
Applicable Analysis
Vol. 85, Nos. 6–7, June–July 2006, 793–810

Applying reproducing kernels to the

evaluation and approximation of the simple
and time-dependent imaginary time

harmonic oscillator path integrals

DANIEL KEREN*

Department of Computer Science, Haifa University,
Haifa 31905, Israel

Communicated by R. P. Gilbert

(Received 8 August 2005; in final form 29 March 2006)

Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path
integrals, since they allow to naturally define a probability on the space of paths, which is
equal to the probability associated with the paths in Feynman’s path integral formulation.
This study shows that if the propagator is Gaussian, its variance equals the squared norm of
a linear functional on the space of paths. This can be used to rederive the harmonic oscillator
propagator, as well as to offer a finite-dimensional perturbative approximation scheme for
the time-dependent oscillator wave function and its ground state energy, and its bound error.
The error is related to the rate of decay of the Fourier coefficients of the time-dependent
part of the potential. When the rate of decay increases beyond a certain threshold, the error
in the approximation over a subspace of dimension n is of order ð1=n3Þ:
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1. Introduction

In the path integral formulation of quantum mechanics [1–3], the propagator
Uðx1,T1; x0,T0Þ is expressed as the integral of expðiS ½xðtÞ�Þ (assume �h ¼ 1Þ over all
paths x(t) satisfying xðT0Þ ¼ x0, xðT1Þ ¼ x1, where S ½xðtÞ� is the classical action
along the path. In the so-called imaginary time formulation, this oscillatory integral
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is replaced by the integral of expð�S ½xðtÞ�Þ, with the potential reversed. This is
a Gaussian integral which has nicer convergence properties (often, imaginary time
is denoted by � to distinguish it from real time t, but here only imaginary time is
used and it is denoted by tÞ.

It is immediate that if the wave function at t¼ 0,  ð0Þ, is the delta func-
tion �ðxÞ, then Uðx,T; 0, 0Þ equals  (T ) the wave function at time T. For
simplicity, the discussion is limited to the initial condition  ð0Þ ¼ �ðxÞ unless otherwise
stated.

The probability distribution on the paths x(t) induces a distribution on the value
at the paths’ endpoints, x(T ). The probability density f on the space of paths is defined
in imaginary time formulation by

f ½xðtÞ� / expð�S ½xðtÞ�Þ ð1Þ

(note that in imaginary time there is no phase, hence the difference between amplitude
and probability is just a factor of two in the exponent). This probability naturally
induces a probability distribution on the values of the paths at time T, and it is this
distribution which defines  ðT Þ: One can thus, for example, define the expectation
and variance respectively of  (T ) by

ET �

Z
xðtÞ

xðT Þ exp �S½xðtÞ�ð ÞDxðtÞ, VT �

Z
xðtÞ

xðT Þ � ET½ �
2exp �S ½xðtÞ�ð ÞDxðtÞ

where the integral is over the Sobolev space of paths satisfying xð0Þ ¼ 0 and such that
x0ðtÞ is square integrable on ½0,T �: The condition xð0Þ ¼ 0 corresponds to the condition
 ð0Þ ¼ �ðxÞ:

Such integrals can be computed, even though the path space is infinite-dimensional,
using the theory of reproducing kernels [4] and Gaussian measures, some of which is
summarized in [5]. The result required in this work is the following: if (x, y) is an
inner product on a Hilbert space �, and v0 2�, then a measure can be defined such
that

R
� expð�kxk2ÞDx ¼ 1 and

Z
�

k v0, xð Þk
2 exp � xk k2

� �
Dx ¼

v0k k2

2

and further, x ! ðv0, xÞ defines a Gaussian random variable on �, with zero average
and a variance of ð1=2Þkv0k

2. This is a natural extension of the finite-dimensional
Gaussian integral. In order to apply this result to compute  (T ), one needs to define
an appropriate inner product on the space of paths (which corresponds to the
action), and also to write x(T) as an inner product with a certain vector in the space
of paths (naturally, this vector is also a path). This is achieved, for example, by using
the inner product

ðx, yÞ ¼
m

2

� � Z T

0

x0ðtÞy0ðtÞ þ !2xðtÞyðtÞ
� �

dt ð2Þ
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for the simple harmonic oscillator, and

ðx, yÞ ¼
m

2

� � Z T

0

x0ðtÞy0ðtÞ þ !ðtÞxðtÞyðtÞ½ �dt ð20Þ

for the time dependent oscillator (assume !ðtÞ � 0Þ. It is immediate to verify that
in both cases, S½xðtÞ� ¼ kxðtÞk2. Thus the main effort is to find the reproducing kernel
eT which satisfies ðx, eTÞ ¼ xðT Þ for every path x(t), that is, eT is the reproducing
kernel for the evaluation at T functional (which will usually be referred to simply as
‘the evaluation at T ’). Once eT is known, then the variance of  (T ) can easily be
computed using the identity Var  ðT Þ½ � ¼ ð1=2ÞkeTk

2 ¼ ð1=2ÞeTðT Þ, where the last
equality follows from the definition of eT as a reproducing kernel.

Note that as opposed to most of the methods which integrate over paths tied at the
two endpoints (i.e., satisfying xðT0Þ ¼ x0, xðT1Þ ¼ x1Þ, here the integration is carried
over paths tied only at t ¼ 0:

Note that one may look at the problem of estimating x(T ) as a problem of Bayesian
estimation, in which x(0) is known (the measurement data), and a prior probability
is given over the paths x(t), which assigns lower probability to ‘rougher’ paths.
Given the data and the prior, x(T ) can be estimated. However, this direction is not
be pursued here.

As observed before, under the probability structure of equation (1), x ! xðT Þ is
a Gaussian random variable. This means that  (T ) is a Gaussian; hence it is fully
determined not only by its expectation and variance but also by a multiplicative
constant. In [5], the probability on the entire space is normalized to one; however,
from physical considerations,  (T ) should be normalized with respect to the free
particle wave function, i.e., multiplied by what may be loosely termed the ‘probability
reduction factor’:

Prf ¼

R
xðtÞ exp �S ½xðtÞ�ð ÞDxðtÞR
xðtÞ exp �SF½xðtÞ�ð ÞDxðtÞ

ð3Þ

where SF is the free particle action (see [6]). Thus calculating/approximating the wave
function is equivalent to calculating/approximating the norm of eT, as well as Prf.
As for the expectation, if xð0Þ ¼ 0, it is clearly zero from symmetry considerations;
the general case is quite similar and is treated in Appendix I.

1.1 Reproducing kernels and finite-dimensional approximations

How to calculate the reproducing kernel’s norm? The norm squared of eT equals eTðT Þ.
Usually, however, eT cannot be calculated exactly. The norm squared of eT also equals
sup

R
xðtÞðx

2ðT ÞÞ=ðkxk2Þ, which, for the time-dependent oscillator, for example, is

sup
xðtÞ

x2ðT Þ

xk k2
¼ sup

xðtÞ

x2ðT Þ

ðm=2Þ
R T
0 x0ðtÞ2 þ !ðtÞx2ðtÞ
� �

dt
ð4Þ
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where the supremum is taken over the aforementioned Sobolev space of paths. Note
that any choice of x(t) defines a lower bound on the norm (and thus on the variance,
or the spread, of the wave function). A clever choice of x(t) can thus yield a good
lower bound.

Although normally the expression in equation (4) cannot be evaluated exactly, the
representation as the norm of a linear functional can still be useful for choosing
good finite-dimensional approximations to the path integral: suppose that V is the
entire space and F a finite-dimensional subspace. Intuitively, for the norm restricted
to F to be a good approximation to the norm on V, it is desirable that, if �F is the
complement of F, then x2ðT Þ will be relatively small and

R T
0 ½x

0ðtÞ2 þ !ðtÞx2ðtÞ�dt
relatively large for xðtÞ 2 �F: Intuitively, that will ensure that the norm on F ’s
complement will be small. A solution which is sought in this study is to construct an
increasing sequence of subspaces Fnf g ðFnþ1�Fn for every nÞ such that [nFn ¼ V,
and if Fnþ1 ¼ spanðFn [ fnþ1Þ, then the norm of the functional x ! xðT Þ on the
‘supplement’ fnþ1 is small or, equivalently,

f 2nþ1ðT ÞR T
0 f 0nþ1ðtÞ

2
þ !ðtÞ f 2nþ1ðtÞ

� �
dt

is small. If the norm restricted to spanð fnþ1Þ decreases quickly enough with n, there is
hope that the norm on Fk, for a relatively small k, will be a good approximation to
the norm on the entire space V. Similar considerations apply to the approximation of
Prf on finite-dimensional subspaces.

1.2 Structure of this article

In section 2, the framework for computing the propagator is summarized. Section 3
shows how the free particle and simple harmonic oscillator propagators can be
computed using the reproducing kernel approach; it is also shown how the uncertainty
associated with a quantum particle’s velocity can be computed very naturally in
the reproducing kernel framework. Section 4 discusses bounds on the accuracy of
finite-dimensional approximations for the propagator of the time-dependent harmonic
oscillator. Section 5 offers some concluding remarks. Appendix I treats the propagator
for an arbitrary starting point, and Appendix II relates the ground state energy to the
‘probability reduction factor’.

2. General scheme for computing or approximating the wave function and

ground state energy

The suggested method for computing or approximating the wave function  (T ) may be
summarized thusly:

. Write down the action as an inner product in the appropriate Sobolev space of
paths xðtÞ. The inner product must satisfy S½xðtÞ� ¼ kxðtÞk2:

. Compute the reproducing kernel for the evaluation functional at T, i.e., a function eT
satisfying ðx, eT Þ ¼ xðT Þ for every path xðtÞ.

. The variance of  (T ) is VT ¼ ð1=2ÞeTðT Þ:
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. Compute the ‘probability reduction factor’

Prf ¼

R
xðtÞ exp �S½xðtÞ�ð ÞDxðtÞR
xðtÞ exp �SF½xðtÞ�ð ÞDxðtÞ

,

where SF½xðtÞ� ¼ ðm=2Þ
R T
0 x0ðtÞ2dt is the free particle action.

.  (T ) equals Prf=ð
ffiffiffiffiffiffiffiffiffiffiffiffi
2�VT

p
Þ expð�ðx2=2VTÞÞ:

. Usually, VT and Prf cannot be calculated exactly. In that case, seek an increasing
sequence of subspaces Fn whose union is the entire space of paths, such that the
ratio of the value of VT resp. Prf when restricted to Fnþ1 over the value when restricted
to Fn quickly tends to 1. Then the values on the entire space can be approximated using
the values on a finite-dimensional subspace and asymptotic analysis.

. The ground state energy is closely related to Prf (Appendix II), hence it can be
approximated by the same scheme used to approximate Prf.

3. Derivation of the free particle and harmonic oscillator propagators

3.1 Free particle propagator

For the free particle, the probability associated with the path x(t) is
expð�ðm=2Þ

R T
0 x0ðtÞ2dtÞ, hence the inner product in the Sobolev space is simply

ðx, yÞ ¼ ðm=2Þ
R T
0 x0ðtÞy0ðtÞdt: The reproducing kernel eT must then satisfy

ðx, eTÞ ¼ xðT Þ for every path x(t) such that xð0Þ ¼ 0: Also, it must hold that
eTð0Þ ¼ 0: It is straightforward to see that eTðtÞ ¼ ð2=mÞt, hence ð1=2ÞeTðT Þ ¼ ðT=mÞ:
From the aforementioned results on Gaussian integrals, the free particle propagator
is a Gaussian with variance ðT=mÞ, and if it is further demanded that it will be
normalized to 1, it must equal ðm=2�T Þ

1=2 expð�ðm=2T Þx2Þ.

3.2 Simple harmonic oscillator propagator

The inner product corresponding to the simple harmonic oscillator was defined
in equation (2). To distinguish it from the free particle inner product, denote it by
ðx, yÞO ¼ ðm=2Þ

R T
0 x0ðtÞy0ðtÞ þ !2xðtÞyðtÞ
� �

dt: The inner product corresponding to
the free particle will be denoted ðx, yÞF ¼ ðm=2Þ

R T
0 x0ðtÞy0ðtÞdt: Next, recover the

reproducing kernel eT satisfying ðx, eTÞO ¼ xðT Þ for all paths x. This can be done by
expanding eT in a basis f�lg for the Sobolev space, and determining the coefficients
by imposing the condition ð�l, eTÞ ¼ �lðT Þ for every l. Choosing the basis
�0 ¼ t, �1 ¼ sinð�=T Þ, �2 ¼ sinð2�=T Þ . . . (note that it is indeed a basis because the
paths satisfy xð0Þ ¼ 0; this basis is nearly the same as that used in the Fourier path
integral method [4]), denote eTðtÞ ¼

P1

l¼0 �l�l. Next, obtain the following equations
for f�lg: first, impose ð�0, eTÞ ¼ �0ðT Þ to obtain

T ¼ tðT Þ ¼ t, eTð ÞO¼ �0ðt, tÞO þ
X1
l¼1

�l sin
l�t

T

� 	
, t

� 	
O

� �0tt þ
X1
l¼1

�ltl ð5Þ

tt ¼ �0,�0ð ÞO¼ ðt, tÞO ¼
1

2
mTþ

1

6
m!2T3, l > 0 ) tl ¼ �0,�lð ÞO¼ t, sin

l�t

T

� 	� 	
O

¼
ð�1Þkþ1m!2T2

2�l
ð50Þ
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and for l > 0 impose (�l, eTÞ ¼ �lðT Þ to obtain

0 ¼ sin
l�t

T

� 	
ðT Þ ¼ sin

l�t

T

� 	
, eT

� 	
O

¼ �0 sin
l�t

T

� 	
, t

� 	
O

þ
X1
k¼1

�k sin
l�t

T

� 	
, sin

k�t

T

� 	� 	
O

� �0tl þ �lll ð500Þ

where

ll ¼ �l,�lð ÞO¼ sin
l�t

T

� 	
, sin

l�t

T

� 	� 	
O

¼
m !2T2 þ �2l2
� �

4T

ðin 500use k 6¼ l ) ðsinðl�t=T Þ, sinðk�t=T ÞÞO ¼ 0Þ:
From (500) it follows that for l>0, �l¼�(tl/ll)�0. Plugging this into (5) yields

T ¼ �0tt �
X1
l¼1

t2l
ll
�0, so �0 ¼

T

tt �
P1

l¼1 ðt
2
l =llÞ

:

Note that since l > 0 ) �lðT Þ ¼ 0, then

eTðT Þ ¼ �0T ¼
T2

tt �
P1

l¼1 ðt
2
l =llÞ

:

This expression can be evaluated by summing the infinite series
P1

l¼1 ðt
2
l =llÞ, which,

up to a constant factor, equals

X1
l¼1

1

l2 !2T2 þ �2l2ð Þ
: ð5 000Þ

Sparing the details, the result for the variance turns out to be

VT ¼
1

2
eTðT Þ ¼

1

m! cothð!TÞ
:

Note that if the computation was restricted to the subspace spanned by
�0,�1, . . . ,�n�1


 �
, the error in equation ð5000Þ – and in the overall expression for VT as

well – would have been of the order of ð1=n3Þ. Under certain conditions, this is also
the error bound for the time-dependent oscillator (section 4).

Next, the ‘probability reduction factor’ is computed. Denote as before
f�0 ¼ t,�1 ¼ sinð�t=TÞ,�2 ¼ sinð2�t=TÞ, . . . , g, and let Vn ¼ spanf�0,�1, . . . ,�n�1g:
Then, from equation (3) and using the well-known results on Gaussian integrals,

Prf ¼

R
xðtÞ exp �SO½xðtÞ�ð ÞDxðtÞR
xðtÞ exp �SF½xðtÞ�ð ÞDxðtÞ

¼ lim

Z
n!1

R
Vn

exp �SO½xðtÞ�ð ÞDxðtÞR
Vn

exp �SF½xðtÞ�ð ÞDxðtÞ
¼ lim

Z
n!1

ffiffiffiffiffiffiffiffiffiffiffi
G

ðnÞ
F

��� ���
G

ðnÞ
O

��� ���
vuuut ð6Þ
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where SO resp. SF are the oscillator resp. free particle actions, and G
ðnÞ
O ,G

ðnÞ
F are

n� n matrices (Grammians) defined by

G
ðnÞ
O

h i
k, l
¼ �k,�lð ÞO, G

ðnÞ
F

h i
k, l
¼ �k,�lð ÞF for 0 � k, l � n� 1:

It is easy to see that G
ðnÞ
F is diagonal with

G
ðnÞ
F

h i
0, 0

¼
mT

2

and for l > 0,

G
ðnÞ
F

h i
l, l
¼

m�2l2

4T
,

thus

G
ðnÞ
F

��� ��� ¼ ðmT=2Þ
Yn�1

k¼1

m�2k2

4T
:

G
ðnÞ
O is ‘nearly diagonal’: using the notations from equations (5 to 5000),

G
ðnÞ
O

h i
k, l
¼ �k,�lð ÞO,

so it can be diagonalized by the process outlined below:

G
ðnÞ
O ¼

tt t1 t2 t3 � � �

t1 l1 0 0 � � �

t2 0 l2 0 � � �

t3 0 0 l3 � � �

..

. ..
. ..

. ..
. . .

.

0
BBBBBBB@

1
CCCCCCCA

!

tt �
t21
l1

0 t2 t3 � � �

t1 l1 0 0 � � �

t2 0 l2 0 � � �

t3 0 0 l3 � � �

..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA

!

tt �
t21
l1
�
t22
l2

0 0 t3 � � �

t1 l1 0 0 � � �

t2 0 l2 0 � � �

t3 0 0 l3 � � �

..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA

! � � �

and so

��GðnÞ
O

�� ¼ tt �
t21
l1
� � � � �

t2n�1

ln�1

� 	Yn�1

k¼1

lk:

Simple and time-dependent imaginary time harmonic oscillator path integrals 799



Computing

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi
G

ðnÞ
F

��� ���
G

ðnÞ
O

��� ���
vuuut

can be done by using some well-known identities for infinite sums and products, and are
omitted here. The result is Prf ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð!TÞ

p
Þ. Combining this with the result for VT

and the fact that  (T ) equals ðPrf=
ffiffiffiffiffiffiffiffiffiffiffiffi
2�VT

p
Þ expð�ðx2=2VTÞÞ yields the well-known

imaginary time harmonic oscillator propagator

Uðx,T; 0, 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!

2� sinhð!TÞ

r
exp �

m! coshð!TÞ

2 sinhð!TÞ
x2

� 	
:

The propagator for the case in which the initial condition is not x¼ 0 can be handled
similarly – see Appendix I.

3.3 What is the uncertainty of a quantum particle’s velocity?

Just as the uncertainty for the particle’s location at time T can be computed from the
norm squared of the functional assigning to each path xðtÞ the value at its endpoint
x(T), one may try and compute the uncertainty of the particle’s velocity at time T,
which is given by the norm squared of the functional xðtÞ ! x0ðT Þ: However,
proceeding as in equations (5 to 5000) yields a series which does not converge and
hence the functional does not have a reproducing kernel in the space of allowed
paths. Alternatively, the norm squared of the functional equals

sup
xðtÞ

x0ðT Þ
2

xk k2
¼

2

m

� 	
sup
xðtÞ

x0ðT Þ
2R T

0 x0ðtÞ2 þ !2x2ðtÞ
� �

dt

and this can be seen to be infinite: for every " > 0, define the path

x"ðtÞ ¼
0 � t � T� "

ðx� Tþ "Þ2T� " � t � T

 �

note that x"ðtÞ is differentiable since the derivatives from left and right at T� " are
both zero. It is straightforward to see that

2

m

� 	
x0"ðT Þ

2R T
0 x0"ðtÞ

2
þ !2x2"ðtÞ

� �
dt

¼
120

"m 20!2 þ 3"2ð Þ
,

which tends to infinity as " tends to zero. Hence the supremum is infinite, and therefore
the uncertainty in the particle’s velocity is infinite. This is not really a new result (e.g. [1])
but the reproducing kernel formalism allows to derive it in a very natural fashion.
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4. Finite-dimensional approximation: the time-dependent oscillator

It is well-known that the propagator can be computed explicitly only in a very small
number of cases. Therefore, there is a considerable interest in efficient approximation
methods, such as Monte-Carlo integration. Another direction is to search for a
finite-dimensional subspace such that the integral over it approximates the integral
over the entire space. Some representative research in both directions is presented
in [6–13]. The rest of this section discusses a natural family of Fourier subspaces for
approximating the propagator of the time-dependent harmonic oscillator, which has
drawn considerable interest. It is known that the Schrödinger equation can be solved
in this case by introducing further differential equations, but these cannot always be
solved explicitly (see [14] which also contains a survey of other works).

A bound on the approximation accuracy is provided. The intuitive idea is that,
if the potential is smooth enough, the high frequencies of the paths do not play
a significant role.

For the time-dependent oscillator, the inner product corresponding to the action is
given by ðx, yÞO ¼ ðm=2Þ

R T
0 x0ðtÞy0ðtÞ þ !ðtÞxðtÞyðtÞ½ �dt and it is, in general, impossible

to calculate exactly the reproducing kernel and the quantities Prf and VT, for the
following reason. While the Grammian G

ðnÞ
O was ‘nearly diagonal’ for a suitable

choice of basis in the time-independent case, that is not so in the time-dependent
case. This makes the computation of the reproducing kernel, as well as jG

ðnÞ
O j, more

difficult. However, under some assumptions, it is possible to obtain reasonable
finite-dimensional approximations to the two quantities which determine the wave
function – VT and Prf. The bases for these sub-spaces are the same as that used in
section 3. Intuitively, these bases are ‘nearly orthogonal’ under the inner product
used, which accounts for the quick convergence as the subspace dimension increases.

4.1 Assumption on the potential

It is henceforth assumed that the time-dependent part of the oscillator potential (i.e., the
frequency) varies slowly enough in time so that its Fourier coefficients decrease
as a power of the Fourier coefficient. Formally, assume that there exist constants
C1 > 0, d > 0 such that for every T>0 and every integer l,

Z T

0

!ðtÞ sin
l�t

T

� 	
dt

����
����,

Z T

0

!ðtÞ cos
l�t

T

� 	
dt

����
���� � C1T

ld
ð7Þ

Z T

0

t!ðtÞ sin
l�t

T

� 	
dt

����
����,

Z T

0

t!ðtÞ cos
l�t

T

� 	
dt

����
���� � C1T

2

ld
ð70Þ

the extra T in equation (70) is due to the extra t in the integrand.
Since

sin
l�t

T

� 	
sin

k�t

T

� 	
¼

cosððl� kÞ�tÞ=T� cosððlþ kÞ�tÞ=T

2
,
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it immediately follows that if k > l > 0, then

Z T

0

!ðtÞ sin
l�t

T

� 	
sin

k�t

T

� 	
dt

����
���� � 1

2

C1T

ðk� lÞd
þ

C1T

ðkþ lÞd

� 	
�

C1T

ðk� lÞd
ð700Þ

4.2 Subspaces used for approximation

The set of increasing subspaces used for approximating the propagator uses the basis
introduced in section 3:

Vn ¼ span t, sin
�t

T

� �
, sin

2�t

T

� 	
, . . . , sin

�ðn� 1Þt

T

� 	 �

(see also [6]). The rest of this section is devoted to proving that the quantities VT and Prf

can be approximated by computing them on Vn: It is shown that these quantities, when
computed on Vn, differ from the values on the entire function space by a factor no
greater than 1þ ð1=n1þminf2, 2dgÞ.

4.2.1 Approximating VT. First, a few definitions:

. For the sake of brevity, let us drop the O subscript from the oscillator inner
product, so unless specified otherwise it will be denoted hereafter by ðx, yÞ ¼
ðm=2Þ

R T
0 x0ðtÞy0ðtÞ þ !ðtÞxðtÞyðtÞ½ �dt (the ðm=2Þ factor will be left out since it does

not affect the results of this section). Denote ðx, yÞF ¼
R T
0 x0ðtÞy0ðtÞdt. Note that

since !ðtÞ � 0, kxk2 � kxk2F for every x(t).
. Denote by Kn the reproducing kernel for the evaluation at T under the inner product
(x, y), restricted to Vn. This means that Kn is the (only) function in Vn which satisfies
ðKn, xÞ ¼ xðTÞ for every function (path) xðtÞ 2Vn.

. If Knþ1 denotes the reproducing kernel for Vnþ1, define the ‘residual’ �n � Knþ1 � Kn.

. For brevity, denote snþ1 � sinðn�t=TÞ. Note that Vnþ1 ¼ spanfVn, snþ1g:

A few lemmas follow. Before proceeding with the technicalities, some motivation. The
idea is to prove that �n, the ‘residual’ between the reproducing kernels for Vn and Vnþ1,
is nearly parallel to snþ1. This follows from the fact that snþ1, which is the ‘residual’
between Vn and Vnþ1, is nearly perpendicular to Vn. It is well-known that an orthogonal
basis allows to obtain good approximations to the norm squared of a functional; if the
orthogonal basis is fulg, the norm squared of the functional F is

P1

l¼1 ðF
2ðulÞ=kulk

2Þ, and
usually the summands decrease quickly enough so that truncating the infinite sum
quickly allows a good approximation. So, one could consider using a Gram–Schmidt
process to construct an orthogonal basis; but alas, it will have to be recomputed for
every T. Here, the basis is ‘almost orthogonal’ (Lemma 4), which allows to obtain
good finite-dimensional approximations.

LEMMA 1 �n 2V?
n .

Proof Let vn 2Vn. Then ðKn, vnÞ ¼ vnðT Þ: Since vn 2Vnþ1 also, then ðKnþ1, vnÞ ¼ vnðT Þ:
But ðKnþ1, vnÞ ¼ ðKn þ�n, vnÞ ¼ ðKn, vnÞ þ ð�n, vnÞ ¼ vnðT Þ þ ð�n, vnÞ, so ð�n, vnÞ ¼ 0.

LEMMA 2 ksnþ1k
2 � ð�2n2=2T Þ.
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Proof

snþ1

�� ��2� snþ1

�� ��2
F
¼

Z T

0

sin
n�t

T

� �0� �2
dt ¼

�2n2

2T
:

LEMMA 3 Let vn 2Vn, denote vn ¼ a0tþ
Pn�1

l¼1 al sinð�lt=TÞ. Then kvnk
2 � a20Tþ

ð�2=2T Þ
Pn�1

l¼1 l2a2l .

Proof kvnk
2 � kvnk

2
F, but all the summands of vn are orthogonal under ð, ÞF, so

kvnk
2 � a20ktk

2
F þ

Pn�1
l¼1 a2l ksinðl�t=TÞk

2
F ¼ a20Tþ ð�2=2T Þ

Pn�1
l¼1 l2a2l .

LEMMA 4 There exists a constant C2 such that if vn 2Vn, then

snþ1, vnð Þ
2
� C2

vnk k2ksnþ1k
2

n2þmin 2d, 2f g
T4:

Proof Denote

vn ¼ a0tþ a1sin
�t

T

� �
þ a2sin

2�t

T

� 	
þ � � � þ an�1 sin

ðn� 1Þ�t

T

� 	
:

Since

t, snþ1ð ÞF ¼ sin
�t

T

� �
, snþ1

� �
F
¼ � � � ¼ sin

ðn� 1Þ�t

T

� 	
, snþ1

� 	
F

¼ 0,

the assumptions in equations (7 to 700) can be used to bound ðsnþ1, vnÞ:

j snþ1, vnð Þj � ja0 t, snþ1ð Þj þ
Xn�1

l¼1

al sin
l�t

T

� 	
, snþ1

� 	����
���� � C1

a0j jT2

nd
þ
Xn�1

l¼1

alj jT

ðn� lÞd

" #
:

Since for every A,B � 0, ðAþ BÞ2 � 2ðA2 þ B2Þ, then

snþ1, vnð Þ
2
� 2C2

1

a20T
4

n2d
þ

Xn�1

l¼1

alj jT

ðn� lÞd

 !2
2
4

3
5:

Using the Cauchy–Schwartz inequality,

Xn�1

l¼1

alj jT

ðn� lÞd

 !2

¼ T2
Xn�1

l¼1

l alj j
1

lðn� lÞd

 !2

� T2
Xn�1

l¼1

l2a2l

 ! Xn�1

l¼1

1

l2ðn� lÞ2d

 !
:

From Lemma 3, the second product term is bounded by ð2T=�2Þkvnk
2, and it can be

shown that the third product term behaves like 1=ðnmin 2, 2df gÞ (up to a constant which
varies very slowly as a function of dÞ. Since ksnþ1k

2 � ð�2n2=2T Þ (Lemma 2), it
follows that ð

Pn�1
l¼1 ðð alj jTÞ=ðn� l ÞdÞ2 is bounded from above by a constant times
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T4=ðn2þmin 2, 2df gÞksnþ1k
2kvnk

2. 2C2
1½a

2
0T

4=n2d�, the other summand compromising the
bound for ðsnþ1, vnÞ

2, can be bounded by observing that kvnk
2 � a20T (Lemma 3) and

ksnþ1k
2 � ð�2n2=2T Þ (Lemma 2), hence

2C2
1

a20T
4

n2d

� �
¼

2C2
1T

4 a20T
� �

�2n2=T
� �

�2n2n2d
�

2C2
1

�2n2þ2d
kvnk

2ksnþ1k
2

which concludes the proof. For brevity, denote the bound (with the T powers in the
numerator and the power of n in the denominator thrown in) by C(n). To summarize
then, if vn 2Vn, then ðsnþ1, vnÞ

2
� CðnÞkvnk

2ksnþ1k
2. Since for large n, C(n) is very

small, vn and snþ1 are indeed ‘nearly orthogonal’, since their inner product is far smaller
than the product of their norms.

LEMMA 5 ð�n, snþ1Þ
2
� 1� CðnÞ½ �k�nk

2ksnþ1k
2.

Proof Since Vnþ1 ¼ Vn 	 spanf�ng (Lemma 1), snþ1 can be (uniquely) represented as
sVn

nþ1 þ s�n

nþ1, with sVn

nþ1 2Vn, s�n

nþ1 2 spanf�ng. It is well-known from linear algebra that
ksnþ1k

2 ¼ ksVn

nþ1k
2 þ ks�n

nþ1k
2, and that

sVn

nþ1

�� ��2¼ snþ1, s
Vn

nþ1

� �2
sVn

nþ1

�� ��2 :

But from Lemma 4,

snþ1, s
Vn

nþ1

� �2
sVn

nþ1

�� ��2 � CðnÞksnþ1k
2,

from which the proof follows immediately.

LEMMA 6 ðKn, snþ1Þ
2
¼ ð�n, snþ1Þ

2.

Proof Since snþ1ðT Þ ¼ 0, ðKnþ1, snþ1Þ ¼ 0: But ðKnþ1, snþ1Þ ¼ ðKn, snþ1Þ þ ð�n, snþ1Þ,
hence ðKn, snþ1Þ ¼ �ð�n, snþ1Þ, and squaring both sides concludes the proof.

LEMMA 7 CðnÞ=ð1� CðnÞÞkKnk
2 � k�nk

2.

Proof Using the fact that Kn 2Vn and Lemma 4, ðKn, snþ1Þ
2
� CðnÞkKnk

2ksnþ1k
2.

Combining this with Lemmas 5 and 6 yields

CðnÞ Knk k2ksnþ1k
2 � ðKn, snþ1Þ

2
¼

Lemma 6
ð�n, snþ1Þ

2
�

Lemma 5
ð1� CðnÞÞ �nk k2ksnþ1k

2,

from which the proof follows by cancelling out ksnþ1k
2 and dividing by 1� CðnÞ.

Finally, the norm on Vnþ1 can be bounded by the norm on Vn:

THEOREM 1

kKnþ1k
2 �

1

1� CðnÞ
kKnk

2:
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Proof By definition, Knþ1 ¼ Kn þ�n. From Lemma 1, ðKn,�nÞ ¼ 0, hence

Knþ1

�� ��2¼ Knk k2þ �nk k2 �
Lemma 7

Knk k2 1þ
CðnÞ

1� CðnÞ

� 	
¼

Knk k2

1� CðnÞ
:

If CðnÞ 
 1 (which will hold for a large enough n, since C(n) falls rapidly as a
function of nÞ, it can be assumed that kKnþ1k

2 � 1þ CðnÞ½ �kKnk
2.

THEOREM 2 The norm squared of eT restricted to Vn approximates the norm squared on
the entire Sobolev space to a factor of 1þ CðT4=n1þmin 2, 2df gÞ, where C is a constant.

Proof In order to bound the ratio between the norm squared restricted to Vn and the
norm squared on the entire space, it suffices to multiply the bounds on the ratios
between the norm squared restricted to VN and VNþ1, for n � N <1. Using
Theorem 1 and bearing in mind that CðNÞ � ðCT4=N2þminf2, 2dgÞ for some constant C,
the infinite product over this range of N is bounded by (use expð�Þ � ð1þ �Þ for �
 1Þ

Y1
N¼n

1þ C
T4

N2þminf2, 2dg

� 	
ffi
Y1
N¼n

exp C
T4

N2þminf2, 2dg

� 	

¼ exp
X1
N¼n

C
T4

N2þminf2, 2dg

 !

ffi exp C
T4

n1þminf2, 2dg

� 	
ffi 1þ C

T4

n1þminf2, 2dg
:

Note that if d � 1, the approximation error is of the order 1/n3, which is the same order
of approximation obtained for the simple harmonic oscillator (see section 3).

Note that the bound increases with T – this is because as T increases, more and
more paths are allowed to ‘enter the game’; there will be more paths with a small
action (i.e., small derivatives) and with greater variance at the endpoint, and thus
a higher-dimensional subspace is required to obtain a good approximation. As is
shown next, under reasonable assumptions, the T4 factor is not of great concern
when approximating Prf, since Prf decreases much more rapidly. Also, other conditions
than those assumed in equations (7 and 70) may yield bounds which depend on a lower
power of T.

4.2.2 Approximating Prf. In section 3 (equation (6)) it was shown that the
‘probability reduction factor’ equals

Prf ¼ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi
G

ðnÞ
F

��� ���
GðnÞ
�� ��

vuut
,

where GðnÞ and G
ðnÞ
F are, respectively, the Grammians of the oscillator and free particle

inner product:

��GðnÞ
k, l

�� ¼ (�k,�lÞ and
��GðnÞ

Fk, l

�� ¼ (�k,�lÞF:
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It was also shown that

��GðnÞ
F

�� ¼ T
Yn�1

k¼1

�2k2

2T

(here m ¼ 1Þ. In order to estimate the quality of approximation of Prf on Vn, one can
first study the ratio between the approximations on Vnþ1 and Vn, which equals

��Gðnþ1Þ
F

����Gðnþ1Þ
��
,��GðnÞ

F

����GðnÞ
��

0
@

1
A

1=2

¼

��Gðnþ1Þ
F

����Gðnþ1Þ
�� GðnÞ
�� ����GðnÞ

F

��
 !1=2

¼
�2n2

2T

��GðnÞ
����Gðnþ1Þ
��

 !1=2

ð8Þ

The next step is to bound jGðnþ1Þj from both sides. Had the basis

�0 ¼ t,�1 ¼ sin
�t

T

� �
,�2 ¼ sin

2�t

T

� 	
, . . .

 �

been orthogonal, the task would be simple, as then jGðnþ1Þj ¼ k�nk
2jGðnÞj would hold.

But although the basis is not orthogonal, it is ‘nearly orthogonal’, since – as proved
in Lemma 4 – the norm squared of the projection of snþ1 ¼ �n on Vn is bounded
from above by

C2
T4

n2þmin 2d, 2f g
ksnþ1k

2:

This can be used via the following.

LEMMA 8 Denote the projection of �n on Vn by �Vn
n (so for every 0 � l � n� 1,

ð�n � �
Vn
n ,�lÞ ¼ 0Þ. Then jGðnþ1Þj ¼ ð�n,�n � �

Vn
n ÞjGðnÞj.

Proof Let �Vn
n ¼

Pn�1
k¼0 ak�k. Denote the rows of Gðnþ1Þ by L0,L1, . . . ,Lnf g. The

determinant is preserved under Ln ! Ln �
Pn�1

k¼0 akLk, which changes the lth element
of the last row thusly:

ð�l,�nÞ ! ð�l,�nÞ �
Xn�1

k¼0

akð�l,�kÞ ¼ �l,�n �
Xn�1

k¼0

ak�k

 !

¼ �l,�n � �
Vn
n

� �
¼

0 l < n

ð�n,�n � �
Vn
n Þ l ¼ n



and the proof follows immediately by expanding the determinant by the last row.
From Lemma 4, it follows that 1� CðnÞ½ �k�nk

2 � ð�n,�n � �
Vn
n Þ � k�nk

2.
From equation (8), and since �n ¼ snþ1, it follows that

1� CðnÞ½ �
�2n2

2Tksnþ1k
2
�

��Gðnþ1Þ
F

����Gðnþ1Þ
��
,��GðnÞ

F

����GðnÞ
�� � �2n2

2Tksnþ1k
2

ð9Þ

Now,

ksnþ1k
2 ¼

Z T

0

sin0
n�t

T

� �2
þ!ðtÞ sin2ðn�tÞ

� �
dt ¼

�2n2

2T
þ

Z T

0

!ðtÞ
1� cosð2n�tÞ

2

� 	� �
dt:
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Denoting
R T
0 !ðtÞdt � WðT Þ and using equation (7) yields

�2n2

2T
þ
WðT Þ

2
�
C1T

nd
� ksnþ1k

2 �
�2n2

2T
þ
WðT Þ

2
þ
C1T

nd

)
1

1þ ðTWðT Þ=�2n2Þ þ ð2C1T2=�2ndþ2Þ
�

�2n2

2Tksnþ1k
2

�
1

1þ ðTWðT Þ=�2n2Þ � ð2C1T2=�2ndþ2Þ

and if n is large enough, use 1=ð1þ �Þ � 1� � for �
 1 to obtain

1�
TWðT Þ

�2n2
�

2C1T
2

�2ndþ2
�

�2n2

2Tksnþ1k
2
� 1�

TWðT Þ

�2n2
þ

2C1T
2

�2ndþ2
:

Combining this with equation (9) yields

1� CðNÞ½ � 1�
TWðT Þ

�2N2
�

2C1T
2

�2Ndþ2

� 	
�

��GðNþ1Þ
F

����GðNþ1Þ
��
,��GðNÞ

F

����GðNÞ
�� � 1�

TWðT Þ

�2N2
þ

2C1T
2

�2Ndþ2

ð10Þ

As before, in order to estimate the value of the approximation on Vn, one has to
estimate the infinite product of the upper and lower bounds in equation (10),
for n � N <1. Proceeding as before, the bound for the 1� CðNÞ factor is
1� CðT4=n1þminf2, 2dgÞ for some constant C. It remains to bound

Y1
N¼n

1�
TWðT Þ

�2N2
�

2C1T
2

�2Ndþ2

� 	

and

Y1
N¼n

1�
TWðT Þ

�2N2
þ

2C1T
2

�2Ndþ2

� 	
:

However, these expressions have no unknown factors such as C(N); in some cases
(e.g. d ¼ 2Þ they can be computed explicitly, or they can be estimated using the
approximation

1�
TWðT Þ

�2N2
þ

2C1T
2

�2Ndþ2
� 1�

TWðT Þ

�2N2

� 	
1þ

2C1T
2

�2Ndþ2

� 	
:

It follows then that Prf can be approximated with the same accuracy as VT.

Remark If one is interested in the ground state energy, the T4 factor is usually
of no concern, since Prf is much smaller than ð1=T4Þ. For example, if !(t) is
bounded from below by a constant K > 0, then the norm squared of the
corresponding inner product is bounded from below by the norm squared of
the corresponding simple oscillator norm with ! ¼

ffiffiffiffi
K

p
; since larger norm means
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smaller probability reduction factor (equation (3)), the probability reduction
factor for the time-dependent oscillator is bounded from above by the probability
reduction factor for the simple oscillator with ! ¼

ffiffiffiffi
K

p
, which equals

ð1=coshð
ffiffiffiffi
K

p
T ÞÞ, hence a good approximation can be obtained in a low-dimensional

subspace.

5. Concluding remarks and future work

A reproducing kernel approach was applied to calculate the free particle and simple
harmonic oscillator propagators. It was shown that the propagator at any time T is
a Gaussian; as such, it is determined by its variance and a multiplicative factor. The
variance is half the value of the reproducing kernel at t¼T, and the multiplicative
factor (probability reduction factor) equalsR

xðtÞ exp �S ½xðtÞ�ð ÞDxðtÞR
xðtÞ exp �SF½xðtÞ�ð ÞDxðtÞ

,

where S½xðtÞ� resp: SF½xðtÞ� are the actions of the harmonic oscillator resp. free particle.
In this case, the reproducing kernel and ‘probability reduction factor’ can be

calculated exactly. For the time-dependent oscillator, such a calculation is impossible,
in general. However, if the oscillator frequency changes slowly enough in time, then
an efficient finite-dimensional approximation can be constructed, using the fact that
the variance is half the norm squared of the evaluation functional at T. An increasing
sequence of finite-dimensional subspaces is chosen so that the ‘increment’ between
successive subspaces has a relatively small value at T, but a large norm; this allows
to bound the ratio between the functional’s norm on successive subspace, and
by multiplying these bounds, the ratio between the norm on subspaces and the
entire space can also be bounded. This also allows to approximate the ground
state energy.

It was also shown that the functional assigning to each path its derivative at T is
unbounded, which proves that the uncertainty associated with the particle’s velocity
is infinite.

Some possibilities for future research are:

. Can the finite-dimensional approximations be improved? It is possible that there are
better bases than the Fourier one, for some potentials. Also, it may be the case that
the asymptotic behaviour of the Fourier (or other) coefficients of the potentials is
known (and not only an upper bound). That will allow to better approximate the
variance and ‘probability reduction factor’.

. Non-quadratic potentials. Although the Gaussian integral formalism does not apply
in this case, it may be possible to derive good finite-dimensional approximations
using the same idea employed here – seek an increasing sequence of subspaces
such that the ‘increments’ have a large action and a small value for the evaluation
functional.

. Treat variation in time of the oscillator frequency which is not smooth (e.g. step
function, a sum of delta functions).
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Appendix I: Uðx,T; x0,0) for x0 6̂ 0

So far, it was assumed that  ð0Þ ¼ �ðxÞ, which meant that the integration was
performed over the space of paths x(t) satisfying xð0Þ ¼ 0: In order to find the general
propagator, assume xð0Þ ¼ x0: The computation proceeds very much like before;
alas, care should be taken; because now the space of paths is obviously not a linear
space, and the results on integration over Hilbert spaces cannot be used directly.
In order to compute the integral, a change of variable is performed which maps the
space to the space of paths satisfying xð0Þ ¼ 0, while preserving the probability
associated with the paths satisfying xð0Þ ¼ x0: The details follow.

Define Px0 ¼ fxðtÞj xð0Þ ¼ x0g, P0 ¼ fxðtÞj xð0Þ ¼ 0g: In order to compute the expec-
tation at T, one needs to compute

R
Px0

xðT Þ expð�kxk2ÞDx, under the normalizationR
Px0

expð�kxk2ÞDx ¼ 1. Denote by hx0 the path satisfying xðtÞ ¼ x0 for all t.
Under the translation xðtÞ ! xðtÞ � hx0 , the integral transforms to

R
P0

xðT Þ þ x0½ � �

expð�kx þ hx0k
2ÞDx under the normalization

R
P0
expð�kxþ hx0k

2ÞDx ¼ 1, or simply

R
P0

xðT Þ þ x0½ � exp �kxþ hx0k
2

� �
DxR

P0
exp �kxþ hx0k

2
� �

Dx
¼ x0 þ

R
P0
xðT Þ exp �kxþ hx0k

2
� �

DxR
P0
exp �kxþ hx0k

2
� �

Dx

¼ x0 þ

R
P0
ðx, eTÞ exp �kxþ hx0k

2
� �

DxR
P0
exp �kxþ hx0k

2
� �

Dx
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according to the theory of Gaussian integrals and cylindrical measures [10], the
integral can be reduced to a one-dimensional integral over span eTf g, and it equals
�ðhx0 , eTÞ (note that this does not equal �hx0 ðT Þ, since eT is the reproducing
kernel for P0, not Px0Þ. According to the definition of the inner product in P0

(equation (2)), ðhx0 , eTÞ ¼ ðm!2x0=2Þ
R T
0 eTðtÞdt. This integral can be computed using

standard results on infinite sums, and the expectation turns out to be
ðx0=coshð!TÞÞ: Similarly VT and Prf can be computed.

Appendix II: Computing the ground state energy

The imaginary time propagator is given by UðT; 0Þ ¼
P1

n¼0 expð�EntÞ Enj i Enh j,
where En is the nth energy level and Enj i resp: Enh j the ket resp. bra nth energy
eigenstate.

So, for large T, UðT; 0Þ � expð�E0T Þ E0j i E0h j. If the initial state is the delta function,
then the state at T is UðT; 0Þ �ðxÞ

�� �
� ðexpð�E0T Þ E0j i E0h jÞ �ðxÞ

�� �
¼ expð�E0T ÞE0ð0Þ E0j i,

where ð E0j iÞð0Þ is replaced by the more convenient notation E0ð0Þ. Using the results of
section 2,

exp �E0Tð ÞE0ð0Þ E0j i �
Prfffiffiffiffiffiffiffiffiffiffiffiffi
2�VT

p exp �
x2

2VT

� 	
:

Assuming E0j i is normalized, then since E0j i roughly equals expð�ðx2=2VTÞÞ up to
a scale factor, it follows immediately that E0j i � ð�VT Þ

�ð1=4Þ expð�ðx2=2VTÞÞ,
and therefore expð�E0T ÞE0ð0Þ E0j i � expð�E0T Þð�VT Þ

�ð1=2Þ expð�ðx2=2VT ÞÞ, hence
expð�E0T Þ � ðPrf=

ffiffiffi
2

p
Þ ) E0 � �ðlogðPrfÞ=T Þ for large enough T. Thus, the ground

state energy can be approximated to within a desired accuracy using the results derived
in section 4 for the approximation of Prf.
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