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Abstract— Collision-avoiding motion planning for articulated
robotic arms is one of the major challenges in robotics. The
difficulty of the problem arises from its high dimensionality
and the intricate geometry of the feasible space. Our goal is
to seek large convex domains in configuration space, which
contain no obstacles. In these domains, simple linear trajectories
are guaranteed to be collision free, and can be leveraged for
further optimization. To find such domains, practitioners have
harnessed a methodology known as Sum-Of-Squares (SOS)
Programming. SOS programs, however, are notorious for their
poor scaling properties, which makes it challenging to employ
them for complex problems. In this paper, we explore a simple
formulation for a two-dimensional arm, which results in smaller
SOS programs than previous suggested ones. We show that
this formulation can express a variety of scenarios in a unified
manner.

I. INTRODUCTION

Finding collision free trajectories for robotic arms is a
fundamental problem in robotics. A wide variety of strategies
are available, ranging from gradient-based trajectory opti-
mization methods to random sampling techniques such as
the Rapidly Exploring Random Tree approach. One notable
approach aims to identify large convex domains in Configu-
ration space (C-space) that are devoid of obstacles. A linear
path between two points in such domains is guaranteed to
be collision-free. By combining several such domains, it is
possible to find paths between any two points. Furthermore,
these domains can be leveraged in order to find initial
trajectories for further optimization or for a more efficient
sampling.

Our goal is to devise a strategy for finding large convex
domains in C-space. Towards this end, researchers have
previously formulated the problem as a Sum-Of-Squares [1],
[2] (SOS) Program. In its most basic form, an SOS program
asks whether a given polynomial can be expressed as a sum-
of-squares of polynomials. The problem was conceived by
Minkowski in his dissertation and inspired Hilbert’s 17th
problem. The SOS paradigm has later been expanded and
led to a sequence of theorems known as Positivstellensatz
(Psatz), which today form the foundations of SOS optimiza-
tion. In particular, SOS programs have been found useful
for determining whether objects along a trajectory collide.
This is often referred to as a certificate, that is, an SOS
decomposition of a certain polynomial (or lack thereof)
provide a certificate of no collision.

While SOS programs provide a powerful tool for path
planning, they are also notorious for their complexity and
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somewhat elusive nature. First, the required degree of the
polynomial required for the certificate is generally unknown,
although there exists a loose upper bound [3]. That means
that while a low-degree polynomial might not be able to
provide the certificate, a high-degree polynomial might.
Second, the complexity of the problem scales like nd, where
n is the dimension (number of variables) of the polynomial,
and d its degree. Hence, certificates with lower degrees are
desirable.

Finding the minimal formulation is an open problem [3].
The focus of this manuscript is the simple case of articulated
arms in two dimensions, as it more clearly reveals the
fundamentals of this problem. We propose a methodology
that requires fewer variables and can address polygonal and
polynomial free-form obstacles, which are not necessarily
convex. Given a robot configuration and a set of obstacles,
we find the maximal ranges of motion for all joints such that
no collisions occur. We evaluate our approach experimentally
in simulation and demonstrate our favorable scaling proper-
ties.

To summarize, our formulation provides the following:

1) Requires only low degree polynomials.
2) Returns a collision-free convex region in joint space.
3) Can treat non-convex polygons and non-convex, free-

form polynomial obstacles in a unified manner.

II. RELATED WORK

Methods based on trajectory optimization, or random
sampling, are among the more popular choices for motion
planning problems. Indeed, they are generally simple to
implement and provide satisfactory results. However, both
have limitations. Gradient-based optimization methods [4]
require an initial guess, and in some cases, this initial
guess must be collision-free. To obtain a valid initialization,
sampling-based methods are sometimes employed. These
methods, e.g. random trees [5] and roadmaps [6], struggle
in high dimensions and narrow C-spaces, where chances of
accepting samples are low. This issue can be overcome by
identifying and utilizing large convex regions in C-space.
The approach can be traced back to the pioneering work of
Lozano-Perez [7]. Sampling from a convex region is simpler
and, in addition, a linear path from the current configuration
to the sampled one is guaranteed to be collision-free. Finding
convex regions in the C-space is, however, a daunting task.
The problem can be approached from a geometric point of
view, as in [8]–[10]. Another alternative, which we study in
this paper, relies on SOS Programming, and we discuss a
few notable examples here.



SOS programming has been used in multiple contexts
within robotics, such as inverse kinematics [11] and Lya-
punov stability [12], [13]. It has also become a powerful tool
in optimization and geometry processing [3], [14]–[18]. In
recent years, SOS programming has been applied directly
to collision avoidance [19], [20], with two recent papers
[21], [22] particularly relevant to our work. Both papers
formulate the SOS problem in a similar fashion, and we
also follow an SOS-based paradigm, as described in detail
in Sec. III. Briefly, [21] solves a simple problem: to find a
maximal square region in the C-space for a two-link robot,
with a linear obstacle, i.e. a wall. The paper only considers
the end-effector for collisions, and in order to obtain a
polynomial expression, the trigonometric functions in the
forward kinematics formula are approximated by their Taylor
expansions. In contrast, [22] tackles a more general problem,
with more complex arms and obstacles in 3 dimensions. The
algorithm also seeks a more general, polyhedral region in
C-space. Following in the spirit of these papers, we propose
a formulation that is more accurate and generic than [21],
and more compact and direct than [22], in particular for the
2D case.

III. METHOD

A. Preliminaries

The SOS paradigm is a powerful technique for inference
in polynomial systems [3], [23]. We begin with a simple,
illustrative example to motivate the use of SOS programming
for collision avoidance. Let O denote a set in the plane
implicitly defined by a function p, i.e. O = {(x, y)|p(x, y) ≤
0}, and let C = {(g1(t), g2(t))} denote a plane curve with
parameter t. How can we check if C and O intersect, i.e., if
C∩O = ∅? One approach is to substitute C in O, which yields
the function f(t) = p(g1(t), g2(t)). If f(t) > 0 for every t,
then the intersection is necessarily empty; see a schematic
depiction in Fig. 1. A systematic approach to prove that f(t)
is positive for general functions is, of course, intractable.
What if we could assume that p, g1, g2 are all polynomials?
This case is still too broad, but it turns out that there is a
weaker but much simpler condition; If

f(t) =
∑

p2i (t),

that is, if f(t) is a sum-of-squares (SOS) of polynomials,
then clearly f(t) ≥ 0. In practice, while testing polynomial
positivity is NP-hard [24], testing whether a polynomial is
SOS can be done by solving a Semi-Definite Program (SDP)
[25]. If the problem is feasible, i.e. a feasible solution exists,
then an SOS decomposition can be derived from it. However,
the solution itself is rarely sought; it is its existence that truly
matters.

Our focus is set on a class of problems slightly more
generic. To illustrate, assume now that C is limited to t ∈
[0, 1]. How can we incorporate this condition into the SOS
framework? If, for example, we show that there exist SOS
polynomials σ0(t), σ1(t) such that

f(t) = σ0(t) + t(1− t)σ1(t), (1)

0 1 0 1
Fig. 1: Given an implicit domain p(x, y) ≤ 0 and a curve
(g1(t), g2(t)), finding if they intersect is as “simple” as determining
whether p(g1(t), g2(t)) is always positive or not. We rely on SOS pro-
gramming to achieve that.

then f(t), although not necessarily positive for all t, is
positive for 0 ≤ t ≤ 1. Identities such as (1) are referred
to as Positivestellensatz (PSatz) or, certificates of positivity.
The question whether such σi’s of certain degrees exist can
also be transformed into an SDP. A well-known result, some-
times known as Putinar’s PSatz, states that, under certain
conditions, such certificates exist for every polynomial that
is positive on a certain set.

Theorem 1 (Putinar, [26]). Let a set W in Euclidean space
Rm be defined by W = {x | fi(x) ≥ 0, gj(x) = 0}, where
fi, gj are polynomials and x = (x1, . . . , xm). Define the
quadratic module associated with W by

Q = {σ0 +
∑
i

σifi +
∑
j

πjgj},

where σi are SOS polynomials, and πj are arbitrary poly-
nomials. If a positive real number L exists such that L −∑m

k=1 x
2
k ∈ Q (a module satisfying this property is called

Archimedean), and p(x) > 0 on W , then p(x) ∈ Q.

Intuitively, the theorem asserts that p(x) > 0 on W
iff it can be written as a combination of the polynomials
which define Q. In that case, we can say that we obtained
a certificate of positivity. As mentioned, finding a solution
can be done via SDP. Note that the minimal required degrees
of σi and πj is generally not known, although loose upper
bounds exist [3]. This means that if we have found the SDP
for a certain degree to be infeasible, an SDP derived from
a higher degree might still be feasible. Thus, a common
strategy is to begin testing with low order polynomials, which
are faster to solve, and, if feasibility testing fails, increase
the degree [22], [23]. We show in our experiments that with
our formulation, the lowest possible degree polynomials are
sufficient to determine a maximal region in C-space.



B. Overview

Our setting involves a single robotic arm in 2D, with n
revolute joints, in an environment scattered with obstacles.
Following [21], we parameterize the state of the robot with
absolute angles. This somewhat unusual choice is due to
forward kinematics being additive in this case, instead of
multiplicative, which in turn has computational benefits (Sec.
III-C). We denote the initial state by Θ0 = (θ01, . . . , θ

0
n).

Given a collision-free state Θ0, we seek the largest collision-
free range of motion, in terms of joint angles. More precisely,
we find the largest δ such that for any θi ∈ [θ0i −δ, θ0i +δ], the
state Θ = (θ1, . . . , θn) is also collision-free (Fig. 2). The rest
of the paper is organized as follows. in Sec. III-D, we first
treat polynomial obstacles, then convex polygonal objects in
Sec. III-G, and finally line segments (which include the case
of non-convex polygonal obstacles). In Sec. IV we evaluate
our approach experimentally and discuss its performance.
Finally, in Sec. V we offer conclusions and a glimpse of
future work.

C. State representation

A first step towards an SOS formulation is to express any
point on the arm, for any set of joint angles Θ, as a polyno-
mial. We refer to joints and end-effector R1, . . . ,Rn+1, and
to the links by Li, i = 1, . . . , n. For simplicity, we assume
that all link lengths are equal to 1 and that the root joint R1

is positioned at the origin. In absolute angles, the position
of Rj , in its initial state, is simply given by

j−1∑
i=1

(cos(θ0i ), sin(θ
0
i )).

We note that with relative angles, the position is a more
complex expression that involves products. Next, we make a
change of variables:

ci = cos(θi), si = sin(θi), where c2i + s2i = 1, (2)

and denote c0i = cos(θ0i ), s0i = sin(θ0i ). After rotating of
every joint by θi we obtain:

Rj(cj−1, sj−1) =

j−1∑
i=1

(cic
0
i−sis

0
i , cis

0
i+sic

0
i ) =

j−1∑
i=1

pi(ci, si),

where cj = (c1, . . . , cj) and similarly for si, and pi(ci, si)
is defined accordingly. Any point on link Lj can be written
as

Lj(cj , sj , tj) = Rj(cj , sj) + tjpj(cj , sj), tj ∈ [0, 1],

where we introduced the parameter tj for that link. We
note that the expression Lj(cj , sj , tj) ∈ R2 involves two
polynomials in cj , sj , tj , with 2j+1 variables overall, where
the only non-linear term is the last bilinear one (note that tj
multiplies cj and sj).
Remark. We note that different representations have been
proposed recently. We discuss this in Sec. III-F.

Fig. 2: An overview of our setting. Given a robot arm in a certain
configuration, we seek the maximal range of motion δ for all joints, such
that no collision occurs. The illustration shows many possible configurations
of the arm as shadows. We describe the state in absolute angles, in order
to obtain a more compact problem (Sec. III-C).

D. Polynomial obstacles

As in the schematic description in Sec. III-A, we define
an obstacle implicitly by

C = {x = (x, y) | q(x) ≤ 0},

where x = (x, y) and q(x) : R2 → R is a polyno-
mial of degree d. Note that this representation allows free-
form, non-convex, obstacles. A link Lj intersects C iff
q(Lj(cj , sj , tj)) < 0 for any cj , sj , tj . Conversely, Lj never
intersects C if

q
(
Lj(cj , sj , tj)

)
> 0, ∀cj , sj , tj .

Again, note that q
(
Lj(cj , sj , tj)

)
is a polynomial, with

degree 2d that originates in the single bilinear term of
Lj(cj , sj , tj).

Recalling our goal of finding the largest collision-free δ,
the constraint we impose on θi is |θi| < δ. Given our change
of variables in (2), we can write it equivalently as T−s2i > 0,
where T = sin2(δ). Moreover, we require that ci ≥ 0, so
that rotations are restricted to [−π/2, π/2]; this is necessary,
in order to maintain a range in which sin2(α) is monotonic
in |α|. Together with the constraints in (1) and (2), Putinar’s
PSatz for this problem is

q(Lj) = σ0 + (1− tj)tjσ1

+

j−1∑
i=1

[
(T − s2i )σ

i
2 + ciσ

i
3 + (c2i + s2i − 1)πi

]
,

(3)

where σ0, σ1, σ
i
2, σ

i
3 are SOS, and πi are general polynomi-

als, all in cj , sj , tj . We chose the degree of σ0 as 2d, and of
all the other polynomials as 2d− 2.

Equating the coefficients of all monomials on the left and
right hand sides of (3) results in a set of constraints Cj(α) =
0, where α is a vector containing all coefficients. With this,
our optimization problem can finally be presented:

max
α

T

s.t. Cj(α) = 0, j = 1, . . . , n.
(4)

See Sec. IV for a more detailed analysis of the cardinality
of the coefficient set.

Lastly, we prove the problem at hand satisfies the property
required by Putinar’s Theorem.

Lemma 1. The module corresponding to our SDP problem
is Archimedean.



Proof. First, we replace the parameters ti over the range
[0, 1], by parameters over the range [−1, 1]. This replaces
the condition ti(1− ti) ≥ 0 with 1− t2i ≥ 0. Next, We must
show that there is a real number L > 0, SOS polynomials
σ0, σ

i
1, σ

i
2, σ

i
3, and general polynomials πi, such that

L−
∑
i

(t2i + c2i + s2i ) = σ0 +
∑
i

(1− t2i )σ
i
1+

+
∑
i

[
(T − s2i )σ

i
2 + ciσ

i
3 + (c2i + s2i − 1)πi

] (5)

Choosing L = 2n, σ0 = σi
2 = σi

2 = 0, σi
1 = 1, πi = −1,

where n is the total number of summands, we obtain equality,
completing the proof.

We note that multiple polynomial obstacles can be ad-
dressed by adding more constraints in the form of 3. Indeed,
since the non-intersection requirement is posed as a feasibil-
ity problem, a union of obstacles leads to a list of constraints.
For instance, see in Fig. 5 an example with multiple circular
obstacles.

E. Optimization

SOS Problems are generally solved via SDP [3], [23].
However, (4) is not truly in the correct form. The require-
ment is that the polynomials in (3) must be linear in their
coefficients, which are the decision variables of the problem.
This is not true for the term (T − s2i )σ

i
2, since both T and

the coefficient of σi
2 are variables, and hence this term is

quadratic. To mitigate this, an option is to optimize T using
a binary search. Essentially, we are looking for the maximal
T such that (3) is feasible, by attempting to solve multiple
SDPs. This is an effective approach, which we adopt in
most experiments. Alternatively, we also experimented with
removing σi

2 from (3), to obtain a true SOS problem, which
can be solved directly via a single SDP. The caveat is that the
solution to this SDP may underestimate the maximal value,
the reason being that due to the removal of σi

2, we lack the
degrees of freedom it provides. We evaluate the differences
between these approaches in Sec. IV.

The question of the degree necessary to set for the different
SOS terms in (3) is important. Higher degrees provide more
degrees of freedom, but may be redundant. As a rule of
thumb, one should set the degree of each SOS polynomial
in each term such that the degree of the product matches
that of the l.h.s. of (3) as much as possible, noting the
degree of SOS polynomials is always even. To illustrate, we
provide an example of a 2-link arm and a 4-th degree non-
convex polynomial obstacle in Fig. 3. q(Lj) is 8-th degree,
and therefore we set the degrees of σ0, σ1, σ

i
2, σ

i
3 and πi to

8,6,6,6,6, respectively. Note that the exception here is the
degree of the term ciσ

i
3, which is 7. While we could have

set it to 9, we did not observe any limitations experimentally.
In Sec. IV we also report on the influence of the degree of
πi on the precision of the result.

F. Alternative representations

In order to apply SOS techniques to motion planning,
it is necessary to represent the trigonometric functions by

1
0

-1

0 4 0 4

Fig. 3: A free form, non-convex obstacle, defined by an implicit quartic
polynomial. The initial configuration is shown in bold, with two other
configurations that are on the boundary of the collision free C-space region.

polynomials. We represent the sine and cosine functions as
variables s, c, with the added condition c2+s2 = 1. In [21], a
truncated Taylor expansion was used, which is inaccurate (for
large angles). In [22], a rational parameterization was used:
sin(α) = 2t

1+t2 , cos(α) =
1−t2

1+t2 , where t = tan(α/2). While
requiring less variables, this representation suffers from a
”blow up” in the degrees of the polynomials required for the
SOS program, since the 1 + t2 factor must be canceled out
by multiplying all identities by the highest degree at which
it appears in the denominators (as SOS techniques cannot
directly handle rational functions). Since a polynomial of
degree d in n variables has

(
n+d
d

)
coefficients, we opted for

a parameterization with a smaller d.
For example, assume we have to handle 10 rotation angles,

and that the polynomial describing the problem is of degree
2. Our approach yields a quadratic in 20 variables, with
231 coefficients, and 10 quadratic constraints. However, the
rational parameterization offered in [22] yields a rational
function with denominators (1 + t2i )

2, i = 1 . . . 10, all
of which must be canceled out; hence, it is necessary to
multiply the corresponding identities by a polynomial of
degree d = 40, yielding polynomial identities with 1.03 ·1010
coefficients.

G. Convex Polygonal obstacles

In Sec. III-D we mentioned that the approach readily
works for unions of obstacles. Convex polygonal obstacles,
however, are defined by intersection of half-planes, i.e.
implicit polynomials of degree 1. In this section we describe
a complementary approach, suitable for this case.

To make the exposition simpler we begin with the condi-
tions for non-intersection of a fixed segment with a convex
polygon P . We describe P by intersection of half-planes,

P =

n⋂
i=1

{(x, y) | Li(x, y) ≥ 0}

and denote the endpoints of the segment by x1,x2 ∈ R2.
Consider the following feasibility problem:
There exist SOS polynomials σ0 . . . σn+1 in the variables
x, y, t, such that the following equality holds:

σ0 +

n∑
i=1

σiLi(tx1 + (1− t)x2)

+ σn+1t(1− t) + ε = 0,

(6)



where ε is a positive constant, which can be made arbitrarily
small. Suppose the feasibility problem in (6) can be satisfied,
and let x be a point inside P . Since Li(x) ≥ 0 for every
i, σi ≥ 0 everywhere, and t(1 − t) ≥ 0 for the t range
in question (the interval [0, 1]), it follows that x cannot be
on the segment, since the sum of positive numbers and ε
cannot be equal to 0. Hence, (6) defines a ”certificate for non-
intersection” of the segment and the polygon. To guarantee
non-intersection of a link Lj with P , we proceed as in
Section III-D, i.e handle the link as a segment whose start
and end points are determined by the rotation angles of itself
and the previous links. See an example in Fig. 4.
Remark. Non convex polygons can be treated by dividing
them into several convex polygons and treating them as a
union. Alternatively, they can also be treated as independent
edges. To this end, we require an SOS formulation for edge-
edge intersection, which we briefly sketch here. Let the
segments be defined by their endpoints, p1, p2 and q1, q2. The
certificate for non-intersection should imply the condition
that for every 0 ≤ s, t ≤ 1, it holds that tp1 + (1 − t)p2 ̸=
sq1 + (1− s)q2. We therefore define the following feasibil-
ity problem, which obviously cannot hold if the segments
intersect:

||tp1 + (1− t)p2 − sq1 − (1− s)q2||2 − σ0 − (7)
σ1t(1− t)− σ2s(1− s)− ε = 0,

where, again, ε is an arbitrarily small positive constant. To
check intersection of a segment with a non-convex polygon,
we simply check it vs. each of the polygon’s edges. In fact,
this formulation allows any arbitrary set of scattered line-
segments, not necessarily polygons. Again, the generalization
to links follows Sec. III-C. The drawback of this approach
in comparison to the one above for convex polygons, is that
the required degrees of the SOS polynomials are higher. For
example s0 is required to be of degree 4 instead of 2 for
convex polygons.

Fig. 4: An example showing various arms and polygonal obstacles. The
initial configurations are shown with bold joints, and maximal ones touching
the polygonal obstacles are shown with hollow joints

H. Anisotropic regions in C-space

We end this section with a preliminary discussion
regarding anisotropic collision-free regions in C-
space. So far, we have described how to obtain
a maximal, symmetric hypercube in C-space.
Clearly though, hypercubes are subop-
timal in comparison to more general
shapes [22]. For example, in the con-
figuration in the inset, we may try and
obtain a set with a larger volume, re-
flecting the fact that the second link has

Fig. 5: An example showing multiple disc obstacles. The hollow discs are
not present and are only shown for comparison. Treating multiple obstacles
is straightforward (Sec. III-D).

considerably more rotational freedom than the first. A natural
extension is a hyperbox in C-space. Denoting the height of
the ”ceiling” obstacle by w, the rotational ”slacks” of the
first(second) link by δ1(δ2), the cosines and sines of the
initial angles of the first and second links by c10, s10, c20, s20,
and cos(δ1) = c1, sin(δ1) = s1, cos(δ2) = c2, sin(δ2) = s2,
and following as in Sec. III-C, we obtain the following
intriguing optimization problem

Maximize T1T2 such that the following are feasible

I) w − (c01s1 + s01c1) = p1 + p2(T1 − s21) + p3c1 +

q1(c
2
1 + s21 − 1)

II) w − (c01s1 + s01c1)− (c02s2 + s02c2) = p4 + (8)

p5(T1 − s21) + p6(T2 − s22) + p7c2 +

q2(c
2
1 + s21 − 1) + q3(c

2
2 + s22 − 1),

where the pi are SOS polynomials in the variables
c1, s1, c2, s2, and the qj are arbitrary polynomials in these
variables.

The problem in (8) cannot be solved with convex op-
timization tools, and its solution can be approximated by
iterative ”alternating” between two convex problems, as in
[22]. However, if we set in (8) p2 = p5 = p6 = 1, then,
while not obtaining the most general solution, we can use the
following result to obtain a convex problem (i.e. minimizing
a convex function over a convex region):

Lemma 2. When setting p2 = p5 = p6 = 1, the set of pairs
(T1, T2) for which the problems I,II in (8) are feasible, is
convex.

We omit the proof, which proceeds rather directly by
noting that the set of all polynomials, as well as SOS
polynomials, are convex. Then, we use the standard trick
of minimizing −(log(T1) + log(T2)), which is convex, over
the convex region guaranteed by Lemma 2.

For the two-link problem above, the symmetric (square)
shape in C-space found by the algorithm in Section III-G
is of area 0.0043, the optimal non-symmetric (rectangle)
found by exhaustive optimization 0.029, and by the convex
optimization described here, 0.024. The method can readily
be extended to any number of links. Initial experiments
suggest that its improvement over the method in Section
III-G is better when the degree of the implicit polynomials
describing the obstacles is lower.
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Fig. 6: Time to solve and number of variables used to describe the problem
for an arm with n links and a single round obstacle, using 1st and 2nd
degree polynomials for πj .

IV. RESULTS

We evaluate our formulation in terms of performance,
complexity and accuracy, in the scenarios described in
section III-D, on a i7-9750H machine clocked at 2.6GhZ
with 16GB of RAM. We implemented our solver in Matlab,
and SOSTOOLS [27] to implement the SOS program, and
SeDuMi [28] as the underlying SDP solver. SOSTOOLS is
a Matlab toolbox that allows describing SOS programs in
high-level, and converts them to an SDP problem. We use
the default parameters everywhere. The code is included with
the submission and will be open sourced when published.

Evaluating the structure of the SDP derived from our SOS
formulation is not straightforward. In this paper we focus
on evaluating the complexity of the problem in term of the
number of decision variables, e.g. the number of polynomial
coefficients. This indirectly corresponds to complexity and
timing, i.e. a problem with fewer variables will generally
be solved faster. To obtain a positivity certificate, when it
exists, we generally select the highest degree polynomials
necessary, which will require the most time to compute.
We can opt to relax the problem, and use lower degree
polynomials. We illustrate this with two examples involving a
polygonal obstacle and a disc obstacle. For both, we use only
second degree SOS polynomial, except σ0 for the disc case,
since that is the minimal degree required to obtain a feasible
solution. For the general polynomial πj , we chose either 1st
or 2nd degree and compared the results. It is expected that
the optimal δ for the 1st degree case should underestimate the
maximum, and be below the δ for the 2nd degree case. On the
other hand, since fewer variables are present, performance
should improve timewise. We show the difference in the
value obtained in Fig. 8, which also includes a comparison
to the direct optimization approach from Sec. III-E, which
requires no binary search for the maximal T , hence is faster.
The results were obtained by randomly placing obstacles and
computing the optimal δ with each method. This was done
100 times. Next, the results were organized in deciles, and
the averages are shown as a bar plot. Additional difference in
time for the disc case are shown in Fig. 6, and in Fig. 7 for
the polygonal case. We have also included a demonstration
of the scaling of the problem for the polygonal case, shown
in Fig. 7 as well.
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Fig. 7: Comparison of the running time and number of variables present
when treating polygonal obstacles. The experiment was run with 3 and 10
links, and 3 and 10 polygonal sides. The number of variables shown refers
to the total number existing in the problem, and variables related to the last
link only.
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Fig. 8: The value of δ found with direct optimization (Sec. III-E), 1st
and 2nd degree polynomials, for a polygonal and disc obstacle, with a 2-
link arm. 100 random sample were arranged in deciles and averaged. As
expected, the 2nd degree case achieves the highest δ, but suffer from the
worst performance (compare with Fig. 6 and 7).

V. CONCLUSIONS

We presented an SOS-based formulation for finding a large
and convex collision-free region in the C-space of a two-
dimensional robotic arm. Our formulation is very direct,
relying on substituting the links into an implicit expression
defining the obstacles, and using the SOS paradigm to define
and check that the result is positive for the entire link. This
approach is general, and covers not only convex polygonal
obstacles, but also free-form and non-convex obstacles. The
solution is non-iterative, and uses only SOS polynomials of
modest degrees. Future work will address convex regions
in C-space with more general shapes, as well as three-
dimensional and mobile robots.
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