recognize the objects

on curve No. 129 in the data base?”. [9-11, 20]. Let us shortly describe how a sphere, cone,
One way to proceed is straightforward: fit an im- cylinder and torus can be recognized using such invari-

plicit polynomial to the curve’s points, and, from its ants. Note that the first three objects can be fitted with a

type, determine the surface. This is tilgebraic ap- guadratic, and the torus with a quartic. Suppose, then,

proach[11, 20]. However, this approach will fail if  that we succeeded to fit data with a quadratic. Write
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it as trying to fit it with an implicit polynomial which, by
its nature, is appropriate for fitting “two dimensional
XAX' + (v, X)+s=0 (1) entities”.
) ) ) Onthe other hand, when using the differential invari-
whereA is a 3x 3 matrix, v a vector inR?, ands a ants proposed here, a far smaller number of points was
scalar. Itis easy to verify that necessary; usually, invariants were computed using 10

o . points or so.
o If the object is a sphereA has three positive and

identical eigenvalues. It is then trivial to extract the
sphere’s center and radius.

o If the object is a cylinderA has two positive and
identical eigenvalues, and one zero eigenvalue; also,
the axis of the cylinder is in the direction of the eigen-
vector with zero eigenvalue, and itis trivial to extract

2.2. Applying Invariants to Segmentation

Since the algebraic approach for recognition given a
curve may fail, because it can pass through a few ge-
ometric primitives, one may try to segment the curve,
. , using some notion of discontinuity, and then use alge-
its radius. : .

braic techniques for each segment. We now show that

« If the object is a coneA has two identical positive this is not always easy, by constructing a curve which is
eigenvalues and one negative eigenvalue. The axis. y Y, by 9

of the cone is in the direction of the eigenvector with mfinitel_y differenti_able, yetcrosses over from a sphere
. . . - to a cylinder. Define
the negative eigenvalue. It is then trivial to extract
the cone’s opening angle and apex.
e If the object is a torus, its general equation is

s(t) = —
Eior = (X — )2+ (y — b)2 + (z— ¢)2 exp(t_2> t=0

2 2\2 2 2 2
HR-)T AR -+ (y - b) it is well-known that this function is smooth (infinitely
+(@Z—-0%—((x—an+ (y— bn, differentiable) at every point, and that all its deri-
+(z—c)ng)d) vatives att = 0 are zero. Using(t), it is trivial to

construct smooth functions,(t), s;(t) on the inter-

where(a, b, ¢) is its center point(ny, n,, n3) a unit val [0, co) such thats;(0) = 0, s(t) = 1 fort > 1,

vector perpendicular to the plane over which the s(t) = v/3for0<t < 1, andsy( ) is monotonically

torus lies, andR (r) are the major (minor) radii. increasing fot > 1 (see Fig. 2).

Define a curve(t) as follows

0 t<0

It's trivial to extracta, b, ¢ from E,, (for instance,

differentiatingEy, three times by gives 24« — 24a). (sl(t) cogt),

To extractr and R, note that substitutingk = a, y =

b, z = ¢} in E givesr + R*—2R?r 2, andsubstituting ct) = . > )
x=ay=bz=c}intE 4 323—5;"’ + 2B gives sl(t)sm(t),v4—sl(t)> O=t=<1
—12R? — 12r2 + 8R?n? + 8R?n3 + 8R%n3 = —4R? — (cogt), sin(t), s(t)) 1<t<2

12r2. Itis trivial to extractR andr from these two
identities. AfterR, r, a, b, c have been recovered, itis  |tiseasyto see thatt) is a smooth curve which crosses

trivial to recover(ny, nz, N3). over from a sphere with radius 2 to a cylinder with ra-
dius 1 (at = 1). The curveisdisplayed in Fig. 3. Next
2.1. Number of Points Needed to it, we plot the curvature, torsion, curvature’s deriva-

tive, and a spherical invariant for curves (see Section 5,
Experiments on curve data show that a relatively high Eq. (10)). Itis interesting to see that, although the cur-
number of points is necessary to achieve reliable alge- vature and torsion are continuous, there is a very sharp
braicfitting. Forinstance, for the cylinder data we have break in the spherical invariant, at the point in which
used (Fig. 1), more than 200 points are required for a the curve crosses over from the sphere to the cylinder;
reliable fit. We are not sure why this happens; appar- this demonstrates that the kind of invariants presented
ently, the fact that the points lie on a curve, which is a here can succeed where segmentation by “ordinary”
“one dimensional entity”, results in singularities when differential properties (curvature, torsion etc.) fails.
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Figure 2 Auxiliary functions used to construct the curve in Fig. 3.
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Figure3 Demonstrating how invariants manage to detect when a curve crosses over from one geometric primitive (sphere) to another (cylinder),
although the curvature, torsion etc. cannot detect this crossing over.

3. Mathematical Preliminaries—Some 3.1. Some Differential Geometry of Curves
Differential Geometry and Elimination Theory

A curve in 3D Euclidean space is a differentiable func-
In the sequel, a few concepts from geometry and alge- tion c: [0, 1] — R3. At each pointc(t), three ortho-
bra are required. We proceed to define them and stategonal unit vectors are associated with the curve: its
some of their important properties. tangent vector T which points at the direction of the



curve’s derivative, ithiormal vector N and itsbinor-
mal vector Bwhich is equal to the vector (cross) prod-
uct of T andN.

This triplet of vectors is called thierenet trihedron
atc(t).

In addition, two scalars are associated with each

point on the curve. These are toarvaturex and
torsionz. Intuitively speaking, the curvature measures
how “bent” the curve is; for instance, the curvature of

a circle is equal to the inverse of its radius. The torsion
measures the speed at which the curve moves out of

the plane (the so-callasculating plangwhich locally

approximates it; thus, the torsion of a planar curve is

Zero.
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series gives
c(s)
kN SB(k'N—k?T—«1B
= c(0) +sT+ + ¢ )
2 6
n s*(k”"N —2'tB— 3k’ T — k3N — k /B —k72N)

24

s
+ E(KWN —4kk"T—3k"tB—3«'t'B

— 3k N = 3k°T — 62N+ 4T
+k3B— kt”"B—3k7 v/ N+ «%%T
+x73B) + o(s®)

)

The curvature and torsion can be computed from the from now on, we shall omit the(s®) part. We are

parameterization of the curve:

|c" x c’|
|3
(C/ X C//) . C///
|C/ X C//|2

« and t are invariant to translation and rotation;
this makes them especially attractive for recognition
purposes.

The celebrate@renet formulagelate the Frenet tri-
hedron with the curvature and torsion. If the curve
is parameterized by arclength (that ig)] = 1), the
following hold:

T = kN
N = —«T—-1B
B'= tN

A concept of crucial importance to this work is the
local canonical form Let us see how it is derived.

allowed to do so as long as the powerssafsed are
bounded by 5.

3.2. Some Differential Geometry of Surfaces

Locally, a surfac&in 3D Euclidean space is a differen-
tiable image of an open sétin R?. Formally, it is the
set of triplets{(x(u, v), y(u, v), z(u, v))/(u, v) € O}.
The tangent planeto S at the point ((X(u, v),
y(u, v), z(u, v)) is the plane spanned by, yu, zu)
and (Xy, Yy, Z,). The normal to S at (u, v) is the
unit vector pointing at the direction ak,, yu, z,) x
Xy, Yo, Z,); itis therefore perpendicular to the tangent
plane.

In the sequel, we shall use the fact thaCif and
C, are curves which intersect o8, then the nor-
mal to S at their intersection point is a unit vector
at the direction of the vector product of their tangent
vectors. This holds unless these tangent vectors are
parallel.

The intersection ofs with any plane containing\

Assume that the curve is parameterized by its arclength iS called anormal sectiorof S. Note that the normal

s. From Taylor’s expansion, we have

52 33
c(s) = ¢(0) +sc(0) + 5Cﬂ(o) o )

st @ ) 5
+ EC ©) + gc (0) + o(s”)
¢/(0) is equal to the tangent vectdratt = 0. Using
the first Frenet formulag”(0) = T’ = « N. Therefore,
") =& N) =«k'N + «kN'=«'N +x(—«T —tB)
=«k'N — k%T — k7B.

Similarly, we can derive expressions for the fourth
and fifth derivatives. Substituting them into the Taylor

section is determined by a unit vectoin the tangent
plane, which is the direction at which the plane con-
taining N intersects the tangent plane. Thus, we may
speak of a normal section at the directian

The curvature of a normal section is called tioe-
mal curvature The maximal such curvature;, and
the minimal, x,, are called theprincipal curvatures
of S. Let us denote their directions ¥ andi,. It
can be proved that they are orthogonal and that, if
v = K1€090) + ko Sin(®), then the normal curvature
at the directionv equals

K1 COL(0) + K2 SIP(0) ()
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The productk = ik, is called theGaussian curva-
ture, and the meatl = “5*2 is themean curvature
Suppose a curv€ lies on the surfac&. Then, if its
curvature is«c, and the normal curvature & at the
direction ofC’s tangent vector iggs, then
Ks = kc C090) 4)
wheref is the angle betweeNs, the normal tdS, and
Nc, the normal taC.

3.3. Elimination Theory

Elimination theory is a branch of algebra which deals
with eliminating variables from equations. It is espe-

cially useful for determining when a system of equa-

tions has a root. Let us start with the simplest case—
two polynomialsin one variablg = p,x" + pn_1x"*

+ -+ + Po, andg = gnX™ 4 G- 1X™ 1+ - -+ + Q.

To compute theesultantof p andq, one first con-
structs an(n + m) x (n + m) matrix as follows. Its
first row consists op’s coefficients, followed by zeros.
The second row is obtained by translating the first one
to the right, etc. When this can be done no more, the
same process is repeatedds coefficients. The resul-
tant is equal to the determinant of this matrix. For in-
stance, the resultant af* + bx® 4 cx? 4+ dx+ e and
Ax2 + Bx?2 4 Cx + D is the determinant of

a b c d e 0 O
0 a b c d e O
0 0 a b c d e
A B C DO 0 O
0 AB CDU OO
0 0O AB CD@O
0 0 0 AB C D

A basic result in elimination theory is that the resul-
tant is equal to zero ip andq have a common root.

It is also possible to eliminate variables from sys-
tems of polynomials with more equations. For exam-
ple, if we have three polynomial equations with two
variables, there is an expression in the coefficients of
these polynomials which is zero if the system has a
solution. In general, elimination is a difficult problem,
and it is not always possible to explicitly write down
these expressions.

4. The Differential Invariants Method

In this section, a general overview of the method for
deriving differential and semi-differential invariants for
curves lying on surfaces is provided.

We wish to find conditions on the curvature and
torsion of a curveC which will allow us to deter-
mine if it possibly lies on a certain geometric object
OBJ, which is described by a generic implicit equa-
tion, P(x,y,2) = 0.

The method by which these conditions is derived
proceeds as follows. First, we use the local canonical
form to write down an expression f@ in the vicin-
ity of a pointM we have measured @f53.7; we also
assume that we have measuked, and their deriva-
tives, as well as the Frenet trihedronNat These are
all determined from the derivatives ©f so, if we have
accurate measurements fGr in the vicinity of M,
we may directly calculate them. Singeandt do not
depend on the pose of tkie we are allowed to translate
and rotateD B 7—and the curve on it—thus obtaining
anew curve. Denote the rotated and translated object
by OBJ new

Every condition onr andx we derive forC is, of
course, also a condition fa€. The reason we apply
rigid transformations t@5.J is because these allow
us to make assumptions 6fs Frenet trihedron which
result in simpler calculations; this will be explained
in the sequel. LeP(X, Y, z) be the implicit equation
definingOBJ new-

Next, we substitute’’s local canonical form into
P(X, Y, 2); This results in a Taylor series i This
serieshas to be identically zerobecauseC is con-
tained iNOBJnews and, therefore, has to satisfy the
equation which define®BJnew- This gives us a set
of equations—each for every coefficient in the Taylor
series. Next, we eliminate from these equations ev-
erythingbut C’s curvature and torsion. For one curve,
we usually have to eliminate the Frenet trihedron. For
two curves, we will show that the Frenet trihedrons are
known and therefore need not be eliminated. In both
cases, the elimination gives an expression that has to
be zero; and this is the sought invariant.

We proceed to apply this paradigm to specific ob-
jects; first, the sphere is tackled.

5. The Case for a Sphere

In order to derive a differential invariant for a cursies)
to lie on a sphere, we need to use only the following
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/\ Plugging these expressions into the sphere’s Eq. (6)
gives a Taylor series ig, which has to be identically

T zero, therefore all its coefficients are zero. The expres-
(¢ sion is rather complicated, so we don’t write it down
here; However, its constant and linear coefficients are
/ \ identically zero, the coefficient af is

- T X 1—«ksin@)R=0 (7

Figure 4 Rotating and translating the sphere. o )
The coefficient o&° is

part ofc’s local canonical form: k' sin(@)R — kT coga)R =0 (8)
&) = ¢(0) + (s B ies?)T N (s%/c N 33:) N And, naturally, we have the equation

3 sirn? cos(a) —1=0 9

~2ktB+ o) (5) (@) +cos(@) ®)

_ _ ) We may view these as algebraic equations, by treat-
Since translation and rotation do not change the cur- jng sin) and cose) as algebraic variables. Then

vature and torsion, we may assume, without l0ss of from these three Egs. (7)—(9), we may eliminatéejn
generality, that the poinM, at which our measure-  anq cogy), to obtain the identity

ments of«c andt were taken, is at the origin, and that

the sphere lies on th¥Y plane. Hence, the sphere’s , k24 (k')
equation is RO = ——5— (10)
K™T
X2 4+y?+(zZ-R?-R*=0 (6) This gives us a differential invariant for a curve lying
on a sphere; namely, the expression
Let us also assume, without loss of generality, that
the sphere had been rotated so that (1, 0, 0) (see 212 + (k)2
Fig. 4). T Az
SinceN is a unit vector perpendicular b, it has
to be of the formN = (0, cog«), sin(«)) for somex; has to be a constant. Note that we can immediately
also,B =T x N = (0, — sin(a), cogw)). extract the sphere’s radius.

Note that the rigid transformation applied to the It should be n_oted that this condition has t_)een de-
sphere has reduced the Frenet trihedron to a trihnedronrived before, using other methods (see, for instance,

depending only on the single parameterThis is im- [7]. page 25). We have nonetheless decided that it's
portant, because we have to eliminate the trihedron, in worthwhile to show how it is derived by using the local
order to obtain a condition depending only orand canonical form and elimination theory. This derivation

7; and, in general, the more variables we have to elim- will hopefully make it easier to follow the derivation

inate, the more equations are necessary, and there’s #®f differential invariants for curves on the cylinder and

danger that the solution will be extremely complicated. cone, presented in the following sections.
Substituting thes&, N, B in Eq. (5) gives the fol-

lowing expressions for the componentsces): 6. The Case for a Cylinder

s°k?
X(s) =s— - 6.1. One Curve, Known Radius
2 3,/ H
y(s) = > kcoste) | S°(x’CoS(ar) + kt Sin()) We now proceed to derive differential invariants for a
? _ 6 curve which lies onacylinder. Tothe best of our knowl-
2(8) = s’k sin(a) n s%(«’ sin(ar) — kr cog()) edge, suchinvariants have not been derived before. The

2 6 method is roughly the one used for the sphere, however,
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For the other terms, we obtain the following expres-
sions, after substituting cas) = Cy, sinae) = S,
cogB) = Cy, sin(B) = S:

For the coefficient 0§2

~2cSR+2C5=0 (12)

For the coefficient o§®

6C2SKC1 — 2SR+ 2%TC;R=0  (13)

Figure 5 Rotating and translating the cylinder.

. , _ For the coefficient o§*
the mathematical details are considerably more com-

plicated. 8CoSkT S — 2¢"S R+ 4¢' 1 CiR+ %3S R
Given a pointM on a curve which lies ona cylin- +27'CiR + 272§ R — 65 2C3C2

der, we can assume without loss of generality that the , ” 2 )

cylinder had been translated and rotated sothé at +8C2SK'Cy — 8Cok“ + 6k“ =0 (14)

the origin, and the cylinder lies on the€Y plane (recall

- : In the sequel, it will be beneficial to use a simplified
that this does not alter the curvature and torsion). Let 9 P

version of (14). Note that we can subtract from (14) the
eproduct of (12) by an appropriate constant, and elim-
inate the coefficient o€2 in (14) (it already has an
S R term, so we are not adding anything). Similarly,
we can subtract from the new equation an appropri-
ate multiple of (13), to remove from it the term with
(xcosB) + ysin(B))2+ (z— R2—RP=0 (11) the monomiaClczsz—aIso_, without adding a}nything
new, as the set of monomials of (14) contains that of
As for the sphere, it follows thaN = (0, coqw), (13). After grouping, we can write the simplified (14)
sin(a)) for somew, andB = (0, —sin(a), coY)). as
We now substitute these, N, B in the local canon- 22
ical form (2). This gives the following expressions for A0+ A1C1C; + A.C1R+ AsS R+ A5G S =0

B so that the tangent vector 8t is aligned with the
X-axis (see Fig. 5).

Hence, T = (1,0, 0), and the cylinder’'s equation
becomes

the components af(s): (15)
X(8) =S B2 shkk’ S(—dik” — 3k’ + «k* + k212)
B 6 8 120
sk coqa) SP(k'coqa) +ktsin@)) s*(k’cosa) + 2’'tsin(a) — k3 coga) + kT'Sin(e) — kT2 cowr))
y(s) = 5 6 + 24

s° . ) . .
+ m(/c/” cog) + 3«” 7 sin(e) + 3c't’ sin(a) — 3k’ 72 coga) — Bx 2k’ coger) — k3T sin(er) + k7" sin(e)

— 3kt 7' codw) — ki sin(a))
_ Sfkesin(a) | s*(k’sin(@) — kT coga)) N s*(k"” sin(er) — 2’ cosa) — k3 sin(e) — kT’ coSer) — kT2 SiN(er))

2(s) 2 6 24

&5
+ m(l{'” sin() — 3x” 7 cosw) — 3k’ coSer) — 3k’ 72 sin(a) — 6k %k’ sin(e) + k37 coga) — kT’ coex)

— 3kt 17'sin(@) + kT3 codw))

Plugging these into the cylinder's Eq. (11) gives, as Note that we can easily compute thgs as functions
before, a Taylor series imwhich has to be identically  of « andz. Hence, (15) is equivalent to (14), but much
zero. This expression is huge and we do not write it simpler. This will turn out to be useful.
down here; we need only the coefficients of the powers ~ For the coefficient 08>, we obtain the equation
of s between 0 and 5. . ) ) s oo

The coefficients of the constant and linear terms are  —2¢ IR = 20c"5,7 C1C; — 20ck'C1C;
identically zero. —30C,Sk3Cy — 10C, Sk T2Cy 4+ 10C, Sk’ S
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+20C,Sk'tS; + 10C,Sk""Cy — 2¢3tCyR Substituting these expressions into (14) and simplify-
+6x"7C1R — 30C3k«k’ + 6c'7°S R ing, we obtain the following identity

+12¢%'S R+ 6x'7'C1R + 27"CiR (18¢°72R? — 45R%"*c* + 27R%c"ic® + 162¢°R?

— 2% 73C1R + 20k’ + 6kTT'S R =0 (16) — 81c®%)q® + (2757’ R — 54rk’ Reh)q®

+ (—36¢572R? — k2r2R%? + 61k'ic 3T R?

1 3P Ru% k — 21c*T*R? — BR& + T2R%c 14
Ci+S-1=0 17) + 1625 — 32R%k® — 162°R? — 27R%"k%)q*
C24+S-1=0 (18) + 90tk Ric*g® + (—3¢"*R%"k + 6R%c"*

+ %2 2R%? — 27TR%*'%c*) g2 — R%* = 0

in addition we have

Assume now that the radilis known. Inthat case,
we have to eliminate&Cy, S, Cp, S from Eqgs. (12)— Let us denote this polynomial by(q).
(14), (17) and (18) (note that we need at least five Now, we know thatp;( ) and p,( ) must have a
equations in order to eliminate four unknowns). All - common rogttherefore, their resultant must be zero.
our attempts to directly do this, using various packages Thjs resultant is, therefore, an invariant for a curve
for symbolic computations, have failed; however, it is lying on a cylinder.
possible to proceed as follows. First, solve the system * Racalling the definition of the resultant of two poly-
consisting of the four simplest Egs. (12), (13), (17) and nomjals (Section 3.3), we can write down the resultant
(18). Then, substitute the solution into (14). ~of py( )andpy( ). Itis a determinant whose elements
Using the Maple symbolic computation program, it gepend on the curvature and torsion; if the curve lies
was possible to find a solution for Egs. (12), (13), (17) on a cylinder, this determinant has to be zero, and this

and (18). This solution uses an auxiliary polynomial s an invariant for a curve lying on a cylinder.
we denote byp;(8):

p1(8) = 8LcBs8R2 + (18 R%'%c* — 18&572R2 + 81x® 6.2. One Curve, Unknown Radius

—162c°R?)8° + 36¢“R6°'7 + (—81«° 6.2.1. Numerical Search for the Correct Radius.

+8LBR? — 36R% %k + 1 R? Suppose we do not know the radii of the cylinders in

1 26272R%¢? 1+ R2% 4 18¢5¢2 R?) 5% the data-base.

 36¢*R6%T + (18R% 2 — 2202 Re" There are two ways to proceed. We can simply follow

the trivial observation that, if we substitute the correct
—2R%"")8? + R Rinto p1( ) and px( ), we will get two polynomials
whose resultant is zero. We can therefore conduct a
Denote byg aroot ofpy(8). Then, the solution of (12),  simple, one-dimensional search ®which minimizes
(13), (17) and (18) equals this resultant.

C _ R _9K4q4 _ q2K2f2 + qZK/Z _ 9K4q2 _ K/2
’ q(9aK? + 2¢'T R)

_ —9' Ric*q* + k' R 212 + kPR — %’ Re*g? — k°R + 9%t o

S =
404 — 02k 212402k 12— A g2 —k /2
302(90K? + 2’7 R)ic?, |- HA et ot
S = R(9c*q* — q%2t? + g%c’% — *g? — k%)

g(9qk2 + 2¢'tR)k
Ci=q
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_asT
.
_35_/
—aot
—asl
_sol

554

Figure 6. Logarithm of the resultant gb1( ) andpz( ), as a function oR, for a point sampled from a curve on a cylinder of radius 2.

Experience has shown us that this simple numerical  — 324¢” AgA; + 6Agt 3k Ay + 16283 Ak’
algorithm works quite well. For example, in Fig. 6, a g 2p2 4 7 2,6
plot for the logarithm of the resultant, for valuesxof 21k 8A42K . 54TA44ATK 81Ax¢ / .
andt measured on a curve on a cylinder with aradius ~ — 162¢°A5)8° + (36"t Ag Az — 5dic’ Ag Agic
of2, isdisplayed. We canclearly seeastrongminimum 12,3 a7,/ Ag 4 272 AZic* + 18A27 2

at the correct radius.
+ A(%‘L'4K4 + 912 A%k 8 — 54 AgAsT + K/4A(2)

6.2.2. Solve for the Correct Radius.The second + 8L A2 4+ 1627 AgAg + 81A%C + 2A27 2% ?
method for the case inwhichtheradiusisunknownisto 547 Ay Agkc® — ATk 5 Ay — 363 Agk’2 A
eliminateRr, Cy, S, Cp, S from Egs. (12), (13), (15)- » 5 4n2 2 an 2 4
(18). This can be done by solving Egs. (12), (13), (15), T 18Rot’i*Ag — 36c* Agc”™ + 18c* Auc " Ao)
(17) and (18), and substituting the solutionin Eq. (16); 4 (— 2A2T2 %% + 613 AuTic P Ag + 18¢* Alic?
if this gives zero, it means that these six equations have 2 2 4 4

a common solution, which is a necessary conditionfor 18¢% Agrc’ Ao — 9" A — 2" Ag)8% + 1A

the curve to lie on a cylinder. This is why it was im- o ) )

portant to define Eq. (15), the simplified version of Note that this is really a S|xth-d¢gree equation, as only
(14); we could not find a reasonable solution with (14). €VeN Powers of appear. AfteC is solved for, we can
However, it turns out that Egs. (12), (13), (15), (17) and easily extract, from Eq. (17). Then, after substituting

(18) do have a relatively simple solution, expressed as the known values o€, ands, in Egs. (12), (13), and
follows. C; is the root of the following equation: (18), we can solve for the remaining unknownSz-

C, andR:
81’(8Ai812+ ( _ 162A§ 8 _ 54TA4A1K7 Def'neé tO be
+ 162 A Ao + 162A3 Ak ") 80 + (1080 AgAgkc’ K202C2 — 2kt C1 S’ + Si'? + 9ACPS
— 547 Ag Ayt + 81A%C + 162" AgAg
and then

— 18Ag7%k® Ay + 8B AZ — 54k Ay Agic®

— 547 Ay Ask® — 324Ag Agic” + 9T A2 + 92 AZict {52 _ Root(e 82 — %*CES}) (k7 C1 — Si’)

— 324¢8 A Ag + B1AZ® + 18¢4 A% Ag a 3¢2C, S ’
+81A2c%)88 + (162¢8 Ar Ag — 18AgT 5 Ag Cz = Roof(e 8> — %“C{S)),

+ 18¢* A2’ + 1080 Ay Agic® — 162A%¢° o %7SCE } 19)
— 1802 A2kc® + 18AgT %O Ay + K3 AuTic 2 Ao €

4 2 2.2 6 7
— 36" Agk ™ Ao — 18AgT k" + 108" Ao Agt (by Rootof an equation, we mean the root of the equa-
— 364K T Ag Ag + 183 Agic’? Ag + 108¢’ Ag Agic® tion when viewed as an equationsin The equationsin



(19) are trivial to solve and involve only taking square
roots.

The reader may ask why we did not apply this trick
to simplify the solution of the equations for the case
in which the radius is known. If we had done that, it
would not have been possible to obtain a functior of
andt alone; theC; would still have been there! And,
as long as it is there, we cannot find a conditiorkon
andr, as desired, but only a condition @1, « andr.

There is also a direct solution to the system of
Egs. (12), (13), (15), (17), and (18), in which all the
unknowns—R, Cq, S, C,, S—are written in terms of
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vector of the first curve equald, 0, 0). The differ-
ence is that now, as opposed to when we only had
a single curve, we know the normé&l and the bi-
normal B of the new curves; this is because now we
know that the rotation and translation not only move
M to the origin and align the tangent to the first curve
with (1, 0, 0), they also alignNs with (0,0, 1). Let

us look at the tripletT, N, B) for the first curve (be-
fore the rotation). We can calculate the inner prod-
ucts (N, T) and (N, Ns). These inner products do
not change after the rotation of the curveNfis ro-
tated intoNnew, then, sinceT is rotated into(1, O, 0),

k, T, and their derivatives; however, that expression we have the equalityNpew, (1, 0,0)) = (N, T), and,
is truly horrendous, covering three entire pages when sinceNs is rotated inta(0, 0, 1), we have the equality

written in small format! For all practical purposes, it

(Nnew (0,0,1)) = (N, Ns). SinceNnew is a unit vec-

is better to use the solution above, which first extracts tor, we can recover it; and, since we know the tangent

C: andS; and then solves for the other unknowns.

6.2.3. Comparison of Methods. While the second

and normal of the new curve, we know its binormal,
which is equal to their vector product. Following a
similar argument, we also know the Frenet trihedron

method is straightforward and does not require any of the (new) second curve.

search (as opposed to the first method), it has the draw- As before, letg denote the angle in which the
back of requiring the fifth derivative of the curve, which  cylinder is aligned relative to th&XY plane. Let
appears in Eg. (16) (note that calculating the third us denote the tangent, normal and binormal of
derivative of the curvature and the second derivative the first curve by(1,0,0), (0, coSw), sin(x)) and

of the torsion requires the fifth derivative of the curve). (0, —sin(«), coS)), and those of the second curve
The first method requires a numerical search for the by (T1, T2, 0), (N1, N2, N3), (B1, By, B3) (remember
correct radius, but uses only the fourth derivative of that all these coordinates are now known). Note that
the curve. Depending on how accurate the measure-the z-coordinate of both tangents has to be zero, as
ments are, one may opt for using the first or the second they are both in the tangent plane which, after the rigid
method. transformation, is th&X'Y plane.

Substituting these expressions into the local canoni-
calform, theninto the cylinder’s equation, and equating
coefficients to zero, results in the following equations
(K is the curvature of the second curve):

For the coefficient o8?, first curve, we have

6.3. The Case for a Cylinder with Two Intersecting
Curves and Unknown Radius

Suppose we have two curves on the cylinder, intersect-
ing ata pointM. Forinstance, one can design a sensory
robot to traverse a point twice, in different directions.
Another possible source is an intersecting pattern o
structured light rays. It turns out that a particularly
simple invariant can be written in this case, the main
reason being that, in this case, it is easy to recover the
surface normal.

We refer to the curves as “first” and “second” (it
makes no difference which is which, of course). As

2C5 — 2 sinl@)R =0 (20)
i For the coefficient o3, first curve, we have

6C,Sk coa) — 2’ sin(@)R + 2kt coge)R =0
(21)

For the coefficient 0§2, second curve, we have

2T7 — 2K N3 R+ 2C5TZ — 2T?C3

noted in Section 3.2, two intersecting curves on the +4C,T, ST, =0 (22)
surface allow us to compute its normids (denoted

this way to prevent confusion withl, the normal to Also

a curve). We may, as before, translate and rotate the CS n Sf _1-=0 (23)

cylinder so that the intersection poikt is in the ori-

gin, the cylinder lies on th&Y plane, and the tangent  (where, as before, cG8) = Cy, sin(8) = ).
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Eliminating S, C, and R from (20)—(23) results in  cylinder; for display purposes, it is shown in Fig. 1 at

the identity an angle). As we can see in Fig. 7(a), the data in ac-
5 . ) - 3 5 . tuality is quite “jittery”; the distances in the various

971" sin(a)” cog(a) k™ — 6™ coga)” sin(e)T T2 Ty axis, between consecutive data points, are rather

— 93 cog)? sin(a)KN3 + «272T2 coga)? discontinuous. It is possible to overcome this problem

by sub-sampling the curve, and running a median filter
. roea o on the values of the invariant at a neighborhood of each
— 2¢ Ty sin(a) coga)k (k)" Ty sin(e)” = 0 point at which the invariant is computed. This results

in a relatively stable invariant, which clusters around

the correct value of the cylinder’s radius squared. In

Fig. 7(b), the invariant is plotted.

+ 6Kc°Ty Tor” sin(er)? coSa)

(remember thatr is known, and does not have to be
eliminated).

And this is an invariant for two intersecting curves,
which can be used to test whether they lie on a cylinder. )
The invariant depends on the curvature and torsion of 7. The Casg for a Cone with Two
one curve, and the curvature of the other; therefore, it Intersecting Curves
does not require any derivatives of order higher than

three We have notaddressed the problem of finding invariants

for a cone using a single curve; because a cone has
6.4. A Simple Case: Upright Cylinder more degrees of freedom_than a sphere ora pylinder,
this would necessitate using the sixth derivative of a
curve to express such an invariant.
We proceed to show how two intersecting curves
yield an invariant for the cone. We will not go into all
the details, as the method resembles the one used for a

If we assume that the objects lie irstable pos¢13],

this allows for considerable simplification in the ma-
nipulations carried out in the previous sections. As-
suming, for instance, that the cylinder is upright (that 4 . . .
is, its axis is parallel to the axis), and following in cylinder with two intersecting curves.

exactly the same manner as described before, it is easy F|rs_t, the con_e_ls rotated an_d tra_nslated S.O that its
to prove that apex is at the origin, and the point of intersection of the

two curves M, lies on theXY plane, which is also the
(1 _ T22)3 tangent plane a1. Then, itis rotatgd in thX'Y plane
2B so that the tangent vector of the first curvéisO, 0).

z As for the cylinder, we can extract the tangent, normal,
this expression is simpler than the ones derived before, and binormal vectors to the two curves at their new
as there is no need to eliminate the rotation angle. location; denote the normal to the first curvehMtby

We have tested this invariant on the data depicted (0, cog8), sin(8)). Note that nowM does not lie at
in Fig. 1 (in reality, that data came from an upright the origin, but at an (unknown) distance g from

R? =

0.06

T
deltax —
deltay ~--- | 14 1
deltaz -~

: L L L 2 L . L L L 1 ¢
0 100 200 300 400 500 10 20 30 40 50 60 70 80 90
@ (b)

Figure 7. (a) Jitters in input data and (b) invariant.
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/\ For the coefficient 082, second curve, we have

6SIC1CoK N3 T, + 6S,C1SSK N Ty
+ 6C2T,K N, — 6CZT,K N,C2
— 2C1K T BgYoS; + 2C1K IN3yeS,
— B6C2C,ST1K N, — 6C2C,SK N; T,
+6C2C3TiKN; =0 (29)

Figure 8 Rotating and translating the cone.
Which, as before, can be reduced to

it. The (unknown—as for the cylinder) rotation angle
of the c(one in theX Y plane is dinoted) by, and theg A7C18:% + AgC18iCz + Ao Ci + A CiSiyo = 0
(unknown) rotation angle around tieaxis (Fig. 8) is (30)
denoted; this is just half of the cone’s opening angle. _

It is then a trivial matter to write down the equation Note that theAi's can be readily computed from the
of the rotated and translated cone, and to substitute intokNOWn quantities—the curvature, torsion, and Frenet
it the local canonical forms of the two curves. As be- trihedron of the two curves.
fore, the coefficients of the two resulting Taylor series e also have the equations
have to be zero, resulting in the following equations. 5
Let K and7 denote the curvature and torsion of the Cl+§-1=0 (31)
second curve, anth etc. the components of its Frenet 59
trihedron vectorsSstands for sifg), C for cog8), C;

for cog0), S for sin(®), C, for cogw), S for sin(a) S+C5-1=0 (32)
(remember thaf andC are known, and do not have to ) ) o
be solved for): It is possible to eliminat¢C,, S, Cz, S, Yo} from

For the coefficient o§?, first curve, we have these six Egs. (24), (26), (28), (30)~(32), and obtain

—2SKB A3 Ay Ay Ar — AZASAZ A

2CiC; +2Cu S § =0 @4) +2Sc A2 Ao A7 As AgAg — Sk AgAZ AZ A7 Ag
For the coefficient o83, first curve, we have — S AGASAGAs — ASASAS + Sk Ay ASAGAS
— S A AL AIAG A — S A A A A, Ag
—2C1kt Cyp S + 6S,C1 Sk S+ 2Cik’ S S + 252 AgAZ A AgAsAg — S22 AZAZ A2 Ag
—6C{C,SkC =0 (25) — S AAZAZ AL Ag — 252 A2 Ay As As As Ag

+ 2S5 Ag AL AL A7 Ag Ag + S As A2 Az Ao Ao Ag

Which can be written more compactly as
pactly —2Sc A2AZ A A A + SSCASAZ AL

MCICS + ACiSo + ACiSS =0 (26)  TSCARAMA T SICARA
+ ScATASAL + S AT ALALAL
For the coefficient 082, second curve, we have + 2R AZAGAZ A1y — 2R3 Az Ag AZ AL A,
2C2C5TZ — 4C2C, STy T 4 2C2T7 K SSKAGAAAgAzASAZAs y SczAisAgAio
+ 2S¢ Ay AgAg A2 A Ag + 25712 A3 A As As Ao
—2C{T;C5 +2CiKNayoS1 =0 (27) — 2Sc AZAs AgAsAroAs + S AL AL A Ag Ay Ar

_ + ScAASAT — Sk ASALAs A A Ag
Just as for the cylinder, we can subtract from (27) ap- 2A2A7A A AAG < : A9 Al A2
propriate multiples of (24) and (25), and obtain the  — AshaPoPo A As + ScAsAsfo A As Ay
simpler form + S AZAG? AgAoAs + Si? AR A Ag A AsAg
, , —2SPNEAS A2 A + SHP A AL AL AZ A,
AsCT+ AsCiS Yo+ A CIC& =0  (28) — AP AAZA Ar AgArg — AZAZAZ Ag
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— 3k Ag A AL AT Az Ag As + 2A2 Ag Aro A Ar As
— ScAsALALAZ A As + Sic As Ay A Az AgAroAs
— SN AAL AT A A + Sic? As A AT A7 As Ag
+ ScALATAZAZ = 0

And this is an invariant for two curves on a cone. It
depends on the curvature and torsion of the two curves;
therefore, it does not require any derivatives of order
higher than three. This is an invariant for two curves
on a cone.

8. Numerical Computation of Derivatives
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Figure 9. Derivative of spherical invariant (Eq. (10)) for the curve

The algorithms suggested here require computing the in Fig. 3, after noise had been added to it. Note change in derivative

derivatives of a curve in 3D space. The problem of
computing high-order derivatives from discrete data
was addressed in [27]. The derivatives at each point
are calculated by convolving appropriate differentia-
tion filters with the given curve. One way of deriving
such filters is based on fitting high-order polynomials
to the data curve and differentiating the polynomial.
We do not need to do the fitting for each actual curve;
it is only done in deriving the filters.

In deriving the filters, the data curvk is approxi-
mated by a linear combination of orthogonal polyno-
mials of orders 0.. ., |:

|
F(=x) = w(x) Y aPx)
i=0

where P, (x) are polynomials which are orthonormal
with respect to a weight functiomw(x). The coeffi-
cientsa; are determined by the condition that the poly-
nomial fits the curve in the sense of (weighted) least
squares. It can be proved that if the curivés a poly-
nomial of order up td, than the above filter yields an
exactkth derivatives when the coefficierdsare:

a =PY0

when the curve crosses over from the sphere to the cylindes(4t).

that continuous polynomials, defined on a finite inter-

val, are just as effective but much simpler to calculate.

Good results were obtained using the Legendre and
continuous Chebyshev polynomials.

For example, see Fig. 9 for the derivative of the
spherical invariant (Eq. (10)), for the curve plotted in
Fig. 3, when noise of variance equal to 5 percent of the
distance between the points was added to it. Deriva-
tives were computed using the method described in
[27]. The derivative is relatively small for the part of
the curve that lies on the sphere @t < 1), and
significantly changes when the curve crosses over to
the cylinder (at = 1). Note that computing the in-
variant’s derivatives requires the first derivative of the
torsion and the second derivative of the curvature, that
is, the fourth derivative of the curve.

9. Semi-Differential Invariants

In this section we study curve invariants which use
only curvature (this requires computing only the first
and second derivatives of the curve). We also as-
sume that the only primitives the recognition system
may encounter are spheres, cylinders, cones, and tori.

In practice, good results are obtained for any reasonably When the information from one point is not enough

smooth f (not only polynomials), as long as the the
orderl of the filter is larger than the desired ordeof
the derivative. However, a highrequires a filter with

a wide support.

Discrete versions of this method on a finite inter-
val are described in detail in [15]. In particular, the
Krawtchouk and the discrete Chebyshev polynomials
were studied and closed form formulas for them were
given up to fifth order. However, it was shown in [27]

to uniquely determine the object, we will use an addi-
tional point or two on the curve to help disambiguate
the object.

The additional points will usually be of no avail if
they lie on adegenerate curve (forinstance, suppose the
object to be recognized is a cylinder, and the curve is a
cross-sectional circle). However, it is easy to identify
such cases; forinstance, ifthe curveis planar, its torsion
is zero.
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Another danger is that the two points on the curve 9.1. Object Recognition from Two
will belong to different geometric primitives (for in- Intersecting Curves
stance, if the object is the “perfume bottle” from Fig. 3,
and one point lies on the sphere, and the other on the Given two intersecting curveS; andC,, we extract
cylinder). To resolve this problem, we can use the local T, Ny, By, «c1, T2, No, By, k2 atthe intersection point
invariants described in the previous sections. While M. These are the Frenet trihedrons and the curvature
they may be more sensitive to noise, Figs. 7 and 9 for both curves respectively. Recall thég, the normal
demonstrate that they are stable enough to indicate thatto the surface aM, equalsT; x Ts.
we have moved from one primitive to another. For each curve we compuiethe angle betweeNg
Each of the classes of objects mentioned above haveand the curve’s normal. The surface normal curvature
a small number of parameters which determine its equalskn, = k¢ co90), andin(8) = x1 sSir(B) +
shape. The sphere is defined by its center and radiusk, cos(B), wherex, k» are the principal curvatures for
(four parameters) and as mentioned in Section 2 the the surface aM, andg is the angle between the tangent
cylinder, cone, and torus have 5, 6, and 7 parametersto the curve and,, the second principal direction.
respectively. Given two curves we have two equations for the sur-
In order to be able to recover the shape of primitives, face normal curvature, with three unknowngrs—-,
constraints which involve the differential properties of andg:
the curve and shape parameters have to be derived,
simple techniques _for recovering the shape parar_n_eters knet = k1 SIP(B) + k2 0L ()
from these constraints have to be found, and additional )
constraints are used to verify that the shape is correct. ~ KNs2 = K1 SIFP(B + ) + k2COS(B + ¢).
For each point on a curve the proposed primitive
must satisfy the following constraints: where¢ is the angle betweem; and T,. Usually, it
is impossible to solve such a system; however, if we
« The pointM must lie on the surface. This means that koW inadvance that the geometric primitives can only
if P is the object’s implicit equatiorP (M) = 0. pe spheres, cylinders, cones, and tori, it is possible to
« Tc, the curve’s tangent, must be orthogonal to the dentify them and extract their parameters.
surface normaNs at the point. ThudNs - Tc = 0.
e If 6 is the angle betweeNs and N¢, thenks = Sphere. Inthis case; =k, and consequenthyng =
kc cog0) (see Eq. (4)), where the value of (the kng2- For all other objects (cylinders, cones, and tori)
curvature of the normal section on the surface) is de- the two principal curvatures are not equal; therefore,
termined by the principal curvatures andx, and two distinct normal curvatures are identical only in
the angle between them afig. the degenerate case in which the angles between the
curves' tangents anigf are equal. Therefore, if the sur-
h face normal curvatures corresponding to the two curves
are equal, we can assume with high probability that we
are dealing with a sphere.
The sphere’s radius is théR = 1/ky,, and its cen-

(33)

Therefore, each point yields three equations whic
have to be satisfied. These equations can be used to ver
ify hypotheses or to determine the value of unknown
parameters. When two curves intersect, at the intersec-

tion point only five constraints exist because the first € S &M + RNs. When measurement errors are too
constraint for the two curves is identical. large making it impossible to verify thatk.: = xne

If additional points are not on a curve, and we don't ©" when they have similar values accidentally, an ad-

have any differential properties associated with them, Q|t|onal point can be used to determine if the object is
we still have the first condition (they have to satisfy indeed a sphere.
the surface equation). In that case, we will need more
points; this is a typical tradeoff for semi-differential Cylinder. If the given object is a cylinder, its parame-
invariants. ters can be recovered as follows. As= 0, the surface

In all the cases considered, we will require at least normal equations are reduced to two equations with
as many constraints as unknown shape parameters andwo unknowns. Solving them, we can recowgrand
use the remaining (or additional) constraints to verify the principal directiong, k,. The cylinder’s radius is
the shape hypothesis. R = K—12 and the orientation of its axis i§. A point
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on the axis is:
C=M+RNs.

It is important to note that this does not prove that
the object is a cylinder. That has to be verified using
an additional point on the curve.

Cone. Assume the objectis a cone. As for the cylin-
der, k1 =0, and we can recover, and the princi-
pal directions;?l, k2. The radius of the cone &l is
R== cos(a) whereq is the cone’s opening angle.
The apex is located &V + i1 °°t(2") and the axis ori-
entation is¢; coSa) + K2 sin(a). o can be determined

from an additional point on the curve.

Torus. From (33) we cannot recover the torus, be-
cause the number of unknowns is three. We will pa-
rameterized our solution as a parameteof For a
given B, we can recoveki, k. The values ok,
change on the torus as a functionjaofthe angle be-
tween the major radius of the torurR, and the vector
to the current point on the torugy, «, are given as a
function ofy:

o = _—C0%Y) oo = &
! R+ r cogy) 27

where R andr are the major and minor radii of the
torus respectively (see Fig. 10).
Givenky, k2, y we can recoveR, r as follows:

Figure 10 Torus.

The orientation of the torusy;, can be recovered by:
N; = Nssin(y) + k2 cogy). The center of the torus
is then at:

C =M + N¢r + (Nscosy) — iz sin(y))R

B andy can be determined by an additional point on
the curve.

9.2. Object Recognition from One Curve

When two intersecting curves are given, we are able to
recoverNs and thus we know the anglebetweenNg

and Nc. When we are given only one curv,is an
unknown parameter which has to be recovered.

Sphere. Inthis case«; = k2, and consequenthy, =

1/R. For every value ob, the surface normal and
the sphere’s radius are determined as follows, where
(Tc, Nc, Be) are the Frenet trihedron of the curve:

1

Ns = co90)N sin(@)B =
s 96)Nc + sin(8) Bc o C0s0)

From that we recover the center of the sphere,

tan(®
M+ RNg= M + ¢ | n()

Kc

Bc  (34)

Thus we have a family of possible spheres, parameter-
ized byé.

Given additional points, we can proceed as follows:
either substitute them at the (hypothesized) sphere’s
equation, or, if they are on a curve use all the three dif-
ferential constraints. Alternatively, given two points
on a curve, applying Eq. (34) and the equation for
R to both of them results in four linear equations in
cog6,), tan(1), cog6,), and tarid,). The solution is
verified by checking if the two angles satisfy

tan® Vv1—cog()

an) = cos6)

Cylinder. In the case of the cylinder we know that
k1 = 0 andks = é. Given a pointM; on the curve,
the two unknowns ar¢, andg;. When they are given,
the cylinder is uniquely defined. Note th@t is the
axis of the cylinder, so it has to be the same for every
point on the cylinder. We will now use these facts to
defineR andk; the axis of the cylinder as functions of
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0, andp; (see Egs. (33), (4)): As in the cylinder, these two points give the equa-
tion of the cone that passes through them and satisfies
_ cos(By) the given constraints. However, an additional point is
"~ kc1C096;)° needed to verify that this is indeed the real object.
’\js B cos(él) Ne + sin(6y) Be (39) Torus. Inorderto be able to recover the seven param-
k1 = Tesin(By) + (Te x Ns) cos(A1) eters of the torus, we parameterize them by four local
) o parameters of one point. The parametersbam «;,
And a point on the axis is: andy. As described above these four parameters are
enough to describe the torus. In order to recover those
C1= M1+ RNg parameters we need two additional points because each

_ N o point yields three constraints. Thus using three points
Given an additional point, it8, andd, can berecovered  we can recover the shape of the torus and verify that
as follows: the object is indeed a torus.

. . cog .
B, = arcsinTes - K1), 0, = arcco:(%), 9.3. Experimental Results
Kc2
The algorithm for a single curve has been tested on real

From them we can recover the point on the aRis .

. . . data received from the Brown & Sharpe Company us-
closest to the second point, and both points must lie on ing their coordinate measuring machines (Fig. 1). The
the cylinder's axis, which is parallel i ; therefore, 9 9 9. 1)

data is a curve measured on a cylinder. For each point
on the curvele, N¢, Bc, andkc are estimated. Using
the algorithm described above, the problem is reduced
to solving for co$p;) and co$gs;), where all other pa-
rameters are expressed as functions of these unknown
values. The correct values must satisfy four equations
and have to satisfy the constraints that the absolute val-
ues of the cosine and sine of the various angles must
- . . 7 . be less than 1. The values of the unknowns are found
.NSZ) ), .Wh'ch gives an ad_dltlonal_constramt to ver- using non-linear least squares optimization techniques.
ify that this is indeed a cylinder with the computed Inthis case we use the Levenberg-Marquardt procedure
parameters. of the MINPACK library [17].

We chose at random 200 pairs of points and ran the
minimization procedure on them using several initial

(C1—Cp) x k1 =0,

which gives us two equations in two unknowns, which
can be solved for the values @&f and ;.

These two points give the equation of the cylinder
that passes through them and satisfies the given con-
straints. In addition, from (358, = arccog(Tc, x

Cone. The case of the cone is similar to the cylinder

but slightly more complicated. Given two points ona  ¢ngitions for the minimization. Even though the data
curve we would like to find the anglés, £, 62, andg,. is noisy, most pairs of points yielded results close to

These angles parameterize the local surface structureya correct shape. The results were sorted according
of the two points. At first we will exploit the fact that ;) 1o least-squares error (LSE) of the four equations.
'Ehe line from the point on the surface in the direction of We trace the five cylinders with the smallest LSE in

«1 must pass through the tip of the cone. Thus we have gy 11(a). One of these results and the original data
a con§tra|nt that the twq such lines ’c\l)f the WO points 5re shown in 11(b). Itis important to note that only the

must mter.sect. The poil€ = M + o lies on t'h'e data on the two points and their derivatives mentioned
central axis of the cone. Therefore we two additional ,,,\e was used to recover the shape of the cylinder.

constraints which are due to the fact &t Cz, and  aggitional points can then be used, if desired, to get a
the tip of the cone lie on the same line. Finally, the better estimate for the shape.

angle of the conea must be the same for both surface

points. Asx is the angle betweef and the axis of the

cone, we can write an additional constraint enforcing 10. Conclusions

the uniqueness af. With the four above mentioned

constraints we can recover the values of the unknown A novel method to recognize some surfaces, given
angles and recover the shape of the object. curve(s) on them, was presented. It proceeds by using
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Figure 11 (a) The five recovered cylinders with the lowest LSE.
(b) The recovered shape of the cylinder and the data points.

invariants which are computed on curves, but which

supply information on the type of surfaces the curve i3

can possibly lie on.
The method can use 3D curves derived from stereo

and structured light; itis particularly useful when given 14

the output of measuring devices which produce such

curves (for instance, sensory robots and coordinate 5

measuring machines).
The main advantage of the proposed method com-

pared to algebraic methods is in its local nature, which 16

enables it to segment and recognize curves (and the

surfaces they lie on), even if the curves lie on more 17

than one geometric primitive. Also, it necessitates a
far smaller number of curve points than the algebraic
method, for recognizing a single primitive.

19.
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